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Because the anisotropy of the Eurth’s sur$ace reflectance
is strongly influenced by vegetation cover, multidirec-
tional remotely sensed data can be highly e~ectitie in
discriminating among land cover classes. This article
explores the use of multiangle and multispectral data
from the Adcanced !Mid-state AI ray spectroradiometer
(ASAS) in land cover mapping using artificial neural
networks. A mult ilayer feed-forward neural network is
trained to identify jke land cover classes in Voyageurs
National Park, Minnesota. Multiangle data achieve 89%
of accurgcy when applied to a single band (i’1’4-790 nrn),
7-directional imagerrr and 88% accuracy when applied
to multispectral nadir data. Analysis Of error using the
confision mutrix indicates that the higher classification
accuracy is obtained prirnarihj for three classes: decidu-
ousfor-est, wetlands, and water. The results suggest that 1)
directional radiance measurements contain much useful
inf(wrnation for discrirn inat ion among [arid cover classes,
2) the incorporation of more than one spectra! multi angle
i)and irnprotzw the ocerall classification accuracy comp-
ared to u single rnultiangle .Jxmd, and 3) neural networks
can successfully learn class discri rninations from direc-
tional radiance data and/or rnultidomain data.

INTRODUCTION

Con\wntional m(lltispectrti] classification is the process

ot” discretizin< spectral digitul im;lgc> data (e.g., satellite

or aircraft multispectral imagery) into classes of known

identity, Traditionally, parametric methods based on

simple statistical models have been used in the classifi-

cation of these data. For example, maximum likelihood

measure is based on the Gaussian model for the distribu-

tion of pixels from each class. These techniques yield

classification accuracies of around 60–90%, with the

lower values encountered in the contexts where compli-

cated data sets are used and /or when large number

of classes have to be identified. To overcome these

limitations, new and alternative models, including arti-

ficial neural networks, have been introduced. Recently,

Landsat Thematic Mapper (TM) data have been classi-

fied using feed-forward neural networks by Kiang

(1992), Hepner et al. (1990), McClellan et al- (1989),

Civco (1993), and Howald (1989). There have also been

attempts to use other remotely sensed data including

Landsat Multispectral Scanner (MSS) Lee et d., 1990),

the Synthetic Aperture Radar (SAR) terrain image data

(Decatur, 1989) and Systeme Pour l’Obsen-ation de la

Terre (SPOT) (Dreyer, 1993). These applic~ons have

proved successful and generally result in gr~er classi-

fication accuracies compared with the conventional

techni(lues.

More sophisticated approachm using neural net-

works involve an integration ofdata sets, that is- multido-

main data; for example, Key et al. (1989) use the Ad-

vanced \7ery High Resolution Radiometer .4\’HRR)

data in conjunction with the Scanning Jfultichannel
Jlicrowave Radiometer (SMhfR) for the cbsification

of four sot-face and eight cloud classes in tllm .\rctic.

Benediktsson et al. (1990) combine remotdy sensed

data with ancilla~ topographic information. \fultitem-

pora] dat a haie been used by KJnellopoulos et ~. (1990).
\fost of these studies have USeCl feed.fonrud netwwrks

(l(lm.42.5- ‘%; $l.5 (M)
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trail~ed Ilsing the lJ:~ckl>rf)I>ag:itio]] tilgorithm. hlore re-

etmt appr(mches have utilized neural network architec-

tllrvs other than l];~ckpropag~ltif}l]. For example, Salo

and lilton ( 1993) introduce an unsupervised mu]tilayer

feed-forward classifier called “hinwy diamond” for the

cltissification of multispectral data, Cupid et al. (1994)
IISe ti supervised model called FuzzyART (C;arptmter et

al., 1991) in the classification of normalized difference
vegetation index (NDJ71) data ohtuined from A\’HRR

images for the Sahel. These works suggest that neural

networks provide a viable alternative for classifying re-

motely sensed data.

A relative]~’ unexplored dorn~in in remote sensing

is the use of directional radiance measurements in classi-

fication. S() far, very little atttmtioll has been paid to

this domain compared to the spectral dorn~in (Kimes

et al., 1991). However, several new sensors proposed

for the Earth (Ibsewation System (EOS) will offer infor-

mation ~bout the directional as well as the spectral

variations of the reflected radiance. These sensors in-

clude the Moderate Resolution Imaging Spectrotneter

(MODIS) and the Multiangle Imaging Spectroradicm~e-

ter (MISR), ~vhich are planned for launch in 1998 on

the EOS-AM 1 platform.

The directional anisotropy of the radiance reflected

from terrestrial surfaces can be used as an index to

discriminate among land cover classes, Figure 1 sI101vs

the mean radiance values (in mW cm ‘z sr - 1 pm -1,

for representative sample of five land cover classes –

conifer, water, deciduous, clearcuts, and wetlands —as

measured h! the Advanced Solid-state Arra}’ Spectrora-

diometer (ASAS) (Irons et al., 1991) in the principal

plane of the sun, as a function of viewing angles. The

patterns of directional response w-e ,generall} similar for

the four vegetated covers, although the} differ in specific
features. Water is clearl, separable from the others.

A primary objective of this research is to den~on-

stratt> tl)e ftwsil)ilit! of Iisillg directional rudiancw in f(w-

mation in lancl cmer classihcati(m. The effects of n~ulti-

directiooal data, multispectral data. and multidomain

(Il]t]lti(lirecti[)llal and multispectral) data on classifica-

tion accuracy are discussed. A second ol}jecti\e is to
introduce artificial nellra] nc4\\(wks to approximate the

input-output relationsl}ip Iwtw”eetl directional remotel!

sensed data and land cmer class n]emherships.

ASAS INIAGEKY

The Ad\anced Solid-state Arra}” Spectroradiometer

(.\SAS) is a pointtil)]e aircraft-lwrnr spectroradiometer
u’ith a uni[~ue capal)i]ity to collvct high spectral resolu-

tion data in the \isiI)le and near-infrared region of the

spectrum at multiple clirections (Irons et al., 1991).

Prior to %ptemher 1992, the ASAS focal plane held a

cl~arge-il~jectiol~ -devict” (CID) area detector arra}’ pro-
viding 29 spectral I)ancls from 451 nm to 871 nm Ivith

an approximately 15 nm hand~vidth. In 1992 the CID
detector array was replacecl \vith a charge-coupled-

clevice (CCD) array’ providing 62 visible and near-

infrm-ed spectral hands \vith a spectral resolution of

approximately 11 nm.
Imagery from ASAS has a pixel size determined in

the across-track clirection h}’ platform altitude, ant] in

the dung-track clirection h}’ the electronic readout rate

and its 25° field of view. For the conditions of our

acquisition, nadir pixel size wus 2.5 m b}’ 4.0 m. Images

are acquired from multiple fore-to-aft view directions
(45° fomvw-d to – 45° aft in 15° increments in the case

analyzed here) as the aircraft approaches and recedes

from the target, The ASAS instrument is operated h}

the NASA / Goddard Space Flight Center, Laborator} of

Terrestrial Physics imd flcnvn on NASA’s C-130 aircraft.

ASAS data were received in a format of two header

records followed hy 30 bands recorded in a band-

sequential format. The original 16 bit data were com-
pressed to 8 bits as needed for image displa} and as

inputs to the network. Figure 2 displays Band 24 (i’74–

790 nm) showing the scene under investigation.

A 400 by 244 pixel image of Voyageurs National

Park was chosen for the stud}”. The scene consists of fi\e

distinctive land cover classes – \vater (lake), conifers,

deciduous forest, wetlands, and a clew-cut. The se~”en
look angle images were registered to each other prior

to any processing. Training and testing data sets w-ere

extracted from the image. The training data consisted

of 1623 pixel for each class, and the test data consisted

of 100 randomly chosen pixels per each class. The

near-infrared .ASAS Band 24 \\ ’as used because, in this

lvavelength range, atmospheric effects are minimal.

ASAS data suffer from geometric distortions due to

the off-nadir viewing angles and to aircraft motion dur-

ing data acquisition. The distortion results in image
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l~]isrt’,gistratiol~ het~v(’rm look ~lll~]t’s, Tilt, de~eloplnent errors wwre achitnwd in most cases. In flltllre studies \ve

I

Figurr 2. .W.W5lkmd 24 of V{)y;lgt.urs Notiontil Pitrk, \lil)nesotu, on 26 June 1988 with a solar zenith ungk of 34°.

plan to follow a more rigormls techni(~(le of dirwtion;d
im:lgt+s registration such 1s the (me dt>veloptd 1)}’.Nlison

et al. (1994).

CL$SSIFICATION OF ASAS MULTIANCLE DATA
Neural Network Nfodeling

In this article \ve use ftd-forxvarxl nt’llral Ilt.tm(wks.
uhieh Iuve influenced the de~,elopm(vlt ill the fiel(l of

nt’llrd Ildwx)rks during tht’ past dt>e;lde. T!]t’ pro~)lt’in
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Figure 3, TIIe gcner;d two-ktyer neural netuwrli model.
Figure 4, The neural netwwrk architecture used in the
clussifimtion of the .+S.%Sdata.

addressed by such networks is the approximate imple-

mentation of an input-output relation b} means of su-

pemisecl trtiiniug. We consider tww-layer feed-fonvard

networks with one (or more) hidden layers (Fig. 3),

which is the leading case of feed-fonvard neural net-

wwrks. A detailed discussion and review of the

multilayer feed-forward networks and the algorithm

used for training called “backpropagation” is given in

Rumelhart et al. (1986a,b).

Fischer and Copal (1994) view the application of

neural network modeling as a three-stage process. The

first stage, model identification, involves determining the

number of input, output, and hidden units. The choice

of the number of hidden units is not an easy task. It is

generally dictated by the problem and involves consider-

able judgement on the part of the experimenter. The

intuitive rule of “the more the better” might be used,

since the number of hidden units controls the model’s

flexibility. On the other hand, networks with large hid-

den units may become counterproductive as they intro-

duce many degrees of freedom and may not lead to

optimal predictions. Weigend et al. (1991) suggests that

the number of weights should be less than 1 / 10 of the

number of training patterns.

The second stage, called model estimation, refers to

choice of a reasonable network training strategy by
which various parameters including choice of error func-

tion, training by pattern or epoch, sequential or random

ordering of training vectors, the iterative procedure,

appropriate initial conditions, network parameters, and

the weight updates. The final stage is called model
testing or prediction, where the prediction qualit} of the

network is assessed using performance measures like

root mean square error (RMS), Z?z, and error matrix

(Congalton, 1991).

Nfodel Identification Stage

The neural network designed for the experiment con-

sisted of four fully connected layers. The input layer

consisted of seven processing units or nodes represent-
ing the seven view angles for a pixel as captured by

ASAS. Each input brightness value u,as scaled between

—1 and 1. The number of hidden units was determined

through experimental simulations, The first hidden layer

comprised 10 processing units and the second 8 units.
The output layer had five nodes, each representing one

of the five classes to be classified. The output of the
neural network, was represented using a coding scheme

in which the output vector consisted of five elements

representing the five land cover classes of interest. For

example, if a pixel belongs to class 3, the output from

node 3 in the output layer was set to a value of 1 and

the remaining outputs from the other nodes were set

to O. Thus the target output vector representing class 3

would be (0,0,1,0,0). The architecture of the net~vork

is shown in Figure 4. The initial parameters were drawm

from a uniform distribution. Five different random ini-

tializations were used to analym variations due to ran-
dom initial conditions.

A hyperbolic tangent transfer fhnction w’as used to
calculate the activation of the nodes. A learning rate of

0.3 and a momentum rate of O.ZI were used. Training

was stopped when the root mean square error w-as

less than 0.01. Table 1 shows the results of the fi~e

simulations, the number of epochs (one epoch repre-

sents the presentation of eight training samples to the

network) required to reach convergence. Each simula-

tion presents a different set of initial weights, and thus

Tahlc 1. Performance of 7:10:8:5 !dudel during Training
in Terms of CPU time and Number of Epochs (a Learning
Rate of 0.3 and a Momentum Rate of 0.4)

Sinldation Training

Nu rn.ber Epochs Cl’[’ Time

1 25,480 3:49
2 35,280 5:1’7
3 49,5(M 7:25

‘t 39,008 5:51
5 50,024 7:30

Mean 39,859.2 5:58
Std. Dev. 10,305,34 1:32
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Figure .5. Training performance of the (7:1():8:5) neural
network model in terms of the root mean square error.

Table I shows the variations in performance due to

initial cmlditions. Best performance is obtained using

Simulation 4 in T~ble 1, which is closer to the mean

(of the five simulations) and has much less variance.

Simulations 1 and 2 reached convergence earlier (less

CPU time) but are not similar to the mean. Hence we

selected Simulation -I for the testing phase and for our

discussion pertaining to classification using a neural

network.

Model Estimation and the Overfitting Problem

Whereas the stage of identification was concerned with

identifying tin tippropriate model, the stage of parameter

estinmtion is clelwted to cletermintitiou of the magnitude

and the sign of the parameters of the (7:10:8:5) network

mixlel. Figure 5 shows the evolution of training accuracy

in terms of the performance measure. that is, root mean

s(Iuare error, plotted against the 1~’umber of epochs (each

epoch represent eight iterations). Tile network’s root
mt’au s(~uare first decreased rapid]} (until 1800” epochs),

tilld then fluctuateti (until 1.5,000 epochs), before exhil)-

itill~ a more steady pattern (around 25,000 epochs). It

took nearly 39,000 t’pochs for the Iletwwrk to reach the

prtdelilled criteria of convt~rgellct’.
.~ st’riolls prol)len] at this stagt’ is the overtitting

prol)lem \vhich ]t~ads to poor” gt’l~t”r;l]iz~tioll. This arist+

\vlit.11 th{. ueur:d m~pping functi(m trios to tit all of tht>

tint’ details in the traininx dato set. rather than copturin~

tllc’ lll}d~’rl}ing trtmds in the datu (Bishop, 1991). It is

tl]lls nect’ssm> to rt~ctif} the mapping functim] WI(I

ht>nct’ impr(n”t’ the gt~neraliztition capal)ilit> of tht” nelI-

riil In{dt’1. \Vt’ Ust”d a silnple tt’cbni(l\le callt’d “prlllling””

(Sumad. 1989) in order to reduce the’ siz(> of the nt’twx)rk

and thl]s tht’ size of tht’ nliqq>in~ function, ~vhich, ii]

tllrl~, rt’(lllct~s tht> compl]tatio]lal con}plt’xit>, This pro-

Ta.!de 2. prediction Performance of 7:10:8:5 klodel in
Terms of R2 for Different Classes

class R’

J$’ater 0,916

Deciduous 0.945

wetlands 0.898

Conifer 0.997

Clearcut 0.953

cess involves monitoring the weights of the connections

of the network in the training phase. A weight threshold

of * 0.8 was used. Using this procedure, those connec-

tions weights that did not grow more than the prespeci-
fied threshold were “pruned,” and the reduced network

(with the pruned connections) was retrained once more.
We found 17 connections that could be pruned in the

(7:10:8:5) network, a’nd the pruned network only reused

25,280 epochs to reach the convergence criteria. Note

that this procedure is a heuristic measure. Better ap-
proaches exist that systematically eliminate weights and

remove hidden units, including the weight elimination

method using a complex cost function (Chauvin, 1990;

LeCun et al., 1990) and the validation method of
Weigend et al. (1991). Our future research efforts will

involve exploring these methods to address the overfit-

ting problem, which is a serious issue using real world

data.

Model Testing or Prediction Stage

So far, we have concentrated on describing the training
behavior of the network. This stage involves the assess-

ment of a network prediction ability with novel data.

That is, the ultimate task of learning is to generalize
outside the training set and predict outputs for unseen

input pixels. Table 2 reports the prediction performance

of the (7:10:8:5) neural network on the testing data

set in terms of R! between the target class and the

corresponding neural prediction. AS can be seen, R:
values of more than 0.9 are obtained for conifer forest,

clearcuts, deciduous forest, and water, while wetlands

shows a slightly lesser R2.
Table 3 sho\vs the confusion matrix for the classified

test data using .V5AS band 24 multiangle data. The total

accuruc}. is 97.-I%, and the errors of omission are 13
out of ,500. There is some confusion between wuter and
wwtlimds, and decidlmus forest and cle;u-cuts. These

errors might reflect misregistration errors that {wc(lr at

the boundaries betwxwn classes. III general, the neural
netwwrh appears to be a ve~ etfective classifier.

CLASSIFICATION OF ASAS
31ULTISPECTRAL DATA

in interesting issue in this imal!sis of directional data
\tJrslls multispectral data is to .wst, ss the classification
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Tahlc 3. Confusiun Jlatrix for the ?ieura] Netivt)rk (:lassifitv

Ground
Lurufmwr Class [ ‘sing {Ycurol iYrtwork Clossijicr

Trut}I Lake Drciduous ~i”l’tlotldGmifcr CIcurmts

Jl”att.r lj~ o 8 () ()
Lkicfnms o 9.5 () () ,5

\vc41aud o 0 1()() (1 o
COnifer o 0 0 100 0
Clcarcut () o () o 100

. ,- .,..
accuracy In each case. A comparison ot single-hanct

multidirectional data versus six-band multispectral data

was undertaken in this study. An image database con-

sisting of six nadir ASAS spectral bands for Voyageurs

National Park were used. This database consists of ASAS

Band 2 (458-472 rim), ASAS Band 6 (513-528 rim),

ASAS Band 8 (541-556 rim), ASAS Band 15 (641-656

rim), ASAS Band 21 (730-746 rim), and ASAS Band 24

(774-790 rim).

A neural network was developed to perform the

classification. The input layer consists of six nodes, each
node representing one of the six spectral bands, and

the output layer of five nodes each representing one of

the five land cover classes. A similar architecture of 10
hidden nodes in the first hidden layer, and eight nodes

in the second hidden layer was used. The image was

classified using the trained network, and the classifica-

tion accuracy results are shown in Table 4.

DISCUSSION

The following discussion pertains to the classification of

the entire image. Figure 6 shows tbe classified image

of the scene when using ASAS multiangle data only.

Note that the classified image (Fig. 6) visually looks

similar to the original image shown in Figure 2. The

effects of misregistration are clear] y seen along the

boundaries that separate some classes, for example, the

boundary between lake and wetlands, where pixels are

labeled as conifers. Similarly the boundary between hike

and deciduous forest shows the effects of misregistra-

tion. The impact of misregistration is a serious issue

that warrants future research.

Table 4 compares the results of classifying the whole

image using ASAS multiangle data and ASAS multispec-

tral data, each separtitel}. The area lveighted accuracy

for the multidirectional classification is 89%, and for the

nadir multispectral classification data are 88%. There is

no significant difference bet~veen the t~vo classification

accuracies. The results demonstrate that multidirec-

tional data is as useful as multispectral data for land

cover classification. The multiangle classification in Ta-

ble 4 overestimates the water class (1%), and the decid-

uous class (less than 1 %). The multispectral classifica-

tion largely overestimates the deciduous class and
underestimates the wetlands area. Both classifications

approximately equally underestimate the conifer class,

aJld overestimate tbe clearcut areas.

An interesting issue in the use of multidirectional

ASAS data is the effect of increasing the number of

spectral bands on the classification accuracies, A com-

parison of multidirectional data and multidomain data

(a combination of multispectral and multidirectional)

was undertaken in another study (Abuelgasim and Go-

pal, 1994). A scene consisting of 400 by 303 pixels of

Voyageurs National Park was classified with ASAS Band

10 (570-585 rim). ASAS Band 15 (642-656 rim), and

ASAS Band 24 (774-790 rim). ‘
In this study, the effect of each of the three ASAS

bands on classification was first assessed independently.

In each case, the same neural network architecture was

used. Second, the effect of combinations of ASAS Bands

10 and 15 and ASAS bands 15 and 24 on classification

was analyzed. The input layer of the ANN architecture

was expanded to reflect the changes in the size of the

input vector. Other layers in the net~vork remained the

same. The overall classification results are shown in

Table 5.
In terms of multidirectional data alone, the near-

infrared ASAS Band 24 produced the best classification

Table 4. Classification Accuracy for Land Cover Classes Using Mu]tiangle and Multispectral Data

Land Cover Ground Cover Ground Couer Aluitiongie Data Mrdtiungle Data Multispectral Data .Ilultispectral Data
Class (#of Pixels) (% (her) (#of Pixels) (% Couer) (#of Pixels) (% Couer)

Water 8,640 8.85% 9,690 9.93% 8,781 9.0070
Deciknss 17,200 17.62’% 17,718 18.15% 18,978 19.44%
Wetlands 16,808 17.22% 14,781 15.14% 14.46S 14.82%
(lmifer 47,776 48.95?6 44,414 45.51% 44,395 45.49%
Clearcut 7,176 7.35% 10,997 11.27% 10,978 11.25%

Accuracy 89% 88%
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Ficure 6. Classified imarze of VovaKeurs National Park using neural network classification. Blue represents water, orange
I

...
represents deciduous, yellow rep;e;ents wetlands, red repr&ent conifer, and white represent clew-cut areas.

result (85’% ), compared with .kSAS Band 10 (64 70) and

ASAS Band 15 (6170). .An improvement in accuracy is

noted using the multidomain data sets. A combination

of ASAS Bands 10 and 15 increases the accuracy to
657. representing an improvement of nearly 7% and

270 o~er using .\SAS Bands 15 and 10 individually.

Sinlilarl}, there are gains in accuracy using the combina-
tion of .Y5.kS Band 15 and 24: total accuracy increases

to 8Y?0 representing a substantial imprmement of 4370

in the case of .\S.\S Band 15 and a modest increase of
ZVC ~ver ~lsing .\S.\S Band 24 done.

This finding is not surprising. Multidirectional data

by itself tend to have lower intrinsic dimensionality;

but, in the case of multispectral and multidirectional

data, more discriminative information is available, and

an improvement in classification should be expected.
However, in general, the improvement was not dramatic

in this study. One possible reason may be the fact that

the scene under investigation was simple; it has only

five land cover classes, and one spectral band with

multiangle views may be sufficient to achieve reasonable
accuracy. Though this might be a limitation, as it does
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Tublc 5. Classification Accuracy for Land Cover Classes
Using \lultiangle and \lultispectral ASAS Data

Sprctra] Band Classijicat ion Accuracy

.WASIhncl 1(l 6-t 5+
AS.AS lklncl 15 61%
.4s.4s Ikllld 24 85%

ASAS lkmds 10 and 15 65%
ASAS Bands 15 and 24 86%

not exploit the power of multiangle data, our future

plans are to seek more sophisticated multiangle and

multispectral data sets, with more complex classes to

fully analyze the potentials of multiangle and multido-

main data for land cover classification.

CONCLUSIONS

This study demonstrates that directional radiance mea-

surements can be used to effectively discriminate among
land cover classes. This approach is useful in areas

where land surface classes cannot be discriminated

based solely on their spectral signature. The directional

reflectance pattern exhibited by various classes is partic-

ular to each class and is dependent on important ele-

ments such as size, shape, and spatial distribution of

the constituent elements of each cover type.
The study also demonstrated that the incorporation

of more than one directional band (muhidomain data)

enhances the classifier’s ability in discriminating among
land cover classes. Future analysis of landscape patterns

will likely incorporate more sophisticated information

and data from a variety of sources and domains, that

is, multitemporal, multidirectional, multispectral. The

automatic production of up-to-date land cover maps

from satellite imagery requires optimal classification and

spatial generalization procedures. New developments in

the field of satellite sensor systems, including the launch

of more satellites with synthetic aperture radar systems,

new visible and infrared band sensors with improved

ground resolution, and launch of polar platforms car-

rying medium resolution imaging spectrometer systems

and multilook angle sensors, etc., will result not just in

a tremendous quantity of image data, but data from

many different spectral channels and from diverse parts

of the electromagnetic spectrum. Conventional pattern

classification approaches often do not provide high lev-

els of accuracy for these types of data. Such complex

data may require more sophisticated classification and

post-classification refinement techniques. Neural net-

work architectures may be more reliable tools for ex-

tracting information from the detailed spectral measure-

ments and radar backscatter signals.

The use of neural networks in remote sensing is

relatively new. Artificial neural networks have a signifi-

cant role to play in this context since the! can handle
massive, complex, and incomplete data sets efficient]}

and result in greater classification accuracies. In addi-

tion. neural netwwrks are distribution-free and offer a

further advantage o~er most statistical methods, \vhere

a Iinolvledge of the distribution function is necessary
and data are assumed to be Gaussian.

This article introduces a class of neural network

models called feed-fonvard neural networks that imple-
ment a functional input-output relationship expressed
in a general, modifiable form. Learning is accomplished
by means of the backpropagation algorithm that func-

tionally modifies the adaptive setting of weights. The
main results obtained in the study demonstrate that the
neural network we constructed successfully learns the

input-output mapping between the directional radiance
measurements and the land cover class. There are some

errors in classification especially at the boundaries of

certain classes. This may be partly due to misregistra-
tion, an issue that warrants some further attention. The

combination of multispectral and multidimensional in-
formation for classification enhance the discriminative
power and lead to improved classification, with complex
scenes especially if more classes are to be identified.

There are some fundamental problems in the neural

network approach that deserve further attention. First,

supervised learning using backpropagation can be stuck

in a local minimum of the error function due to the
gradient-based learning rules. These can be viewed as

potential pitfalls undermining this type of supervised

learning. Second, the backpropagation procedure re-

quires a large number of computations per iteration.

The algorithm tends to run slowly unless implemented
in parallel hardware. Third, overtraining of the feed-

forward network may lead to overgeneralization and
fitting of noise by the network. obviously despite these

limitations, these neural networks offer many advantages

over conventional approaches. Our future research in

this area will explore different types of neural network

architectures in the classification of multidirectional and
multispectral data sets.
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