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Statistical analyses provide a means for assessing relationships between landscape spatial pattern and errors
in the estimates of cover-type proportions as land-cover data are aggregated to coarser scales. Results from
a multiple-linear regression model suggest that as patch sizes, variance/mean ratio, and initial proportions
of cover types increase, the proportion error moves in a positive direction and is governed by the interaction
of the spatial characteristics and the scale of aggregation. However, the standard linear model does not ac-
count for the different directions of scale-dependent proportion error since some classes become larger and
others become smaller as the scene is aggregated. Addition of indicator variables representing class-type sig-
nificantly improves the performance by allowing the model to respond differently to different classes. A
regression tree model provides a much simpler fit to the complex scaling behavior through an interaction be-
tween patch size and aggregation scale. An understanding of the relationships between landscape pattern,
scale, and proportion error may advance methods for correcting land-cover area estimates. Such methods
could also facilitate high-resolution calibration and validation of coarse-scale remote-sensing-based land-
cover mapping algorithms. Ongoing initiatives to produce global land-cover datasets from remote sensing,
such as efforts within the IGBP and the EOS MODIS Land-Team, include significant emphasis on high level
calibration and validation activities of this nature.

Introduction

In landscape studies, the representation of land-
surface properties and ecological processes is linked

.1-
inherently to the scale of analysis (Meentemeyer
and Box 1987; Milne 1992). These scale dependen-.
ties indicate a need to incorporate scaling effects in

~- landscape research (Turner et al. 1989a; Turner et
●

ai. 1991; Cullinan and Thomas 1992). This issue is
especially relevant as increasing emphasis is placed
on investigating regional to global-scale land-
surface processes and patterns using remote sens-
ing. In particular, the validation and evaluation of

global land-cover maps derived from satellite im-
agery must incorporate an understanding of the
relationships between the scale of observation, the
spatial organization of land-cover classes, and clas-
sification error. For example, in the validation of
global land-cover datasets, high resolution refer-
ence data must be used to evaluate the perfor-
mance of classification algorithms which operate at
coarse scales. This type of validation requires
methods for aggregating reference maps from fine
to coarse scales, as well as knowledge of the types
and magnitudes of errors that this scalhg will intro-
duce into the reference data. Similarly, an under-
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standing of how the inference of landscape patterns
and properties varies as a function of observation
scale is necessary to characterize the accuracy and
potential errors in global land-cover datasets.

Previous work (Moody and Woodcock 1994)
shows that large proportion errors can arise as land-
scapes are represented at increasingly coarse scales.
Additionally, the direction and magnitude of these
errors appear to vary as a function of both the spa-
tial pattern of the land-cover classes and the spatial
resolution. This paper more formally explores the
relationships between proportion error, landscape
pattern, and observation scale, The intent is to
understand the causes of these errors as part of a
broader goal of preserving land-cover information+~,=
across observation scales. The study site is the:’ “-~.
Plumas National Forest, located in a forested land-
scape in the Sierra Nevada Mountains in Califor-
nia. Measures of spatial pattern include the actual
class proportions, patch size, interpatch distance,

Methods for producing global land-cover datasets
using MODIS measurements are currently under
development and local-scale calibration and validat-
ion are key components of algorithm design and
product evaluation (Strahler et al. 1994). Calibra-
tion and validation activities will require compari-
sons of land-cover maps across spatial scales and an
understanding of the effect of scaling thematic
land-cover data is considered important for their
success. It is in the context of these issues that we
present this research.

While remote sensing is well suited for charac-
terizing landscapes at broad scales, our understand-
ing of the interaction between the spatial resolution
of satellite sensors and landscape pattern is limited.
This interaction is governed by a convolution of
scene-independent processes, such as atmospheric
effects and sensor response characteristics, and
scene-dependent processes, such as the spectral and
spatial mixing of sub-pixel scene components. In

variance/mean ratio, and the Shannon index. We -=.. this research, we are primarily concerned with map
examine these spatial properties in terms of ..their

influence on the scale-dependence of cove~-tyv~e
proportion estimates, and investigate the utility of
multiple-linear regression’ and regression tree tech-
niques for modeling these relationships. It is hoped
that this work will lead to an improved understand-
ing of how the spatial organization of landscapes
influences the nature and magnitude of proportion
errors in maps derived from remote sensing. Our
particular interest is the effect of these scaling
characteristics on the representation of landscapes
at regional to global scales.

Landscape scaling issues take on special impor-
tance as efforts are advanced to develop improved
representations of global land-cover. Global moni-
toring activities, such as those of the IGBP (Interna-
tional Geosphere-Biosphere Program) aridthe Land
Group of the MODIS Science Team (Moderate
Resolution Imaging Spectroradiometer) will require
a knowledge of the error content of land-cover
datasets produced by these groups (Townshend
1992; Strahler et al. 1994; Running et al. 1994).
MODIS is scheduled for launch on board the
EOS-AM (Earth Observing System) platform in
1998 and will be the primary EOS instrument for
monitoring terrestrial activity at the global scale.

... error as it is driven by the relationship between the.. . .
- ‘“spatial properties of the component cover types and

the resolution of the map, or pixel size.

Background

Related work indicates that changes in proportion
estimates with the aggregation of land-cover maps
are related to the scale of aggregation, the initial
proportions of the component types, and the spa-
tial organization of the landscape (Turner et al.
1989a; Moody and Woodcock 1994). A qualitative
assessment of the spatial patterns of individual
land-cover types by Moody and Woodcock (1994),
suggests that the influence of initial cIass propor-
tion on scale-dependent proportion error is modu-
lated by class-specific patch size, patch density and
landscape diversity. These conclusions compliment
findings by Turner et a/. (1989a) who investigated
the effect of changing map scales on apparent land-
scape pattern and class proportions for random
landscapes. While the analysis of Turner et al.
(1989a) was based on overall statistical measures
for the entire scene, this paper and its precursor
focus primarily on the spatial patterns of individual
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land-cover classes. In reality, it is probably a com-
bination of cover-type-specific and scene-wide (in-
teractive) spatial patterns which control the degree
of proportion error as spatial resolution becomes
coarser.

A brief synopsis of the relevant literature is pre-
sented here. For a more complete review see Moody
and Woodcock (1994). Various investigators have
approached problems regarding the scaling of
spatial data from related but distinct perspectives.
In remote sensing, many researchers have inves-
tigated the influence of spatial resolution on land-
cover classification accuracy. This work has been

, motivated in part by the need to define appropriate
sampling resolutions for chtiacterizing land sur-
face phenomena, and also by a desire to understand

. and extract useful ,inforrnation from spatially in-
tegrated data. These efforts have involved assessing
the characteristics of land-cover class maps derived
from data either sampled at different resolutions by
different sensors, or degraded to a series of coarser
scales from a single high-resolution dataset (Latty
and Hoffer 1981; Gervin et al. 1985; Nellis and
Briggs 1989). In a somewhat different context,
Marceau et al. (1994) investigated the impact of
measurement scale and aggregation level on the
information content of images and classification
accuracy. Much recent work has focused on the
relationship between sampling resolution and the
spatial properties of scenes (Woodcock and
Strahler 1987; Townshend and Justice 1988 and
1990). Scaling processes also have been investigated
at a more theoretical level by several researchers in-
cluding Jupp et al. (1988), and Raffy (1992). These
works are relevant primarily to the modeling of
land-surface physical processes using remotely
sensed data.

In the ecological community, interest in the
scalhg of landscape patterns and ecological pro-

.
cesses is driven by the expanding range of scales at
which ecological analyses are conducted. MiIne
(1992) in a fractal analysis of landscapes, discusses

. the scale dependent influence of landscape pattern
on ecological processes and environmental re-
sponses of organisms. These scale effects suggest
first, a need to understand the complexities in com-
bining data from multiple measurement scales, and

second, the importance of the scale dependence of
landscape phenomena when investigating distur-
bance processes and ecosystem dynamics over large
areas (Meentemeyer and Box 1987; Turner et al.
1989a, 1989b; Baker 1993; Field and Ehleringer
1993). Recent ecological studies which explicitly
investigate these issues include work by Stems
(1994) on the scale-dependence of species richness
measurements, and Baker (1993) who investigated
the relationship between scale and the spatial struc-
ture of landscape response to fire suppression.
In related work, Nellis and Briggs (1989) used
measures of textural contrast at multiple scales to
investigate different levels of landscape hetero-
geneity.

The research presented here is motivated primari-
ly by a need for methods either to mitigate the loss
of information due to the transference of land-
surface data across scales, or to quantify the re-
duced information content of resealed spatial data.
Such issues are increasingly important as research-
ers in numerous fields attempt to compare, extra-
polate and integrate data across spatial domains
(Hess 1994). Our approach is to quantify the spa-
tial characteristics of the test site using a set of
simple measures, and evaluate through statistical
analyses which spatial properties best explain the
relationship between proportion error and spatial
scale.

Methods

Site description

This research employs data from the western two-
thirds of the Plumas National Forest in California
@lg. 1). The Plumas lies at the transition between
the northern Sierra Nevada and the southern Cas-
cade Range in Northern Cdlfomia. The transition
zone represents a division between the metamorph-
ic and granitic geology of the Sierra Nevadas and
the volcanics of the Cascades. This area has high
relief, drained primarily by the Feather River
watershed which feeds the Sacramento System of
the upper San Joaquin Valley. The vegetation can
be characterized as shrub formations, pine and oak
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Fig. 1. Phsmas National Forest study area. The symbols RI through R4 signify the four regions of the study area.

woodlands at the lower elevations, mixed conifer brush at higher elevations. Areas of brush and
and riparian hardwoods at intermediate eleva- grasslands are distributed throughout the area, par-
tions, and mixed conifer forests combined with titularly at the higher elevations and in the drier
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eastern region of the Forest. Barren rock outcrops
exist at the highest elevations and scattered through-
out the region.

The P1umas National Forest has been studied re-
cently as part of a project to develop vegetation
mapping and timber-inventory methods for the
U.S. Forest Service (Woodcock et al. 1993). A land-
cover map was produced using Landsat Thematic
Mapper imagery and unsupervised image classifica-
tion supported by air-photo and field validation.
Cover classes include grass/barren, brush, hard-
wood, meadow, conifer and water. Meadows are
omitted from the study due to their small size and
relative infrequency. The grass/barren category
will be referred to as barren. The accuracy of the
Plumas National Forest map has been assessed
using methods based on fuzzy sets (Gopal and
Woodcock 1994). Using astringent MAX operator,
the general land-cover classes are 84070accurate
(Woodcock et al. 1994).

Data scaling

The 30-m resolution land-cover maps were used to
label a series of coarser resolution maps through a
plurality-based aggregation procedure. For each
new resolution of interest, a sampling grid is coded
with respect to the most frequently occurring cover
type among the 30-m resolution pixels within each
grid cell, The resolutions considered are 90, 150,
240, 510 and 1020 meters. This allows the examina-
tion of changes in landcover proportions as a func-
tion of observation scale, or level of aggregation.
The 240, 510 and 1020 m resolutions roughly coin-
cide with the spatial resolutions of the proposed
MODIS sensor (Salomonson et al. 1989).

.
Spatial measures

Changes in the estimated proportion of individual
cover types with progressive aggregation are expect-
ed to depend on the typical patch size for the given
class, the typical inter-patch distance, the relative
randomness with which the individual classes are
spatially distributed, the true proportion of the

cover types, and the diversity of the landscape
(Moody and Woodcock 1994; Turner et ai. 1989a).
Simple measures used to describe these scene char-
acteristics are defined below.

The Shannon index (1-l’) responds to both the
richness and eveness of the scene (Baker and Cai
1992; O’Neill et al. 1988) and is defined as:

“ = – i$l(p) 10@J

where Pi is the fraction of the sampling area com-

posed of class i and the total number of classes is
k. The subscripts i and k are used hereto maintain
consistency with the rest of the notation in this
paper. This measure will increase as the landscape
is more evenly divided among the component cover
types, and will decrease with the total number of
component types, reaching zero if only one type
exists.

The variance/mean ratio is a common method in
point-pattern analysis to measure the degree of
clustering or regularity in spatially distributed data
(Unwin 1981; Getis and Boots 1978). The ratio is
calculated as vmr = $Ifl where:

and

where mn is an index representing the number of
class occurrences in a cell, and fn is the number of
cells with class count n. A cell size of 8 x 8 is used
in this analysis. A vmri value of 1.0 indicates a ran-
dom spatial pattern as the variance around the
mean frequency of a given class in all cells is equal
to that mean if the pattern is generated by a Poisson
process. Large values of vmri indicate a more ag-
gregated distribution and small values indicate a
more even distribution, as the variance around the
mean frequency will increase or decrease, respec-
tively.

In the strict sense, the variance/mean ratio re-
quires that the counts within cells are point mea-
surements of which an infinite number are possible
in each cell. In our case, counts are frequencies of
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30-m pixels for each cover type within the 8 x 8
grid cells. This deviates from the assumptions of
point-pattern analysis and undermines the use of a
t test for significance of measured values of vmri.
For this analysis we use the relative magnitudes of
vmri and thus the deviations from the initial as-
sumptions are not important.

Initial class proportion (PiO) is simply the pro-
portion of each cover type in the original 30-m map,
and scale of aggregation (r) is the resolution of each
aggregated map. Mean patch size (pszi), mean in-
terpatch distance (pdsti), and the Shannon index
(H’) were all calculated using the r.le software de-
veloped by Baker andCai(1992). This software was
designed for the analysis of landscape data and
patch dynamics and operates as an add-on to
GRASS (Geographical Resource Analysis Support
System) which is a public domain geographic infor-
mation system (Baker and Cai 1992; USA-CERL
1991). The measures pszi, pdsti, vmri and PiO are
all class-specific measures, whereas H’ is a multi-
class measure.

The dependent variable is proportion estimation

error (Eir), defined as:

Ei, = (Pi, – PiJ/PiO

where Pio is the original proportion and Pir is the
estimated proportion at resolution r. While abso-
lute proportion error, defined as PiO - Pi,, repre-
sents error relative to the entire image, Eir repre-
sents the proportion by which individual classes are
over- or underestimated. It should be noted that the
aggregation procedure may itself influence this
measure and that different procedures would result
in different values.

Each of the above measures is calculated for each
of four subregions in the test site (Fig. 1). Consider-
ing four subregions, five cover types, and five scales
(apart from the original resolution) there are a total
of 100 samples used for the analysis. The dependent
variable (Eir) is measured for each cover type with-
in each region at five separate scales. This provides
25 distinct measurements of the dependent variable
within each region. However, the predictor vari-
ables are only measured at a single scale and there-
fore provide only 5 distinct measurements within
each region; that is, one measurement on each pre-

dictor for each cover type within each region. The
exception to this is the observation scale, r, for -.
which there are only 5 values that do not vary be-
tween cover types or between regions. Scale (r) can
be considered an ordered factor, and it is the inter-
action between this variable and the other pre-
dictors which drives the scaling process and is of
primary interest.

Statistical models

Multiple-linear and tree-based regression tech-
niques were used to investigate the influence of
landscape spatial pattern on scale-dependent
changes in the areal estimates of land-cover types.
A linear model was developed using stepwise re-
gression procedures to identify the set of indepen-
dent variables which contribute significantly to the
estimation of the dependent variable. This model is
usually referred to as the ‘standard’ model below.
Indicator variables representing class type were
introduced into the standard model in order to test
the class independence of the explanatory variables
and to develop an improved model incorporating
important class dependencies.

The indicator variable models were set up fol-
lowing procedures outlined in Kleinbaum and
Kupper (1978). For k classes, k– 1 indicator vari-
ables (z) are developed where Zi = 1 if class i is
true, Zi = Oif class i is not true, and all Zi = O for
i=l ,.. .,/c– 1 when class k is true. In the simplest
case with one independent variable (x) and one indi-
cator variable (z) the model would take the form:

Y = 130+ pl.x + 132.z+ 133.xz+ error
This general case can be expanded to include any
number of independent and indicator variables. In
the multiple-linear regression case a multiple-par-
tial F testis used to determine whether the inclusion
of the indicator variables produces a significant
change in the error mean square (KIeinbaum and
Kupper 1978). That is, one can test the null hypo-
thesis that the effect of any given explanatory vari-
able is independent of the indicator, or group
ef feet.

It is standard to develop a full indicator variable
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Table 1. Correlation coefficients between atl independent vari-
ables. The terms are mean patch size (pszi), mean interpatch dis-
tance (@s(i), shannon index (H’). vfiance mean r~io (~~~i)~

and initial proportion (PJ.

psz, pa!wi H’ vmri P@

Pzi 1.0 0.82 -0.09 0.55 0.11

pdsti 1.0 – 0.50 0.74 -0.38

H’ 1.0 -0.69 0.90

vmri 1.0 - O.&l

Pti 1.0

model and test the stability of that model when the
.

class effect is ignored for one or more of the ex-
planatory variables. However, we have taken an
alternative approach. Due to the large number of
variables in the full indicator model (30) and the
relatively small sample size (100) it was considered
prudent to start with the linear model with no class
effect, and add the class effect separately for each
of the explanatory variables. The significance of
the class effect was then established for each vari-
able individually. This approach avoids the situa-
tion of comparing the error mean square of two
overfit models. A forward stepwise regression was
also used to identify the best model that includes the
indicator variables.

Tree-based models were constructed as another
approach to understand the influence of the expla-
natory variables on the scaling behavior. Regres-
sion tree analysis is a procedure for recursively
splitting a dependent variable into increasingly
homogeneous subsets based on a set of categorical
or continuous explanatory variables. During each
iteration, the best partitioning of the data is gener-
ated based on the explanatory variable which, upon
splitting at some break point, will produce the
greatest reduction in the error sum of squares.
The break points are determined using a least

,
squares criteria. A graphic representation of a tree-
based model is structured so that one can follow the
tree from the top node (root), through a series of
binary decision rules on the explanatory variables
(branches), to an end node (feafl (Fig. 4). The mean
of all observations which follow the same series of
branching from the root to a given leaf represents
the estimated value of the dependent variable. Once

developed, trees can be pruned by removing splits
which do not contribute greatly to the predictive
power of the model. Tree-based models are well
suited for situations where the set of predictors con-
sists of both numeric variables and ordered factors
and are useful for investigating nonlinear or non-
systematic relationships. They also permit easy in-
terpretation of the relationships between predictors
and the response variable, and can expose inter-
actions among the set of predictors. Tree-based
models are described in Chambers and Hastie
(1992).

Regression trees are typically overdeveloped and
then pruned back to avoid overfitting the data. In
this analysis, the size of the regression tree is deter-
mined following a simple cross-validation proce-
dure employed by Davis et al. (1990). The dataset
is iteratively divided into random subgroups each
of which is used both to develop and test a model.
As the tree grows, the cross-validated performance
increases up to a critical tree size. Beyond this size,
model performance falls off as additional branches
are ‘sprouted’ in response to peculiarities in the de-
velopment data but fail to account for any variance
in the test data. The point at which this occurs indi-
cates the appropriate number of terminal nodes to
use in developing a tree from the entire dataset
(Chambers and Hastie 1992; Davis et al. 1990).

Results and discussion

Multiple-1inear regression model

Forward and backward stepwise procedures were
used to determine the best number of variables to
include in the standard model, and to identify which
variables contributed consistently to explaining the
variance in estimation error (Eir). Examination of
the change in the error sum of squares (SSE) with
iterative addition (or subtraction) of variables, and
examination of the order that the variables entered
(or were removed) led to the selection of initial pro-
portion (Pi& variance/mean ratio (vmri), mean
patch size (pszi), mean interpatch distance (@ti)
and resolution (r). Table 1 is a correlation matrix
for the independent variables used. Note that while



370

Table 2. Regression summary for the best standard multiple-linear model. The variables are listed in the order that, at each step,
results in the largest increase in adjusted Rj. The Rz vafues represent the new adjusted Rz that results upon the addition of each
variable.

r.

Coefficient Standard error t-value P > Itl Adjusted R-square

Intercept -1.41 0.083 -13.6 0.000 NA

Initial proportion 3.14 0.218 14.4 0.000 0.15

Variance-mean ratio 0.07 0.006 11.8 0.000 0.55

Patch size -0.15 0.002 -8.5 0.000 0.57

InterPatch distance 0.035 0.004 7.9 0.000 0.73

Resolution –0.034 0.012 -2.9 0.005 0.75

H’ and Pio are highly correlated, Xl’ is only used

in the regression tree model and Pio is only used in
the linear model. Table 2 shows the summary statis-
tics for the best linear model. The variables are list-
ed in Table 2 in the order that, at each step, results
in the largest increase in adjusted R2. The adjusted
R2 values represent the new adjusted R2 that results
upon the addhion of each variable. The tvalues for
the coefficients indicate that the contribution to the
model of all variables is significant at the P = 0.01
level. The overall model has an adjusted R2 of
0.75.

The slope coefficients aIIow interpretation of
the influence of the independent variables on the
scaling of cover-type proportions. The first vari-
able, initial proportion (PiJ, has a positive slope
indicating that the magnitude and direction of
proportion error (Ei,) is positively correlated with
the original size of the class. Examples with large”in-
itial proportions will tend to develop positive esti-
mation errors as the scene is aggregated. Small ini-
tial proportions will lead to negative errors. Assum-
ing a random spatial distribution of all classes with
different proportions, this fundamental relation-
ship would govern completely the growth or demise
of individual cover types (Turner et al. 1989a). This
relationship is modified, however, by the spatial
characteristics of the individual cover types in the
scene (Moody and Woodcock 1994; Turner et al.
1989a). While Pio is the most important single vari-
able, the adjusted R2 value for initial proportion
on estimation error is only 0.15 (Table 2). Our in-
terest is in the role of the spatial pattern variables
in accounting for the deviation from this simple
relationship between PiOand Ei,.

The variance/mean ratio (vrnri) has a positive
coefficient. This corresponds with our intuitive
understanding of the scaling process since large
values of vmri indicate clumped distributions.

Highly clumped classes should persist through the
aggregation procedure and ‘consume’ more dis-
persed classes. If classes appear as large homo-
geneous patches that are widely dispersed, then
they should maintain their proportions as long as
these patches are large relative to the observation
scale. This effect may counteract the influence of
initial proportion described above. An obvious
example is the water class composed of lakes scat-
tered sparsely across the landscape. This is a small
class with a high degree of aggregation, and its
proportions typically increase up to resolutions of
510 or 1020 meters. Conversely, a disaggregated
class should diminish faster (or grow less dramati-
cally) than its aggregated counterpart assuming
equal initial proportions.

WhiIe it is expected that classes with large patch
sizes will increase with aggregation, the mean patch
size variable @szi) has a negative coefficient.
Moreover, it is known that, for this dataset, classes
with large patch sizes (conZYerand water) do in fact
develop positive estimation errors with aggrega-
tion. However, while classes with small patch sizes
do diminish, classes with moderately large patch
sizes (especially conifer) tend to increase much
more dramatically than classes with extremely large
patches (water). This is due to other factors, such
as initial proportion, which are also influential in
determining how the cover types scale and may
weaken the influence of patch size. Correlations be-
tween patch size, initial proportion, interpatch dis-
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Table 3. Model variables for each class type by region at510 m

resolution. Regions are symbolized by RI through R4. The symb-
ols next to each entry in the left hand column correspond to the

location of these classes in the regression tree diagram (Figure 4).

Data Matrix for Selected Variables (510 m)

Class & Region
Ek pSZi P&ti V??Ifj Pio

“Barren.R1** -0.38 5.19 2.28 11.9 O.w
R2*** -0.69 3.07 1.90 8.51 0.06
R3*** -0.76 2.72 1.98 7.00 0.05
R4*** -0.60 3.10 1.97 8.90 0.04

Brush.Rl# -0.32 6.47 0.79 6.74 0.22
R2++ -0.23 6.78 0.72 7.20 0.22
R3** -034 5.05 0.82 6.78 0.18
R4** -0.35 4.39 0.49 5.95 0.20
Hardwood.Rl*** -0.75 2.54 2.81 5.76 0.05
R2** -0.32 5.17 1.38 8.13 0.13
R3* -0.10 8.07 1.12 7.99 0.21
R41+ +0.01 8.59 0.59 6.62 0.27
Conifer.Rl+-+ +0.26 61.2 0.73 4.98 0.59
R2++ +0.28 34.5 0.68 5.41 0.52
R3+ +0.26 36.5 0.40 5.09 0.51
R4+ +0.24 22.0 0.48 6.09 0.45
Wata.R 1++ +0.12 143 55.1 22.91 0.02
R2+++ +0.71 5.73 18.3 15.0 0.001
R3+ 4.06 35.8 113 22.13 0.01
R4+ +0.13 32.6 6.87 20.97 0.02

tance and variance/mean ratio (Table 1) further
suggest that the expected influence of patch size on
estimation error may already be accounted for by
the presence of the other variables in the model.
When patch size is used as the only independent
variable, its coefficient is + 0.0042 (standard error

= 0.0009) supporting the basic concept that as
patch size increases estimation error moves in a

positive direction.
Mean interpatch distance @ds/i) also has a posi-

tive coefficient. This suggests a counterintuitive
effect that widely dispersed classes become larger
with aggregation. Normally one would assume that

. closely spaced classes would grow and widely
spaced examples would be consumed as aggrega-
tion progressed. In this case the coefficient for

. interpatch distance is probably influenced by the
water class which is extremely aggregated, has large

patch sizes, but also has large interpatch distances.
As noted above, water deviates from the expected
behavior for a class with low initial proportions by
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developing positive estimation errors at all levels of
aggregation. When the model is run with water ex-

cluded, the coefficient for interpatch distance
changes to –O. 10. This change to a negative coeffi-
cient indicates that, generally speaking, large inter-
patch distances do correspond to negative estima-
tion errors, and vice versa.

The coefficient for resolution (r) is negative in-

dicating that, on the balance, there is a stronger ten-
dency for classes to diminish rather than increase as
the scene is aggregated to progressively coarser

scales. This is easily explained by the fact that bar-
ren, brush and hardwood all typically decrease with

aggregation, whereas only water and conifer in-
crease. It is notable that resolution contributes little
to explaining the variance in the estimation error
(Table 2). This is probably because the positive and
negative influences of r on estimation error for
different class types counteract each other. This
provides an important rationale for incorporating
indicator variables as discussed below.

Numerous interactions between the important

explanatory variabres speak to the inherent com-
plexity involved in understanding the scaling pro-

cesses. For example, the low initial proportions and
high interpatch distances typical for water suggest

that this class should diminish, but these influences
are mitigated by the high variance/mean ratio (and
large patch sizes) and water almost always increases
with aggregation. While this is an extreme example,
it illustrates that the behavior of any given class is

a complex function of the spatial characteristics.
There are, however, some basic behaviors that can

be illuminated by examining the model perfor-
mance for subsets of the data.

Logical yet inconsistent interactions among the
model variables control the magnitude and direc-
tion of estimation error. Table 3 displays the com-
plete set of data at 510 m resolution and allows
several observations which relate to interactions be-
tween the independent variables. Within each class,

almost all examples which have either positive or
relatively small negative estimation errors are asso-
ciated with either a relatively large mean patch size,
a small mean interpatch distance, a large variance/
mean ratio, a large initial proportion, or some com-
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Fig. 2a-c. Comparisons of actual versus estimated Eti vsdues
with resolution for the standard linear model. These are present-
ed separately for (a) brsuh, (b) hardwood, smd (c) conifer. The
solid, short dashed, afternatirrg dashed and long dashed tines
represent regions 1,2,3 and 4, respectively. Solid triangles repre-
sent measured vafues and solid circles represent model estimates.

bination of the above. For example, hardwood in
regions 3 and 4 have the smallest magnitude errors
for this class and also have large patch sizes, low
interpatch distances, moderate variance/mean ra-
tios, and large initial proportions. All examples
with large negative errors have the opposite associa-
tions. For example, hardwood in region 1 shows the
largest magnitude error for this class and has the
smallest patch size, largest interpatch distance,
smallest variance/mean ratio and smallest initial
proportion. Similar inferences, based on the rela-
tionships exposed by the overall model can explain
nearly every measured estimation error. However,
these inferences are not always dependent on the
same combination of attributes.

The results suggest a fairly strong predictive abil-
ity of the standard model. However, by examining
the model performance for subsets of the data, it
becomes clear that the scaling effects cannot ade-
quately be approximated by a single linear model of
this nature. Figures 2a through 2Care plots of esti-
mation error versus resolution for the individual
class types brush, hardwood and conifer. Two pat-
terns are apparent in Fig. 2. First, the model typi-
cally overestimates the magnitude of estimation er-
ror at fine resolutions and underestimates the mag-
nitude at coarse resolutions. This results from the
need for a single linear model to accommodate both
examples that grow and those that decrease in size.
As a result, the model performs well overall, but
provides a poor fit for the individual classes. An ex-
ception to this is hardwood (Fig. 2b), for which the
model appears well suited. Second, the model com-
pletely fails to explain the sign of the slope of esti-
mation error with increasing aggregation for the
conifer class (Fig. 2c). This occurs because the
model is most heavily influenced by classes which
diminish rather than grow as the scale is degraded.
The inability of the model to respond to the differ-
ent behavior of the individual classes provides
motivation to investigate alternative approaches.

Indicator variable model

As described in the Methods section, the class-type
effect was added to the original standard model
separately for each variabIe. For example, to test
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Fig. 3a–c. Comparisons of actual versus estimated Ei, values
with resolution for the best indicator variable model. Interpreta-
tion is the same as for Fig. 2.

whether the influence of initial proportion on esti-
mation error differs between cover types when all
other variables (vm~i$pszi, pdsti and r) are already
included, the model with indicator variables (zi):

E = p. + pl.zl + 13*.z~+ B3.Z3 + B4.Z4

+ ~~.pr) + ~~.vmr + P7.PS2 + B@.i$t

+ ~9.~ + ~,~.P~.Z1 + ~, ~.P~.Z* + Plz.PO.Z3
+ ~13.Po.z4 + error

was compared to the standard model:

E = PO + J31.P0+ 132.vmr + 133.PSZ+ 134.pdst
+ fj.r + error

using a multiple-partial F test. The F test indicates
whether the two models are coincident. The equiva-
lent test was performed for each of the original
variables.

The F vaiues are compared to a significant

‘s,?b,O.ggof 2.74. Based on this criteria, only reso-
hmon, with an F value of 23.54, produces a signifi-
cant change in the model, indicating that the coeffi-
cient for resolution is not the same for all class
types. This is not surprising as we have shown that
different classes behave differently as a function of
resolution (Fig. 3). Accounting for this class effect
increases the adjusted R2 from 0.75 to 0.91, and
reduces the residual sum of squares from 2.60 to
0.814. Once the class-type interaction with resolu-
tion was in the model, factoring in the class effect
on any of the remaining variables (Pio, vmri, PSZi,

po!sti) did not produce significant results when
tested against a significant F8,82,0.W.These results

suggest that the effect of the spatial variables are
relatively consistent across class types whether or
not the class-type dependence of the resolution
effect is accounted for. A few exceptions are dis-
cussed below.

A forward stepwise regression procedure was
used to determine the best model that includes the
indicator variables. Summary statistics for this
model are presented in Table 4. Several observa-
tions can be made. First, there is a strong class-type
effect on the resolution variable. Notice that the
resolution coefficient for conifer and water (row 5
in Table 4) is positive, reflecting the general enlarge-
ment oft hese classes with aggregation. Conversely,
the resolution coefficients for barren, brush and
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Tab/e 4. Regression summary for the best multiple linear model that includes indicator variables for class type. Me indicator variables
ZI through-q represent barren, brush, hardwood and water, respectively. The character ~ represents conifer. Note that the actuat slope
coefficient for the variance/mean ratio (vnrr) for water is the sum of the two vmr coefficients (– 0.09+0.04). Shnilarly for alt other -
variables that have an individat class effect. Likewise, the intercepts for barren (z,) is -0.23 + -o.21, the intercept for water (zJ is
1.14 + – 0.21, and the intercept for brush, hardwood and coniJer is simply – 0.21.

Coefficient Standard error t-value P > It!

Intercept (22, 23, .zJ -0.21 0.065 -3.2 0.002
Intercept (z,) -0.23 0.065 -3.5 0.001
Intercept (2J 1.14 0.150 7.6 0.000
Variance-mean (21, 22, 23, zJ 0.04 0.010 4.4 0.000
Resolution (.q ZJ 0.06 0.009 6.2 0.000
Variance-mean ● 24 –0.09 0.012 -7.5 0.000
Patch size ● Zj 0.02 0.007 3.25 0.002
Interpatch distaoce * Z3 –0.24 0.022 -11.0 0.000
Resolution ● z, –0.20 0.017 -11.3 0.000
Resolution * Z2 –0.15 0.009 -16.8 0.000
Resolution “ Zj –0.10 0.017 -5.9 0.000

hardwood (rows 9 through 11) are negative, re-
flecting the shrinkage of these classes. This achieves
the separation of the data cases which grow and
those which shrink as a function of resolution. Sec-
ond, the coefficients for patch size (row 7 in Table
4) and interpatch distance (row 8) are positive and
negative, respectively. The signs of these coeffi-
cients are as expected (unlike the standard linear
model) but they are only important for the hard-
wood class. Third, the only important spatial vari-
able for alf class types is the variance/mean ratio.
This is indicated in row 4, which accounts for the
vmri effect on barren, brush, hardwood and coni-

fer, as well as in row 6, which accounts for the vr.nri

effect on water. The consistently significant effect
of this variable suggests that the relative rrtndom-
ness, ”aggregation or disaggregation of the spatial
distribution may be the most important spatial
characteristic that modifies the general effect of ini-
tial proportion on scale-dependent proportion
error. Finally, the initial proportion variable (Pid
is conspicuously absent, the effect of which is prob-
ably already explained by the other variables in the
model. The adjusted R2 for this model is 0.92, and
the residual sum of squares is 0.77.

The fact that resolution responds strongly to the
indicator variables implies that there is an effect
that is not accounted for by the other independent
measures. This may be because region-wide values
were used for pszi, pdsti, vmri and PiO rather than

local values. That is, there may be so much variabil-
ity across regions that it is difficult to provide
general measures on a region-wide basis. It is also
possible that there is some other effect which we are
failing to account for in the model. This may relate
to the resampling method.

Results from the indicator variable modeI sum-
marized in Table 4 are presented in Figs. 3a through
3c. While the indicator variable approach adds sub-
stantial complexity to the model. Figure 3 shows
considerable improvement in the estimated values
of Eir. Note in particular the improved estimates
for conifer (Fig. 3c).

Regression tree model

The set of variables tested for the tree-based model
include initial proportion (PiJ, variance/mean ra-
tio (vmri), patch size (p.szi), interpatch distance

(pdsti), resolution (r) and the Shannon index (1-l’).
The variables that contribute significantly to the
reduction of the SSE for the model are pszi, r, and

H’. The number of terminal nodes was determined
by the cross-validation procedure outlined in the
Methods section. The goodness of fit criterion (re-
sidual sum of squares) was minimized at 12 termi-
nal nodes when the model was applied to that por-
tion of the data that was not used to develop it. The
final tree was constrained to 12 nodes based on this
criterion.
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Regression Tree Model: Brush
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Fig. 4. Regression tree structure for the Plurnas data. Ovals and
squares represent non-terminal and terminal nodes, respective-
ly. The vsdues inside the ovals or squares are the estimates (or
means) of all samples which flow through the tree to that partic-
ular node. The values beneath the estimates are the RMS-errors
associated with using the mean as the estimate for ail samples
which flow through that node. Vahses along the internode con-
nections are critical thresholds of given variables which provide
the basis for the subsequent split and calculation of the estimates
and RMS-errors. The symbols below the end nodes (*’s and + ‘s)
correspond to the symbols next to the classes in Table 3 and
represent the locations of the table entries on the tree diagram.

Figure 4 is a diagram of the regression tree for the
Plumas data. The R2 value for this model is 0.88.
Of the two variables which carry any information
about the spatial characteristics of the scene @SZi

and H’) patch size dominates the discrimination
structure, with H’ only serving to guide one dis-
crimination toward the extremity of the tree. Patch
size is the single most important variable in the
model. All samples with patch sizes below 5.46 have
negative estimates of proportion error and almost
all samples with values above this threshold have
positive estimates. An interaction between patch
size and resolution in determining the magnitude of
the estimates is evidenced by the alternating splits
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Fig. 5a-c. Comparisons of actual versus estimated Eu values
with resolution for the regression-tree model. Interpretation is
the same as for Figs. 2 and 3.
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on these two variables down the left side of the tree.
There appear to be two critical scale transitions..
The first and probably most importtit is between
240 m and510 m (indicated by the threshold value
of 12.5 in linear resolution units) which occurs near
the top of the left portion of the tree and twice on
the right side. The other is between510 m and 1020
m (threshold value of 25.5) which appears toward
the outer extremities.

Figures 5a through 5Care plots of estimation er-
ror versus resolution for the individual class types
for the Plumas. A comparison of Fig. 5 with Fig.
2 shows that the tree-based model better follows the
scale-dependent trends in estimation error than the
standard linear model. Again, note the improved
estimates for conifer (Fig. 5c). While the standard
linear modeI cannot account for the shift in the
slope direction of the relationship between estima-
tion error and observation scale, the regression
tree, like the indicator variable model does parti-
tion the data successfully into examples which grow
in size and those which shrink as the scene is aggre-
gated to coarser scales. Although the tree-based
model is slightly weaker, it is considerably simpler
than the indicator variable model. That is, the
degree of growth or shrinkage is usually governed
by some interaction between patch size and resolu-
tion. All but one of the end nodes in the tree are
preceded by splits on critical thresholds based on
these two variables. The strong performance of the
regression tree may in part be due to overfitting.
This problem occurs frequently with regression
trees when appIied to relatively small datasets. We
attempted to avoid this problem by using the cross-
validation procedure outlined in the A4ethods sec-
tion.

Implications for coarse-scale mapping

Efforts to map global land cover should incor-
porate an understanding of how the definition and
mapping of land-cover classes at coarse scales relate
to the heterogeneity of the surface. This relation-
ship is important not only for assessing the reliabili-
ty of land-cover maps, but also to provide error
information that may aid potential users in ap-

plying the data for their specific purposes. We
present some approaches for relating the spatial
characteristics of land-cover classes to the scaling
of cover-type proportion estimates and the results
have several implications along these lines.

In this work we have used a simple grid-based
aggregation procedure that imposes an artificial
spatial structure on top of the actual spatial distri-
butions in the scene. This is partially analogous to
the remote sensing situation. Understanding the
interaction between landscape spatial characteris-
tics and sampling resolution may allow improved
methods for scaling high resolution land-cover
data to coarser resolutions. This is particularly
important for the validation and evaluation of
coarse-scale land-cover classification results from
remotely sensed data. It may also be possible to
develop methods for correcting coarse resolution
land-cover proportion measurements to estimates
of actual proportions based on scaling models
which are calibrated on region specific test sites.
Several such methods are being assessed currently,
but these depend on the intraregional stability of
the scaling relationships.

Only one site is considered in this analysis and no
external validation of the models is attempted at
this stage. While the basic structures of these models
should have some level of extensibility, it is ex-
pected that fundamentally different landscapes will
scale in distinctive ways. Alternative measures of
spatial pattern, or different thresholds and coef-
ficients will be more useful in accounting for the
scaIing properties in different landscape types. The
extensibility of these relationships should be as-
sessed over a variety of landscapes and should in-
corporate additional spatial measures at a wide
range of scales using many subregions.

A large array of spatial measures could have been
used in this analysis, but we chose several on the
basis of past research and in the interest of simplici-
ty. These may not be the bestmeasures, however,
and the development and understanding of mea-
sures of spatial structure is an important avenue of
research. Spatial measures such as fractal dimen-
sion, semi-variance, cross-correlation, Moran’s I,
or other measures of spatial non-randomness are
widely cited and warrant investigation in this con-
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text (Cullinan and Thomas 1992; Cressie 1993; Li

and Reynolds 1993; Marceau et al. 1994). More-
over, an understanding of the scale-dependence of

spatial pattern itself, such as presented in Turner et
al. (1989a), might allow a better formulation of ef-
forts to model scale-dependent proportion error. It
is possible that a taxonomy of general scaling func-

tions can eventually be developed which will allow
the implementation of separate models depending

on the type of landscape under consideration.

Conclusions.

Previous research demonstrated that large propor-
tion errors arise as land-cover data are sampled at.
progressively coarser scales (Moody and Woodcock
1994). Such errors have significant implications for
coarse-scale modeling and monitoring activities
that rely on land-cover datasets derived from re-
mote sensing. An understanding of the role of spa-
tial characteristics in governing the loss of informa-
tion with decreasing resolution may improve our

abiIity to preserve this information across scales or
to quantify the errors expected in coarse-scale sur-
face representations. Our results indicate signifi-
cant relationships between the spatial characteris-
tics of cover types and scale-dependent proportion
errors. A related trend was found earlier by Turner
et al. (1989a).

Generally speaking, as patch size, variance/mean
ratio, and initial proportions of cover types in-
crease, the proportion errors for those cover types
move in a positive direction as the data are aggre-
gated. Similarly, as these measures decrease, the
tendency of a cover type to withstand aggregation
and maintain its initial proportion decreases. The

opposite relationship tends to hold for interpatch
.

distance (when waler is ignored) with greater dis-
tances leading to a disappearance with aggregation

and vice versa. In the linear models there is strong
, interaction among the variables.

While the standard linear model performs fairly
well for the dataset as a whole, it is unable to predict
the fundamentally different behavior between sam-

ples which have positive and negative estimation

errors. Moreover, the sign and magnitude of the
slope coefficients in the standard linear model, may
be largely influenced by the need for this type of
model to accommodate samples that scale in dis-
tinctly different ways. By allow”ng the slope coeffi-

cients of the independent variables to vary as a
function of cover type, a significant improvement
in the model is achieved. Several notable observa-

tions emerged. First, the significant interaction be-
tween class type and resolution implies that there is
some important landscape property that is not ac-
counted for in the model. Second, the ladk of inter-
action between class type and the spatial variables
indicates that these variables have relatively consis-

tent influence across cover types. Third, the degree
of nonrandomness (as measured by the variance/
mean ratio) appears to be the most influential vari-
able in modifying the interactive influence of initial
proportion and scale on estimation error.

The regression tree model captures the scaling of
proportion error primarily on the basis of interac-

tions between patch size and aggregation scale. A
threshold in patch size acts to split the dataset into
a set of samples with negative errors and a set with

positive errors. Interactions between patch size and
two critical thresholds in resolution then partition

the data into different levels of positive and nega-
tive errors. This modei is successful at fitting the

scaling process and is less complex in terms of the
number of variables in the model and the interac-
tions among variables.

We present an analysis of the relationship be-
tween land-cover spatial patterns and the scaling of
cover-t ype proportions. The primary concern is the
role of fine-scale landscape pattern in influencing
the relationship between the scale of representation

and cover-type proportion error. Results from both
the linear regression and the regression tree models
suggest that the interactive effects of spatial pat-
terns and observation scale on proportion error can
be understood and modeled using fairly simple
measures of landscape spatial characteristics. It is
hoped that relationships based on simple measures
such as those presented here will lead to some gener-
alizable understanding of scaling processes for a
variety of landscape types.
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