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Because the anisotropy of the Earth’s surface reflectance
is strongly influenced by vegetation cover, multidirec-
tional remotely sensed data can be highly effective in
discriminating among land cover classes. This article
explores the use of multiangle and multispectral data
from the Advanced Solid-State Airay Spectroradiometer
(ASAS) in land cover mapping using artificial neural
networks. A multilayer feed-forward neural network is
trained to identify five land cover classes in Voyageurs
National Park, Minnesota. Multiangle data achieve 89 %
of accuracy when applied to a single band (774-790 nm),
7-directional imagery and 88% accuracy when applied
to multispectral nadir data. Analysis of error using the
confusion matrix indicates that the higher classification
accuracy is obtained primarily for three classes: decidu-
ous forest, wetlands, and water. The results suggest that 1)
directional radiance measurements contain much useful
information for discrimination among land cover classes,
2) the incorporation of more than one spectral multiangle
band improves the overall classification accuracy com-
pared to a single multiangle band, and 3) neural networks
can successfully learn class discriminations from direc-
tional radiance data and/or multidomain data.

INTRODUCTION

Conventional multispectral classification is the process
of discretizing spectral digital image data (e.g., satellite
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or aircraft multispectral imagery) into classes of known
identity. Traditionally, parametric methods based on
simple statistical models have been used in the classifi-
cation of these data. For example, maximum likelihood
measure is based on the Gaussian model for the distribu-
tion of pixels from each class. These techniques yield
classification accuracies of around 60-90%, with the
lower values encountered in the contexts where compli-
cated data sets are used and/or when large number
of classes have to be identified. To overcome these
limitations, new and alternative models, including arti-
ficial neural networks, have been introduced. Recently,

. Landsat Thematic Mapper (TM) data have been classi-

fied using feed-forward neural networks by Kiang
(1992), Hepner et al. (1990), McClellan et al. (1989),
Civco (1993), and Howald (1989). There have also been
attempts to use other remotely sensed data including
Landsat Multispectral Scanner (MSS) Lee et al., 1990),
the Synthetic Aperture Radar (SAR) terrain image data
(Decatur, 1989) and Systeme Pour I'Observation de la
Terre (SPOT) (Dreyer, 1993). These applications have
proved successful and generally result in greater classi-
fication accuracies compared with the conventional
techniques.

More sophisticated approaches using neural net-
works involve an integration of data sets, that is. multido-
main data; for example, Key et al. (1989) use the Ad-
vanced Very High Resolution Radiometer AVHRR)
data in conjunction with the Scanning Multichannel
Microwave Radiometer (SMMR) for the classification
of four surface and eight cloud classes in the Arctic.
Benediktsson et al. (1990) combine remoteiv sensed
data with ancillary topographic information. Multitem-
poral data have been used by Kanellopoulos et al. (1990).
Most of these studies have used feed-forwaré networks
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Figure 1. Mean radiance values mW em=2 sr-!' um™") for
five land cover classes as a function of viewing angle of
ASAS Bund 24 (769-795 nm); solar zenith angle is 34°,

trained using the backpropagation algorithm. More re-
cent approaches have utilized neural network architec-
tures other than backpropagation. For example, Salu
and Tilton (1993) introduce an unsupervised multilaver
feed-forward classifier called “binary diamond” for the
classification of multispectral data. Gopal et al. (1994)
use a supervised model called FuzzyART (Carpenter et
al., 1991) in the classification of normalized difference
vegetation index (NDVI) data obtained from AVHRR
images for the Sahel. These works suggest that neural
networks provide a viable alternative for classifving re-
motely sensed data.

A relatively unexplored domain in remote sensing
is the use of directional radiance measurements in classi-
fication. So far, very little attention has been paid to
this domain compared to the spectral domain (Kimes
et al., 1991). However, several new sensors pr()posed
for the Earth Observation System (EOS) will offer infor-
mation about the directional as well as the spectral
variations of the reflected radiance. These sensors in-
clude the Moderate Resolution Imaging Spectrometer
(MODIS) and the Multiangle Imaging Spectroradiome-
ter (MISR), which are planned for launch in 1998 on
the EQS-AM1 platform.

The directional anisotropy of the radiance reflected
from terrestrial surfaces can be used as an index to
discriminate among land cover classes, Figure 1 shows
the mean radiance values (in mW cm~? sr=! um™!)
for representative sample of five land cover classes—
conifer, water, deciduous, clearcuts, and wetlands—as
measured by the Advanced Solid-state Array Spectrora-
diometer (ASAS) (Irons et al, 1991) in the principal
plane of the sun, as a function of viewing angles. The
patterns of directional response are generally similar for
the four vegetated covers, although thev differ in specific
features. Water is clearly separable from the others.

A primary objective of this research is to demon-

strate the feasibility of using directional radiance infor-
mation in land cover classihcation. The effects of multi-
directional data. multispectral data, and multidomain
(multidirectional and multispectral) data on classifica-
tion accuracy are discussed. A second objective is to
introduce artificial neural networks to approximate the
input-output relationship between directional remotely
sensed data and land cover cluss memberships.

ASAS IMAGERY

The Advanced Solid-state Array Spectroradiometer
(ASAS) is a pointable aircraft-borne spectroradiometer
with a unique capability to collect high spectral resolu-
tion data in the visible and near-infrared region of the
spectrum at multiple directions (Irons et al., 1991).
Prior to September 1992, the ASAS focal plane held a
charge-injection-device (CID) area detector array pro-
viding 29 spectral bands from 451 nm to 871 nm with
an approximately 15 nm bandwidth. In 1992 the CID
detector array was replaced with a charge-coupled-
device (CCD) array providing 62 visible and near-
infrared spectral bands with a spectral resolution of
approximately 11 nm,

Imagery from ASAS has a pixel size determined in
the across-track direction by platform altitude, and in
the along-track direction by the electronic readout rate
and its 25° field of view. For the conditions of our
acquisition, nadir pixel size was 2.5 m by 4.0 m. Images
are acquired from multiple fore-to-aft view directions
(45° forward to —45° aft in 15° increments in the case
analyzed here) as the aircraft approaches and recedes
from the target. The ASAS instrument is operated by
the NASA / Goddard Space Flight Center, Laboratory of
Terrestrial Physics and flown on NASA’s C-130 aircraft.

ASAS data were received in a format of two header
records followed by 30 bands recorded in a band-
sequential format. The original 16 bit data were com-
pressed to 8 bits as needed for image display and as
inputs to the network. Figure 2 displays Band 24 (774~
790 nm) showing the scene under investigation.

A 400 by 244 pixel image of Vovageurs National
Park was chosen for the study. The scene consists of five
distinctive land cover classes—water (lake), conifers,
deciduous forest, wetlands, and a clearcut. The seven
fook angle images were registered to each other prior
to any processing. Training and testing data sets were
extracted from the image. The training data consisted
of 1623 pixel for each class, and the test data consisted
of 100 randomly chosen pixels per each class. The
near-infrared ASAS Band 24 was used because, in this
wavelength range, atmospheric effects are minimal.

ASAS data suffer from geometric distortions due to
the off-nadir viewing angles and to aircraft motion dur-
ing data acquisition. The distortion results in image
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Figure 2. ASAS Band 24 of Voyageurs National Park, Minnesota, on 26 June 1988 with a solar zenith angle of 34°.

misregistration between look angles. The development
and application of the neural network required image-to-
image registration to ensure that cach pixel from the
seven view angles exactly represent the same location
on the ground. A simple rubber sheet wrapping tech-
nique was adopted to register all the off-nadir view
images to the nadir image, that is. the base image.
Second- and third-order polynomials were fitted to sets
of control points that were identified in the images
to achieve registration. Reasonable root-mean-square

errors were achieved in most cases. In future studies we
plan to follow a more rigorous technique of directional
images registration such as the one developed by Allison
et al. (1994).

CLASSIFICATION OF ASAS MULTIANGLE DATA
Neural Network Modeling

In this article we use feed-forward neural networks.
which have influenced the development in the field of
neural networks during the past decade. The problem
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Figure 3. The general two-laver neural network model.

addressed by such networks is the approximate imple-
mentation of an input-output relation by means of su-
pervised training. We consider two-laver feed-forward
networks with one (or more) hidden lavers (Fig. 3),
which is the leading case of feed-forward neural net-
works. A detailed discussion and review of the
multilayer feed-forward networks and the algorithm
used for training called “backpropagation” is given in
Rumelhart et al. (1986a,b).

Fischer and Gopal (1994) view the application of
neural network modeling as a three-stage process. The
first stage, model identification, involves determining the
number of input, output, and hidden units. The choice
of the number of hidden units is not an easy task. It is
generally dictated by the problem and involves consider-
able judgement on the part of the experimenter. The
intuitive rule of “the more the better” might be used,
since the number of hidden units controls the model’s
flexibility. On the other hand, networks with large hid-
den units may become counterproductive as they intro-
duce many degrees of freedom and may not lead to
optimal predictions. Weigend et al. (1991) suggests that
the number of weights should be less than 1/10 of the
number of training patterns. ‘

The second stage, called model estimation, refers to
choice of a reasonable network training strategy byv
which various parameters including choice of error func-
tion, training by pattern or epoch, sequential or random
ordering of training vectors, the iterative procedure,
appropriate initial conditions, network parameters, and
the weight updates. The final stage is called model
testing or prediction, where the prediction quality of the
network is assessed using performance measures like
root mean square error (RMS), R?, and error matrix
(Congalton, 1991).

Model Identification Stage

The neural network designed for the experiment con-
sisted of four fully connected layers. The input laver
consisted of seven processing units or nodes represent-
ing the seven view angles for a pixel as captured by
ASAS. Each input brightness value was scaled between
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Figure 4. The neural network architecture used in the
classification of the ASAS data.

—1 and 1. The number of hidden units was determined
through experimental simulations. The first hidden laver
comprised 10 processing units and the second 8 units.
The output layer had five nodes, each representing one
of the five classes to be classified. The output of the

~ neural network, was represented using a coding scheme

in which the output vector consisted of five elements
representing the five land cover classes of interest. For
example, if a pixel belongs to class 3, the output from
node 3 in the output layer was set to a value of 1 and
the remaining outputs from the other nodes were set
to 0. Thus the target output vector representing class 3
would be (0,0,1,0,0). The architecture of the network
is shown in Figure 4. The initial parameters were drawn
from a uniform distribution. Five different random ini-
tializations were used to analyze variations due to ran-
dom initial conditions.

A hyperbolic tangent transfer function was used to
calculate the activation of the nodes. A learning rate of
0.3 and a momentum rate of 0.4 were used. Training
was stopped when the root mean square error was
less than 0.01. Table 1 shows the results of the five
simulations, the number of epochs (one epoch repre-
sents the presentation of eight training samples to the
network) required to reach convergence. Each simula-
tion presents a different set of initial weights, and thus

Table 1. Performance of 7:10:8:5 Model during Training
in Terms of CPU time and Number of Epochs (a Learning
Rate of 0.3 and a Momentum Rate of 0.4)

Simulation Training

Number Epochs CPU Time
1 25,480 3:49

2 35,280 5:17

3 49,504 7:25

4 39,008 35:31

5 50,024 7:30
Mean 39,859.2 5:58
Std. Dev. 10,305.34 1:32
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Figure 5. Training performance of the (7:10:8:5) neural
network model in terms of the root mean square error.

Table 1 shows the variations in performance due to
initial coenditions. Best performance is obtained using
Simulation 4 in Table 1, which is closer to the mean
(of the five simulations) and has much less variance.
Simulations 1 and 2 reached convergence earlier (less
CPU time) bat are not similar to the mean. Hence we
selected Simulation 4 for the testing phase and for our
discussion pertaining to classification using a neural
network.

Model Estimation and the Overfitting Problem
Whereas the stage of identification was concerned with
identifving an appropriate model, the stage of parameter
estimation is devoted to determination of the magnitude
and the sign of the parameters of the (7:10:8:5) network
model. Figure 5 shows the evolution of training accuracy
in terms of the performance measure, that is, root mean
square error, plotted against the number of epochs (each
epoch represent eight iterations). The network’s root
mean square first decreased rapidly (until 1800 epochs),
and then fluctuated (until 15,000 epochs), before exhib-
iting a more steady pattern (around 25,000 epochs). It
took nearly 39,000 epochs for the network to reach the
predehined criteria of convergence.

A serious problem at this stage is the overhtting
problem which leads to poor generalization. This arises
when the neural mapping function tries to fit all of the
fine details in the training data set. rather than capturing
the underlving trends in the data (Bishop. 1991), It is
thus necessary to rectifv the mapping function and
hence improve the generalization capability of the neu-
ral model. We used a simple technique called “pruning”
(Samad, 1989) in order to reduce the size of the network
and thus the size of the mapping function, which, in
turn, reduces the computational complexity. This pro-
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Table 2. Prediction Performance of 7:10:8:5 Model in

Terms of R? for Different Classes
Class R?
Water 0.916
Deciduous 0.945
Wetlands 0.898
Conifer 0.997
Clearcut 0.953

cess involves monitoring the weights of the connections
of the network in the training phase. A weight threshold
of + 0.8 was used. Using this procedure, those connec-
tions weights that did not grow more than the prespeci-
fied threshold were “pruned,” and the reduced network
(with the pruned connections) was retrained once more.
We found 17 connections that could be pruned in the
(7:10:8:5) network, and the pruned network only reused
25,280 epochs to reach the convergence criteria. Note
that this procedure is a heuristic measure. Better ap-
proaches exist that systematically eliminate weights and
remove hidden units, including the weight elimination
method using a complex cost function (Chauvin, 1990;
LeCun et al, 1990) and the validation method of
Weigend et al. (1991). Our future research efforts will
involve exploring these methods to address the overfit-
ting problem, which is a serious issue using real world
data.

Model Testing or Prediction Stage

So far, we have concentrated on describing the training
behavior of the network. This stage involves the assess-
ment of a network prediction ability with novel data.
That is, the ultimate task of learning is to generalize
outside the training set and predict outputs for unseen
input pixels. Table 2 reports the prediction performance
of the (7:10:8:5) neural network on the testing data
set in terms of R? between the target class and the
corresponding neural prediction. As can be seen, R*
values of more than 0.9 are obtained for conifer forest,
clearcuts, deciduous forest, and water, while wetlands
shows a slightly lesser R

Table 3 shows the confusion matrix for the classified
test data using ASAS band 24 multiangle data. The total
accuracy is 97.4%. and the errors of omission are 13
out of 5300. There is some confusion between water and
wetlands, and deciduous forest and clearcuts. These
errors might reflect misregistration errors that occur at
the boundaries between classes. In general, the neural
network appears to be a very effective classifier.

CLASSIFICATION OF ASAS
MULTISPECTRAL DATA

An interesting issue in this analysis of directional data
versus multispectral data is to assess the classification
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Table 3. Confusion Matrix for the Neural Network Classifier

Ground Landcover Class Using Neural Network Classifier
Truth Lake Deciduous Wetland Conifer Clearcuts
Water 92 0 8 0 0
Deciduous 0 95 0 0 5
Wetland 0 0 100 0 0
Conifer 0 0 0 100 0
Clearcut 0 0 0 0 100

accuracy in each case. A comparison of single-band
multidirectional data versus six-band multispectral data
was undertaken in this study. An image database con-
sisting of six nadir ASAS spectral bands for Voyageurs
National Park were used. This database consists of ASAS
Band 2 (458-472 nm), ASAS Band 6 (513-528 nm),
ASAS Band 8 (541-556 nm), ASAS Band 15 (641-656
nm), ASAS Band 21 (730-746 nm), and ASAS Band 24
(774-790 nm).

A neural network was developed to perform the
classification. The input layer consists of six nodes, each
node representing one of the six spectral bands, and

the output layer of five nodes each representing one of

the five land cover classes. A similar architecture of 10
hidden nodes in the first hidden layer, and eight nodes
in the second hidden layer was used. The image was
classified using the trained network, and the classifica-
tion accuracy results are shown in Table 4.

DISCUSSION

The following discussion pertains to the classification of
the entire image. Figure 6 shows the classified image
of the scene when using ASAS multiangle data only.
Note that the classified image (Fig. 6) visually locks
similar to the original image shown in Figure 2. The
effects of misregistration are clearly seen along the
boundaries that separate some classes, for example, the
boundary between lake and wetlands, where pixels are
labeled as conifers. Similarly the boundary between lake
and deciduous forest shows the effects of misregistra-
tion. The impact of misregistration is a serious issue
that warrants future research.

Table 4 compares the results of classifving the whole
image using ASAS multiangle data and ASAS multispec-

tral data, each separatelv. The area weighted accuracy
for the multidirectional classification is 89%, and for the
nadir multispectral classification data are 88%. There is
no significant difference between the two classification
accuracies. The results demonstrate that multidirec-
tional data is as useful as multispectral data for land
cover classification. The multiangle classification in Ta-
ble 4 overestimates the water class (1%), and the decid-
uous class (less than 1%). The multispectral classifica-
tion largely overestimates the deciduous class and
underestimates the wetlands area. Both classifications
approximately equally underestimate the conifer class,
and overestimate the clearcut areas.

An interesting issue in the use of multidirectional
ASAS data is the effect of increasing the number of
spectral bands on the classification accuracies. A com-
parison of multidirectional data and multidomain data
(a combination of multispectral and multidirectional)
was undertaken in another study (Abuelgasim and Go-
pal, 1994). A scene consisting of 400 by 303 pixels of
Voyageurs National Park was classified with ASAS Band
10 (570-585 nm). ASAS Band 15 (642-656 nm), and
ASAS Band 24 (774-790 nm).

In this study, the effect of each of the three ASAS
bands on classification was first assessed independently.
In each case, the same neural network architecture was
used. Second, the effect of combinations of ASAS Bands
10 and 15 and ASAS bands 15 and 24 on classification
was analyzed. The input layer of the ANN architecture
was expanded to reflect the changes in the size of the
input vector. Other layers in the network remained the
same. The overall classification results are shown in
Table 5.

In terms of multidirectional data alone, the near-
infrared ASAS Band 24 produced the best classification

Table 4. Classification Accuracy for Land Cover Classes Using Multiangle and Multispectral Data

Land Cover Ground Cover Ground Cover Multiangle Data Multiangle Data  Multispectral Data  Multispectral Data
Class (# of Pixels) (% Cover) (# of Pixels) (% Cover) (# of Pixels) (% Cover)
Water 8.640 8.85% 9,690 9.93% 8,781 9.00%
Deciduous 17,200 17.62% 17,718 18.15% 18,978 19.44%
Wetlands 16,808 17.22% 14,781 15.14% 14.468 14.82%
Conifer 47,776 48.95% 44,414 45.51% 44,395 45.49%
Clearcut 7,176 7.35% 10,997 11.27% 10,978 11.25%
Accuracy 89% 88%
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CONIFER

Figure 6. Classified image of Voyageurs National Park using neural network classification. Blue represents water, orange
represents deciduous, yellow represents wetlands, red represent conifer, and white represent clearcut areas.

result (85%), compared with ASAS Band 10 (64%) and
ASAS Band 15 (61%). An improvement in accuracy is
noted using the multidomain data sets. A combination
of ASAS Bands 10 and 15 increases the accuracy to
65% representing an improvement of nearly 7% and
2% over using ASAS Bands 15 and 10 individually.
Similarly, there are gains in accuracy using the combina-
tion of ASAS Band 15 and 24: total accuracy increases
to 87% representing a substantial improvement of 43%
in the case of ASAS Band 15 and a modest increase of
2% over using ASAS Band 24 alone.

This finding is not surprising. Multidirectional data
by itself tend to have lower intrinsic dimensionality;
but, in the case of multispectral and multidirectional
data, more discriminative information is available, and
an improvement in classification should be expected.
However, in general, the improvement was not dramatic
in this study. One possible reason may be the fact that
the scene under investigation was simple; it has only
five land cover classes, and one spectral band with
multiangle views may be sufficient to achieve reasonable
accuracy. Though this might be a limitation, as it does
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Table 5. Classification Accuracy for Land Cover Classes
Using Multiangle and Multispectral ASAS Data

Spectral Band Classification Accuracy

ASAS Band 10 64%
ASAS Band 15 61%
ASAS Band 24 85%
ASAS Bands 10 and 15 65%
ASAS Bands 15 and 24 86%

not exploit the power of multiangle data, our future
plans are to seek more sophisticated multiangle and
multispectral data sets, with more complex classes to
fully analyze the potentials of multiangle and multido-
main data for land cover classification.

CONCLUSIONS

This study demonstrates that directional radiance mea-
surements can be used to effectively discriminate among

land cover classes. This approach is useful in areas.

where land surface classes cannot be discriminated
based solely on their spectral signature. The directional
reflectance pattern exhibited by various classes is partic-
ular to each class and is dependent on important ele-
ments such as size, shape, and spatial distribution of
the constituent elements of each cover type.

The study also demonstrated that the incorporation
of more than one directional band (multidomain data)
enhances the classifier’s ability in discriminating among
land cover classes. Future analysis of landscape patterns
will likely incorporate more sophisticated information
and data from a variety of sources and domains, that
is, multitemporal, multidirectional, multispectral. The
automatic production of up-to-date land cover maps
from satellite imagery requires optimal classification and
spatial generalization procedures. New developments in
the field of satellite sensor systems, including the launch
of more satellites with synthetic aperture radar systems,
new visible and infrared band sensors with improved
ground resolution, and launch of polar platforms car-
rying medium resolution imaging spectrometer systems
and multilook angle sensors, etc., will result not just in
a tremendous quantity of image data, but data from
many different spectral channels and from diverse parts
of the electromagnetic spectrum. Conventional pattern
classification approaches often do not provide high lev-
els of accuracy for these types of data. Such complex
data may require more sophisticated classification and
post-classification refinement techniques. Neural net-
work architectures may be more reliable tools for ex-
tracting information from the detailed spectral measure-
ments and radar backscatter signals.

The use of neural networks in remote sensing is
relatively new. Artificial neural networks have a signifi-

cant role to play in this context since they can handle
massive, complex, and incomplete data sets efhciently
and result in greater classification accuracies. In addi-
tion, neural networks are distribution-free and offer a
further advantage over most statistical methods, where
a knowledge of the distribution function is necessary
and data are assumed to be Gaussian.

This article introduces a class of neural network
models called feed-forward neural networks that imple-
ment a functional input-output relationship expressed
in a general, modifiable form. Learning is accomplished
by means of the backpropagation algorithm that func-
tionally modifies the adaptive setting of weights. The
main results obtained in the study demonstrate that the
neural network we constructed successfully learns the
input-output mapping between the directional radiance
measurements and the land cover class. There are some
errors in classification especially at the boundaries of
certain classes. This may be partly due to misregistra-
tion, an issue that warrants some further attention. The
combination of multispectral and multidimensional in-
formation for classification enhance the discriminative
power and lead to improved classification, with complex
scenes especially if more classes are to be identified.

There are some fundamental problems in the neural
network approach that deserve further attention. First,
supervised learning using backpropagation can be stuck
in a local minimum of the error function due to the
gradient-based learning rules. These can be viewed as
potential pitfalls undermining this type of supervised
learning. Second, the backpropagation procedure re-
quires a large number of computations per iteration.
The algorithm tends to run slowly unless implemented
in parallel hardware. Third, overtraining of the feed-
forward network may lead to overgeneralization and
fitting of noise by the network. Obviously despite these
limitations, these neural networks offer many advantages
over conventional approaches. Our future research in
this area will explore different types of neural network
architectures in the classification of multidirectional and
multispectral data sets.
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