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Abstract. A new approximation to Ross’ (1981) radiative transfer theory for small
values of leaf ma index (LAI) and two new approximations to Li and Strahler’s (1992)

~1 geometic-optical mutual shadowing model are derived. These, together with Roujean
et al.’s (1992) approximation to Ross’ theory for large LAI and their geometric-optical
model of nxtangular protrusions, may be used for formulating semiempirical models of
the bidirectional reflectance distribution function (BRDF) of the land surface through
linear combinations. Because the fimctions superimposed depend only on viewing and
illumination geometxy, the BRDF models derived maybe called kernel-driven, but Nilson
and Kuusk’s (1989) modified version of Walthall et al.’s (1985) model is an example
of an empirical model that belongs to this same class. The linearhy of kernel-driven
models is advantageous to global BRDF and albedo processing needs in several respects,
most notably analytical invertibility, making possible look-up table approzlches to albedo
calculation, accommodation of mixed pixel situations, and spatial scaling. The models
discussed here & behg proposed for BRDF/albedo processing for the moderate resolution
imaging spectroradiometer (MODIS) sensor of NASA’s Earth Obsewing System (EOS).

1. Introduction

Kernel-drivenmodelsfor thebidirectionalreflectancedis-
tributionfunction(BRDF)of vegetatedtandsurfacesattempt
to describe the BRDF as a linear superpositionof a set of
kernels that describe basic BRDF shapes. Coefficientsor
weights are chosen to adapt the sum of the kernels to the
given ewe.

If the kernels are chosen to be a set of mathematical func-
tions selected solely because their shape seems to be able to
model BRDFs a8 they are actually observed, the model is
purely empirical. There is no physical basis for such kernels
beyond their description of BRDF-like shapes. One example
for such a model is the modified Walthall model [WaMaH et
al., 1985; Nilson and Kuusk, 1989].

If the kernels chosen are derived from approximations of
more-detailed physical models, where the approximations
are made in order to deduce from the complex model a
BRDF shape typieat for that model, the model maybe called
semiempirical. ‘I@ically, semiempirical kernels are based
either on one of several possible approximations to a radiative
transfer scenario of light scattering in a horizontally homo-
geneous plant canopy or on one of several approximations
feasible in a geometric-optical model of light scattering in
forestlike qnopies of distinct crown shape-s.Whh a LatnWr-
tian term added, a kernel-driven semiempirieal BRDF model
thus consistg typicidly of an isotropic term, a volume seat-
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tering term and a geometric scattering term [Roujean ef af.,
1992].

Semiempiricalkemels can be of two types. First, they may
contain only geometric terms but no physical parameters.
The complete model then is linear and maybe scaled to ar-
bitrary spatial resolutions even for mixed scenes; neglecting
adjacency effects, the weights of the kernels will be linear
functions of the meat proportions of the subpixel weights.
The so-called Ross kernels, approximations to Ross’ [1981]
radiative transfer theory in plant canopies, belong to this
class, as does the so-called Roujean geometric-optical kernel
[Roujean at al., 1992]. In the second case, kernels con-
tain one or very few physical parameters and thus, instead
of having one kernel, one is provicled with a family of ker-
nels depending on these parameters. The geometric-opticat
Li kernels [Strahler et al., 1994] belong to this type. An
example for a semiempirical model that is nonlinear is the
three-parameter model by Rahrnan et af. [1993].

This paper will first outline the role linear kernel-driven
models may play in applicational BRDF modeling. Then ex-
pressions for two volume-scattering kernels, for thin and for
thick canopies, will be given, where the approximation for
the thin canopy is derived here for the first time. Following
that, three surface-scattering kernels, the Roujean kernel and
two Li kernels for dense and spar8e stands of objects, will
be presented, where the latter two, based on the Li-Strahler
geometric optical mutual shadowing model, will also be de-
rived here for the first time. Finally, the shapes of the kernels
and their possible combimtions will be discussed.

The performance of these kernels and the BRDF models
derived from them will be discussed separately in aforthcom-
ing paper, where they are applied extensively to merwred
data for different land cover types.
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2. Applicational Context

2.1. Need for BRDF Analysis

Besides the spatial, temporal, and spectrat content, the
variation of pixel reflectance with viewing and illumination
angle is a fourth potential source of information in remotely
sensed data acquired at multiple angles [e.g., Gersfl and
Simmer, 1986; Pinty and Verstraete, 1991; Swahler, 1994].
It also is the least explored of these sources of information.

Among the existing sensors some, like those on Landsat,
provide views that are always close to nadir and, in a Sun-
synchronous orbit, do not provide much angular information.
Others, most notably the advanced very high resolution ra-
diometers (AVHRR), have a very large field of view (e.g.,
110° across track for AVHRR), introducing angular varia-
tions across each image. The ned for taking BRDF effects
into account in AVHRR data anatysis, for example in land
cover classification, is increasingly being recognized [Li and
Wu, 1994; Cihlar et al., 1994; Gutman, 1994; Moody and
Sfrahler, 1994]. Recentty, the along track scanning radiome-
ter ATSR-2 has become operational, also providing some
angular sampling.

Future sensors are more promising, and BRDF is among
the products to be derived from these sensors [e.g., Strah/er
et al., 1995; Warmer et al., 1995]. POLDER (polarization
and directionality of the Earth’s reflectance) will have a field
of view of 84° along track and 102° cross track, making it
well suited for BRDF studies at coarse spatial resolution (sev-
eral kilometers). Among the Earth Observing System (EOS)
instruments, moderate resolution imaging spectroradiome-
ter (MODIS) and multi-angle imaging spectro-radiometer
(MISR) data may be combined over a given time period to
provide cross-track and along-track scans of the BRDF of
a pixel at the 1-km scale. For a discussion of existing and
future sensors with respect to their ability to sample surface
BRDFs, and for references on these sensors, refer to the
comprehensive overview by Barns/ey et al. [1994].

Three major goals are pursued by deriving and investigat-
ing the BRDF of the land surface. First, as indicated, there
is a need to take angular effects in remotely sensed data into
account when comparing the reftectances of pixels acquired
at different viewing and/or illumination geometries. For ex-
ample, it may be necessary to normalize multiangular data
to a standard geometric situation (e.g., nadir view). This re-
quires knowledge of the BRDF. Furthermore, one would like
to extrapolate existing observations to angular ranges where
no observations were made or can be made (e.g., nadir illu-
mination).

Second, one would like to routinely derive precise atbedo
from remotely sensed data. Little is known about global
albedo patterns and their seasonal change that is not based
on estimates made from land cover and soil type. Global and
mesoscale climate modelers are likely to require time series
of global albedo in the future in order to better define their
lower boundaries, which will more and more be biosphere
models in their own right. Since albedo may be derived
from BRDF, providing this information requires repeated
observation and analysis of global BRDF patterns, about
which not much is currently known.

Third, by inverting physicat or semiempirical BRDF mod-
els for their parameters, some information about the surface
may potentially be inferred. The angular variation of the
observed reflectance contains information about the optical
properties as well as, most notably, the geometric structure of
the surface viewed. Knowledge of this structure, even if very
approximate, will be of great help in land cover classification
and in preparing surface roughness maps. For example, land
cover classification techniques typically have problems dis-
tinguishing sparse forestlands with undergrowth from dense
shrub land due to the similar biomass of the two cover types.
The BRDF shape, however, is rather different for the two.
An analysis should be able to pickup the prominent shadows
cast by sparse trees (which determine the BRDF), allowing
to distinguish them from the dense brush. See Pinty and
Verstraete [1991] for a discussion of problems that maybe
associated with inversion of BRDF models.

Last but not least, changes in BRDF, albedo, or derived
surface parameters can indicate change that may or may not
be visible spectrally or spatially, thus adding to the infor-
mation base from which to derive change maps for global
change studies.

2.2. Operational Aspects of BRDF Modeling

When considering which type of BRDF model to employ
for extensive BRDF and albedo analysis from observed dam
a decision has to be made between physical, semiempiri-
cal, and empirical models. These differ in the detail with
which they describe the physical processes responsible for
light scattering in the scene, the degree of apriori knowledge
one must have of the type of land cover encountered, and the
number of observations needed to derive model parameters
that describe the BRDF well in both viewing and illumination
hemispheres. While physical models describe the scattering
of light explicitly, empirical models do not attempt to explain
it but rather describe the BRDF by any empirically suitable
mathematical function. Naturally, physical BRDF models
are considerably more complex than their empirical counter-
parts. In terms of complexity, semiempirical models are in
between these two. As approximations to physical models
they are mathematically much simpler, but they retain the
more important of their characteristics. See Strahler [1994]
for an overview of BRDF models.

In choosing between these model types, three things need
to be considered, especially in the context of the operational
needs of large-state (e.g., global) BRDF and albedo process-
ing. First, the information that has to go into the models is dif-
ferent. Empirical models, due to their nature, require many
more observations than physical models over both viewing
and illumination hemispheres if the BRDF shape is to be
well fitted. In practice, however, the number of observations
available from a space-based sensor in any given time pe-
riod is constrained by orbital and instrument characteristics
of the sensor and by cloud cover. Furthermore, BRDF may
change over time and with season, so the period over whici~
observations may be accumulated cannot be arbitrarily long.

Physical BRDF models avoid this problem. But, on the
other hand, no physicat model is equally suitable for every
land cover type. For example, radiative transfer models are
mostly better suited for horizontally homogeneous layers of
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vegetation, and geometric-opticat models, for discrete-crown
canopies. As a consequence, applying physical models to
global BRDF retrieval requires some external knowledge of
the land cover types encountered so that the most suitable
model can be selected for the analysis of each pixel.

The semiempirical BRDF models discussed in this paper
represent a compromise here. While requiring more observa-
tions than physical models to accurately describe an observed
BRDF, they require fewer than empirical models. The ap-
proximate physical basis on which they rest constrains in a
meaningful way the possible BRDF shapes in unobsemd
regions of the viewing and illumination hemispheres. On the
other hand, due to their potentially containing both volume-
scattering and surface-scattering kernels, no pre-selection of
models is necessary. In fact, given that they are not overly
costly to compute, several semiempirical models can be pro-
cessed in parallel to find the best fit.

Second, the type of model to be chosen maybe dictated
by the computing time required for data processing. If only
a limited land area is to be investigated, using a complex
physical model may well be feasible. But if a global data set
is to be analyzed at a spatial resolution in the range of 1km, as
is planned for some of the EOS instruments (e..g, MODIS and
MISR), physical models are presently very likely to be too
costly by a large margin. Besides their intrinsic complexity,
their inversion, if p&sible, requires numerical procedures
that involve a large number of forward calls to the model per
pixel, which greatly increases thecomputingcost. Given that
there are 149 million kmz of land surface on the Earth, 246
l-kmr pixels need to be processed each second in order to
arrive at a global product after 7 full days. Assuming only 15
forward calls per inversion and a few bands to be processed,
that would already imply some 15,000 BRDFmodel calls that
need to be processed per second if a global land data set is to
be processed in a week. Even fast computers are currently
too slow to meet this demand, prohibiting at least for the time
being the use of physical models for global kilometer-scale
operational BRDF modeling. Linear semiempirical models,
on the other hand, can be inverted analytically and albedo
can be calculated from look-up tables (as discussed later in
this paper) in only a fraction of the time needed for physical
models.

A third constraint is given by the invertibility of the mod-
els. Inversion of physical models, generally not possible
analytically, is more often than not made difficult due to
problems inherent to numerical inversion schemes and may
in some cases even be impossible. Furthermore, numerical
inversion algorithms usually require initial estimates of the
parameters to be deduced, and the results in some circum-
stances can depend on those estimates, making necessary
further analysis. The optimal inversion scheme also depends
on the specific model function used and the range of parame-
ters encountered. Nonlinear semiempirical models are more
stable in this respect but still easily show these problems.
Due to their nature, however, linear kernel-driven models
can be inverted analytically in a fast and efficient way, as
discussed by P. Lewis (On the utility of linear, kernel-based
BRDF models, manuscript in preparation; see also Lewis
[1995]).

One can thus conclude that semiempirical models have
several operational advantages over physical and purely em-

pirical models: (1) They are much faster to compute than
full physical models; (2) they require only a limited number
of observations to be invertibl~ and (3) if linear they may
even be inverted analytically so that numerical problems are
avoided altogether. But still these models encompass more
meaning, and often fit observations better (as will be shown
in a forthcoming paper by the authors) than purely empiric-al
models. The parameters obtained from them have no direct
meaning in terms of individual biophysical or structural pa-
rameters, but do characterize the prevailing type of scattering
and give a generaJ indication of the structural properties of
the scene viewed.

Linear kernel-driven models, besides being operationally
and computationally feasible, and efficiently invetible, also
have the advantage of scaling spatiatly and being able to ac-
count easily for inhomogeneity in land cover at the subpixel
scale. Whereas physical models usually assume homoge-
neous pixels, linear semiempirical models accommodate to
some extent mixed BRDF signals due to the fact that they
are superpositions of basic BRDF shapes if adjacency effects
and multiple scattering between components are negligible.
In global processing, especially at resolutions of a few kilo-
meters, these are important additiomd advantages of linear
semiempirical models.

As a consequence, both the European POLDER and the
American MODIS/MISR BRDF and albedo products will
rely most likely on linear kernel-driven models for deriving
BRDF and albedo from the respective observations. Linear
semiempiricat models are, for the time being, the models of
choice for operational BRDF processing on a global scale.
In a demonstration of the capability of these models, Lf?roy
and Roujean [1994] have successfully applied their model of
this type to AVHRR data and have corrected it for sun and
view angle effects.

In the remainder of this paper, three new kernels that are
under consideration for these applications are introduced and
discussed along previously published mathematical expres-
sions for kernels.

3. Volume-Scattering Kernels
(Radiative Tkansfer-Based)

3.1. Derivation of the Ross-Thick Kernel

The Ross-thick kernel has been derived and described by
Roujean et al. [1992]. It is based on an approximation for
large values of the leaf area index (LAI); a new approxima-
tion for small LAI will be given in the next section. Since
this new approximation is based on the same formulas used
by Roujean and coworkers, an outline of the respative cal-
culations is provided here first.

In their derivation of this kernel, Roujean et al. [1992]
start out from a formula taken from Ross [1981]. It gives the
bidirectional reflectance above a horizontally homogeneous
plant canopy calculated from radiative transfer theory in a
single scattering approximation, meaning that no photon is
scattered more than once on either leaves or the surface. The
scattering facets, or leaves, are located randomly above a flat
horizontal surface of Lambertian reflectance ~. Their vol-
ume density is N, their area u, their hrnbertian reflectance S,

and theirLambertiantransmittance t. The LAI of the canopy
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is LAI = N~zma, where ~mm is the maximal height of the
canopy. If w is the volume scattering coefficient, G(d) is the
facets area orientation function for a ray incident with zenith
Oand azimuth ~, and P(Oi, Ov,~) is the phase function of the
medium (i stands for illumination, v for view), the BRDF
Rvot is given by

W P(Oij 0.,+)

Rvd = —
4Nu cos Oicos $U

. ‘-exp{-LA1 [++=1}Eg.J+!3&Lj

{[

G(Oi) + G(6V)
+ POexp –LAI — —

COS 8i Cos $. 1}.(1)

Assuming an isotropic distribution of facet orientations,
we have G(Oi) = G(O. ) = 1/2, w = Nu(s + t)/2, ad

P(ej , e“ , d) =

8 [(r–t)cos< +sinf]s +(–<cost+sinot

G
, (2)

S+t

where f is the phase angle of scattering, and

COS ( = COS Oi COS 0. + sin Oisin O. COS 1$. (3)

Entering these relationships into (1) and furthermore assum-
ing s = t (leaf reflectance equals leaf transmittance), one
arrives at

4s (7r/2 – f)cosf + sinf
Rvo; = ~

Cos e; + Cos e“

({ LAI
. l–exp –—Z( SWOi +SeCO”) 1)

{

LAI
+po exp –—

}
z (s=oi+saov) “ (4)

At this point we make the approximation of an optically thick
canopy, that is, LAI >>1. Then the value of LAI dominates
the exponential function, and the variable zenith angles play
only a minor role. The expression 1/2 (see Oi+ sex 0. ) can
be replaced by an average of this expression over the range
of occming angles. For Oi = 0°, this expression is 1.0 for
0“ = 0°, 1.08 for & = 30°, and 1.5 for Ov = 60°; for
Oi = 30° it is 1.15 for 0“ = 30° and 1.58 for 0. = 60°; for
Oi = 60° it is 2.0 for 0“ = 60°. Thus, a typical value for the
average B = (1/2 (see Oi+ see 0“)) is 1.5. Consequently,
the BRDF expression for the thick approximation is

.&hick =
4s (7r/2 – ~)cos< + sinf

% COS Oi + COS 0“

.(1 - exp {-LAI l?})+ pa exp{-LAI B}. (5)

It is the aim to create akemel of the form R = clk~~i~&+ q,
where kt~iC~is the Ross-thick kernel and c1, cz are constants.
Furthermore, it is desirable forthekemel to have the property
kthi~k($i = 0°,0. = 0°) = O, a convention introduced
by Roujean et al. [1992]. Since the term containing all
the geometricexpressionsis 7r/4for nadir illuminationand

viewing, the kernel will be defined as the geometric termless
r/4. Then

R:ki.k, = c1kihi.k + c2, (6)

where the kernel is

kthi,k = (T/2–OCos ( + sin( _:
COSOi+ COS0.

(7)

and the constants are

(8)c1 = # (1 -exp{-LAIB}) ,

C2 = ~ +exp{–LAIl?} (PO– ~) . (9)

The constant c1 will be the weight of the thick volume-
scattering kernel in a complete kernel-driven model. The
constant cz will be included in the isotropic scattering con-
stant.

3.2. Derivation of the Ross-Thin Kernel

The derivation of the Ross-thin kernel starts out similar to
the one of the Ross-thick kernel, but is done for small LAI.
We start from (4).

The first term containing the exponential function refers
to light scattered by the isotropically distributed and oriented
leaves, modulated by the phase function of the canopy, and
its attenuation traveling in and out. We approximate this
expression for small values of LAI (LAI << 1) by exploiting
exp{x} w 1 + Z. The second exponential function refers
to the photons scattered by the layer beneath the canopy,
for example, by the soil or other, much denser vegetation.
Since we are aiming at an approximation for a thin canopy,
we here assume that these photons are either absorbed or
suffer multiple scattering and thus becomes isotropic. The
second term of(4) is consequently replaced by the average
Lambertian reflectance of the layer beneath the governing,
thin canopy on top, PI.

Then we arrive at

Rthin =
4s (7r/2 – <) cos < + sin<

G (X2S $i + COS 0“

. ~(SfZOi +SCCOv) +/V. (10)

l%king care of the cm and sec terms leads to

2sLAI (r/2 – ~) cos < + sinf
Rthin “ ~ +pl.

COS Oi COS ~“
(11)

Again, this kernel should be wo for nadir illumination and
viewing, but the angle term in the above equation is 7r/2,
so the kernel is the angle term less that number if it is to be
normalized to zero for nadir illumination and viewing. This
gives

R:hin = Cl k:hin + C21 (12)

where the kernel is

kthin =
(ir/2-f)cos~+sinf T——

COS di COS 0“ 2
(13)
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and the constants are

2SLAI
cl=—

3X
(14)

sLAI
C2 = —+pl.

3
(15)

The constant q will be the weight of the thin volume-
scattering kernel in a complete kernel-driven model, and
the constant cz will be included in the isotropic scattering
constant.

Note that this kernel will also be applicable for cases with
extremely high LAI, where the dense leaves of the canopy
will act much like a solid surface, and scattering will mainly
be dominated by the few leaves that protrude sparsely out of
the top of the canopy.

4. Surface-Scattering Kernels
(Geometric Optics-Based)

4.1. The Roujean Kernel

The derivationof the Roujeangeometric-opticalkernel is
given by Roujean et al. [1992Appendix]. For completeness
and reference, a brief summary suffices here.

The reflectance is modeled for a random arrangement of
rectangular protrusions on a flat horizontal surface. The
length of the protrusions is 1,their height is h and their width
b. All sunlit areas, ground and protrusions, are assumed to
be equally bright with a reflectance pW All shadows, both
on the ground and on the protrusions, are perfectly black.
Mutual shadowing is not taken into accoun~ this restricts
the zenith angles to a range from nadir to about 60° (this
condition is derived by allowing the shadow cast to never be
“outside” the base area of the protrusions, i.e., /h tan Oj,” <
ib). Furthermore, the side of the protrusions, of area bh,
is neglected, which means the condition 1 >> h, 1 >> b is
imposed.

Then the reflectance is

Rprot = c1 kprot + c2, (16)

where the kernel is

kP,O~ = #(7r – f$)COS ~ + sind] tZllOiEU18v

(
‘~ WIO~+tlUlO”

T

)
+ /M2~i+M20v–2W0i~0vCOS# . (17)

This kernel is zero for nadir viewing and illumination. The
constants are

h
c1 = m~] (18)

C2 = ~. (19)

The constant c1 will be the weight of the Roujean kernel
in a complete kernel-driven model, the constant cz will be
included in the isotropic scattering constant.

4.2. Derivation of the LLSparse Kernel

The basis of this kernel is the modeling approach devel-
oped by Li and Strahler [1986], where the reflectance of a
scene is given by the areal proportions K of sunlit crown
(reflectance C), sunlit ground (reflectance G’),shaded crown
(reflectance T), and shaded ground (reflectance Z). Note
that the reflectance are reflectance as seen by the sensor
at the given illumination condition, that is, these quantities
may depend on the illumination angles themselves. So

R ~.O = KCC+ KGG+ KTT+Kz.Z. (20)

However, in deducing this kernel it is assumed that the shad-
ows are perfectly black, that is, T = Z = O. Furthermore, it
is assumed that sunlit ground and crown are equally bright,
C = G. Then

R ~.. = C (Kc + KG), (21)

and what remains to be done is to determine geometric
expressions for the areas of sunlit crown, Kc, and sunlit
ground, ATG.

The expression for sunlit ground, KG, is easily derived.
Boolean logic says that if one has objects of average area
A, here the projection of the crowns onto the ground, so
Ai,v = A(Oi, Ov), and if these objects are randomly placed,
the proportion of an area that is not covered by objects is
exp( – AAi ,“), where ~ = n/A is the number density of
objects, with n the number of objects [Wahler am.i’ Jupp,
1990]. The area of the objects overlapping randomly in
the case of discrete crowns is the sum of the shadow of
illumination and the shadow of viewing, minus the area O
by which these two overlap

KG = exp{–_AIAi(Oi, #i) + Av(ov, &)

‘O(Oi, flO,#i – 4.)1}. (22)

The areas Ai,v of the illumination and viewing shadows cen
be easily determined individually if the crowns are assumed
to be spheroids with vetical length 2b, horizontal width 2r,
and distance h to their centers above the ground. First,
a vertical-scale transformation is performed to make them
spheres. This transformation replaces all zenith angles by
“equivalent” zenith angles (primed: 0’), at which a sphere of
radius r would have to be illuminated to produce the same
shadow as the spheroid does when illuminated at the actual
zenith angle. This transformation is 0’ = tan-l (b/r tan 0).
Then the length on the ground in illumination or viewing
direction of the shadow of the sphere is 1 = r/ cos 0’ =
r sec 6’, and the area of the shadow is A = m-l = r2 sw t?’.
So we have

KG = exp {–~~r2[s~ ~~+ sec 8:

‘O(di,8”,~i – #v)]} . (23)

The quantity O is all that needs to be determined to calculate
KG.

Consider first the case of the principal plane, that is, qi =
O or # = m. Then the elliptic viewing and illumination



21.082 WANNER ET AL.: KERNEL-DRIVEN BIDIRECTIONAL REFLECTANCE MODELS

projections of the crown on the ground overlap along their
major axis (if they overlap). The area of the segment cut off
from each ellipse by the line connecting the two intersection
points, which is perpendicular to the major axis, is given by

F = CdCOS-*(~/c) – Xy, (24)

where c and d are the major and minor axis lengths, and z
and y are the Cartesian coordinates of one of the intersection
points. In our case, c = r see 0’ and d = r. The variables z
and y are expressed indirectly by a parameter t by parame-
trizing the ellipses as z = c cos t, y = d sin t (so (x/c)* +

(y/d)* = 1, as should be). The area cutoff from each ellipse
then is F = r2 sw O’cos-l(cos t) – #see O’cost sint. The
overlap area sought is the sum of the two cutoff segments,

O= F~+F” =r2(s~01+ s~0v)(t–costsint). (25)

In this way, KG now is expressed in a way that depends
only on the parameter t. Note that the values of t for the
intersection points of the two ellipses may be set equal since
they refer to the circle from which the ellipses can be seen to
have been expanded in the parametrization.

The parameter t is still neede@ it is found from the actual
distance h’D between the two centers of the ellipses, once
expressed by geometric proportions, once by the parameter
t;h’ is the resealed height of the sphere, h’ = hr/b. The fist
version is given by h’D = Ih’ tan O; – h’ tan O; cos #l, since
h’ tan 0’ is the distance from the stem to the center of the
respective ellipse. The term cos @takes care of cases where
the shadow centers are on opposite sides of the stem and
one needs to add the lengths instead of subtracting them.
The second way of expressing the length h’D is as the
sum of the two dkances along the axes of overlap up to
the line connecting the points of intersection, expressed by
the parameter t: h’11 = ~i + xv = aicost + a. cost =
rsec O~cost+rsec O~cost= r(sec~~+sec fl~)cost. NOW
these two expressions for h’11 are equated, and the equation
is solved for cost, resulting in

Using this equation together with the one for O, equa-
tion (25), gives the exact overlap on the principal plane.

Now let us look at the situation for arbitrary values of +.
The approximation made for this case is that (24) still holds
even though the areas cut off of the ellipses by the overlap
no longer are aligned with one of the principal axes. The dis-
tance h’D between the centers of the ellipses is now given by

D = (tan2L9~+tan26~ –2tan0~tan 0jcos#)1’2, and the
sum of the two axes of the ellipses taken along D is ~(sec O:+

seco:)/ (1 + U2)1’2, where h’u = h’ti 6i ~ 0“ singi/D
may be interpreted as the distance of the line D from the
base of the tree. Proceeding with the approximation, we

obtain h’11 = r(sec t9j + sec O~)cost/ (1 + U2)1’2,or

in which D is known. Note that this equation reduces to (26)

ford =Oorq$= r,since thensin d= Oandcosd=+l, so
that tan2 O: = (tan L9~cos 4)2, reducingD from above to the
formula for D on the principal plane. It also converges to
the exact solution on the principaJ cone (Oi = 0.) for small
values of D.

With KG known, the fraction of sunlit crown area, Kc,

remains to be determined. Here the problem encountered is
that due to mutual shadowing, shadows from adjacent crowns
fall onto any given crown onto areas that otherwise would be
sunlit. Since we wish to derive an approximation for a sparse
canopy, we may neglect this effect. It does not play a major
role in the case under consideration. Then determining KC
is not difficult, as can be seen from the following.

The area of a crown that is both illuminated and viewed
can be calculated as follows. The area seen (of the spheroid
resealed to be a sphere) is Fu = # sw O;. How much of
it is sunlit depends on the phase angle f’ between illumi-
nation and viewing direction, given by (’ = cos O;cos O; +
sin O;sin 19jcos 4. Theareadiminishesas cos2(f’/2) = (1+
cos()/2, wherethecos2stemsfromthefact thatthe sphereis
roundedin two spatialdirections,and the argumentis C’/2,
since everythingwill be illuminated if view and illumina-
tion anglescoincide,and nothingwill be illuminated,not at
(’ = 90°, but at (’ = 180”.Thus the illuminatedandviewed
areaof a single crown is Fc = &xx O: (1 +COS<)/2. The
sunlit and viewed crown area of n trees will, however, not be
nFc, since random overlapping of the sunlit and viewed ar-
eas of the individual crowns will occur. Using Boolean logic
[StraMer and .lupp, 1990], where exp(–hi” ) is the proba-
bility of not seeing crown areas, that is, (1 – exp(–~Au )) is
the probability of seeing crown area, we have

KC = (1 –exp {–Am2sec0~}) ;(1 +cos(’). (28)

Now the expression for the reflection in the sparse approxi-
mation can be given in full:

)‘0(0:, 8U,4)]} . (29)

Since ~ is a small number in the sparse approximation, we
can approximate exp{z} % 1 + z and arrive at

R
(

‘C’ ~7rr2sec0~ ~(l+cos~’)+1sparse —

)–A7rr2[sec 6; + WC f?: – O(Oi, (?O, 4)] , (30)

and finally, since the angle term already vanishes for nadir
viewing and illumination,

R sparse = c1 ksparse + C2, (31)



WANNERET AL.: KERNEL-DRIVENBIDIRECTIONALREFLECTANCEMODELS 21,083

where

kaparae =

+;(l+cos(’)sec f%, (32)

and

O = ~(t–sint cost) (sect9~+sec8~), (33)

h <D2 + (tan O:tan d; sin 0)2
Cost =

z Sfxo:+seee; ‘
(34)

D= tan20:+ tan20j- 2tan0; tanO;cos4, (35)

Cos(t = cos 6: cos (?:+ sin O;sin O; cos 4, (36)

(37)

and

c1 = C Am2, (38)

q = c. (39)

The constant c1 will be the weight of the sparse surface-
scattering kernel in a complete kernel-driven model, and
the constant cz will be included in the isotropic scattering
constant.

This kernel is not linear yet in that it still contains two
parameters, namely the ratios b/r and h/b describing crown
shape and relative height. This kernel therefore actually
represents a family of kernels, governed by the values of
these two internal parameters. In linear applications these
could be set to one or two fixed values each, for example,
slightly oblate (or round) crowns and prolate crowns, and low
or high crowns. This would give four distinctivekemels that
may then be used in linear models. The difference between
these kernels will be discussed in section 5.1.

4.3. Derivation of the Li-Dense Kernel

In contrast to the situation for the sparse canopy, mutual
shadowing cannot be disregarded in the dense canopy case.
Li and Stralder [1992] discuss two extreme cases of canopy
structure with respect to mutual shadowing: the case of a
canopy with uniform trtw heights and the case of a canopy
with random tree heights. The first case is not of interest
here, since it is similar to a radiative transfer situation: a
dense canopy of uniform height can be approximated by a
plane-parallel horizontally layered canopy. So we choose to
deduce this kernel for the case of random tree heights. Li and
Sfrahler [1992] showed that in this case, including mutual
shadowing, the ratio of the crown ma viewed and sunlit and
all area that is not illuminated background is the same for the
canopy case as for a single crown (~ = F = KC/(1 – ~G)),
where F refers to the case of a single crown and ~ to that of
many crowns.

Again, the reflectance is modeled as in (20). Assuming
perfectly black shadows, T = Z = O, results in

R ~,o = CKC + GKG. (40)

Then, introducing F, we get

Rd.. . . = CF(l – KG)+ GKG. (41)

The quantity F can be easily deduced. The area of a viewed
crown is Ati = r+ see O:, with notationsas for the sparse
kernel, and, as above only a portion 1/2(1 + cos~’) of this
area will be sunlit. So the viewedand sunlit areaof a single
crown is Ac = r+ seed; 1/2(1 + cos <’). All area not
sunlit ground is given by the sum of the areas of viewing
and illumination shadow, minus their overlap. As discussed
for the sparse kernel, this is, for a single crown, 1 – AG =
#(see8j + SCZO: – O(f?:, O~)), where O is the am of
overlap. Thus we have

f=F=
1/2(1 + cos~’)sec 0:

Seco: +Sece; –o(e:,O;)” (42)

Furthermore, the areal fraction KG of sunlit ground for the
whole canopy is, again, as before,

KG = exp {–Jirrz [see d: + see Oj

‘O(Oi,~u,@i – 4.)1}- (43)

This exponential term is very small in a dense canopy, since
~ is large; this simply means that almost no sunlit ground
is visible, as is appropriate for a dense canopy. However,
an additional argument may be added to disregarding the
contribution of KG. To see this, assume C = G, which can
be done without large error since KG is small anyway. Then

Rd..,. = C(F(l – KG) +KG) = C(F+ (1 – F) KG).
(44)

Here, not only is KG very small, but 1– F is Small, too, ShICk3

F is a fraction of 1. So this product of two small quantities
is negligible, and we arrive at

Rd . . . = CF = G
(1+ Cos(’)sec e:

2seee:+ seee; -o(o:, e;)’
(45)

which is the same as if we had set KG = O immediately,
but secured by an additional argument for the validity of this
approximation.

Thus the reflectance is

Rd.n~~ = Cl kd~ns. + C2, (46)

where the kernel is

making it zero for nadir viewing and illumination, and where
as above for the sparse kernel,

O = ~(t–sini cost) (see Oj+see O~), (48)
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(52)

and the constants are

c’
c1 = -z’ (53)

C2 = c. (54)

one other possibility would be nOt to set ~{G = O, but to
give it a more realistic constant value X. Then the constants
would be

c1 = ; (1 - x), (55)

C2 = C+(G– C)X. (56)

Again the constant c1 will be the weight of the dense surface
scattering kernel in a complete kernel-driven model, and
the constant C2will be included in the isotropic scattering
constant.

Similar to the sparse kernel, this dense kernel still contains
two parameters, the ratios b/r and h/b describing crown
shape and relative height, for which one may later choose
two fixed values.

5. Kernel-Driven Models

5.1. The Kernels in Comparison

Beforeforminglinearcombinationsof thekernelsderived
to create BRDF models, it is important to compare their
shapes to see whether they are sufficiently different from
one another to warrant using them in linear supeqmsitions.
Figures 1 and 2 show the shape of the kernels along and
perpendicular to the principal plane; the kernel values were
computed for b/r = 1 and h/b = 2. While the radia-
tive transfer-basedkernelsare shapedlikean upturnedbowl,
the geometric-opticalkernelshave the shapeof downturned
bowls. This differenceoccursbecausethegeometric-optical
kernels are driven by the way shadowsemergeand are hid-
den in a discrete-crown canopy, leading to a drop-off of the
reflectance as viewing moves away from the direction of
illumination. The radiative transfer-based kernels, on the
other hand, are governed by the phase function and distri-
bution of facet orientations of scattering centers, leading to
an increase in reflectance with zenith angle. The two Ross
approximations are somewhat similar close to nadir, but the
Ross-thin approximation provides for a much faster rise of
the reflectance for off-nadir zenith angles. The Li kernels
show a considerably more pronounced hotspot than the Rou-
jean kernel and have a more complex shape. Most notably,
they avoid the unphysical behavior of the Roujean kernel
at large zenith angles by taking into accountmutual shad-
owing. Remotelysenseddata obtained,for example,at high
geographical latitudes can encompass this angular range, and
the shape of kernels at large zenith angles is also important
when calculating albedo from a model fitted to data. Wh.h
respect to the difference between the Li-sparse and the Li-
dense approximations, it is obvious from both the principal
plane and cross principal plane plots that they are not linearly
dependent.
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Figure 1. Principal plane values of the kernels for three
different solar zenith angles. Lines of increasing dash length
represent the Ross-thin, Ross-thick, Roujean, Li-sparse, and
Li-dense kernel. The Li kernels are calculated for b/r = 1
and h/b = 2.

Figures 3 and 4 demonstrate the dependence of the Li
kernels on the two internal parameters they contain, where it
is suggested that for linear modeling these maybe set to, for
example, two different values each, producing four variants



WANNER ET AL.: KERNEL-DRIVEN BIDIRECI’IONAL REFLECI’ANCE MODELS 21,085

Cross Principal Plane Values of Kernels

Solar Zenith Angle O Degrees
3

* , 1

I2 ‘*
.

al .

iii -1 I

,
0

.

#

51 . .
. .

$ . ..-..
qo :---

. . . .

&i

I

/- /

–2
//v

\ ‘\
\\\

‘\ I

-7.5 -50 -25 0 25 50 75

View Zenith Angle

Solar Zenith Angle 30 Degrees

.
.

.
.
.

#
.
#

#
.

.
,

-. . .--- “..- .
. -.-” ---

//

;/

$ \
\\

-75 -50 -25 0 25 50 75

View Zenith Angle

Solar Zenith Angle 60 Degrees

. .
. ●

✎
✎

✎
✎

_-— — ——_ \
11 z -+ \

/.. \

-75 -50 -25 0 25 50 75

View Zenith Angle

Figure2.Crosspnncipalplanevaluesofthekernelsforthree
differentsolarzenithangles. Linesof increasing dash length
represent the Ross-thin, Ross-thick, Roujean, Li-sparse, and
Li-densekemel. The Likemels precalculated for b/r = 1
andh/b=2.

ofeachkemel. Thevalueschosenhereareb/r =0.75and
b/r = 2.5 forcrown shape, representing aslightlyoblate,
still rather round crown, and a prolate crown; the values
chosen correlative height are h/b = 1.5and h/b = 2.5,

Principal Plane Values of Li-Kernels for
Different Values of Crown Shape and Height
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Figure3. Variationof the Li-sparse and Li-densekemels
withparametersb/randh/balong theprincipalplane. Lines
of increasing dash length represent b/r = 2.5,h/b = 2.5
(tall prolate ease); b/r = 0.75, h/b= 2.5 (tall slightly oblate
case); b/r =2.5, h/b= 1.5(low prolate case);and b/r=
0.75, h/b = 1.5 (low slightly oblate case).

representing alowandahighcase. Forthe Li-sparsekemelit
iseasilyseenthat theshapesofthe kemelalongthe principal
plane differ for the four parameter combinations, justifying
their use as distinct kernels. Fortheeross principal plane
thereis notmuch difference, though, between kernels with
different height parameters butthesame crown shape. For
the Li-densekemel the differences are notas marked along
the principalplane; however, lookingat the cross principal
planeitcanbeseen thattherestillisa qualitativedifference
involved with respect to crown shape. But overall, two
variants of this kernel, representing the two different b/r
ratios, should suffice.

5.2. Synopsis of Semiempirical Model Factors

A complete linear semiempirical model is formulated as a
linear combination of kernels. Most suitably it has the form

R = fi.. + fgeo kgeo + fvoi k..{, (57)
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Cross Principal Plane Values of Li-Kernels for
Different Values of Crown Shape and Height f“d = (1-C+*.
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fgm = ~po ;, (62)

~VOJ = (1 -a): (1 - exp{-LAIl?}) . (63)

Ross-thin plus Li-sparse

fiso = (sLAI
Crc+(l-a) )-y--+fv , (64)

View Zenith Angle
\J /

fgeo = @~~r2, (65)
Li–Dense Kernel, Solar Zenith Angle 30 Degrees

1:
ftlol = (1-a)%. (66)

0.5 :
Ross-thick plus Li-sparse:

w o :

g- fiso = ac+(l–a)

-1l-l
@ ~ (’+exp{–LAIB} (po- ~)), (67)
5-1.5

fgeo = Qc~~r2, (68)

-2.5 f.d = (1 – ~) ~ (1 –exp{–LAI B}) . (69)
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Figure4. Variationof the Li-sparse and Li-dense kernels .f:~o =
‘c+(’-a) (*+”) ’70)

withparametersb/r and h/b along the cross-principal plane.
Lines of increasing dash length represent b/r = 2.5, h/b=
2.5 (tall prolate ease); b/r = 0.75, h/b = 2.5 (tall slightly

fgeo = a;, (71)

oblate case); b/r = 2.5, h/b= 1.5(10w prolate case); and
b/r = 0.75, h/b= 1.5 (low slightly oblate case). f“oi = (l-a)%. (72)

Ross-thick plus Li-dense

which is derived from adding an appropriate choice of a fi.o = ac+(l–a)
geometric-optical and of a radiative transfer kernel, multi-
plied by the areal proportion of a or (1 – a) of land cover ~ (~ +exp{–LAIB} (po – ~)) , (73)
representing one or the other type of scattering (note that
other interpretations of the parameter a are possible). The fgeo = a;, (74)
quantities k~eoand kuor are the respective kernels. The fac-
tors f, which are the respective weights of the kernels ( fi.o

is the isotropic contribution), are then given by the following f.d = (1– a) ~ (1 –exp{–LAI B}) . (75)

expressions, depending on the model.

Ross-thin plus Roujean: 5.3. A Linear Empirical Model (The Modified Walthall
Model)

fiso = @pO

‘(1+(*+”)

Empirical models ean be understood as being of thekemel-
~58) driven model type as well, where the kernels are empirical

functions. An example is the modified Walthall model, de-
rived by Walthall et al. [1985] and improved by Nilson and

fg.o = @po;, (59) Kuusk [1989]. It has the form
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R=M(o~+o~) +PIO~O~ +~eidvcos(+) +~ (76)

Other modifications of this model might include, for exam-
ple, terms employing the cosines of the zenith angles.

In the context of the current paper it is important that this
model has the same form as the semiempirical models dis-
cussed abov~ it is comprised of a weighted superposition
of functions of the angles, where the weights are the pa-
rameters of the model. As a consequence, models like the
modified Walthall model can be processed along with linear
semiempirical models by the same linear inversion scheme.

5.4. Advantages of Linearity

Some advantagesof linearmodels in terms of global data
processing have alreadybeen mentioned. Linearityin BRDF
models has &n comprehensively discussed by P.Lewis (On
the utility of linear, kernel-based BRDF models, manuscript
in preparation; see also Lewis [1995]) and demonstrated with
the modified Walthall model.

First, any linear model can be inverted analytically through
matrix inversion for the system of equations setting the
derivative of the error function to zero. This provides di-
rect estimates of the parameters .fi~., fgeo, ~d iv.1 while
avoiding numerical inversion problems.

Second, both the directional-hemispherical and bihemi-
spherical integrals of the BRDF (“black sky” and “white
sky” albedos, from which albedos for given conditions of
direct illumination and diffuse skylight may be interpolated
depending on the prevalent respective clearness or hazyness
of the sky [see Strahler ef al., 1995]) may be precalculated
for each kernel individually. The albedo of a model then is
simply the weighted sum of the kernel albedos, where the
weights are the same as were used in constructing the BRDF.
By using a look-up table, numerical integration of the models
can thus be avoided.

Third, linear BRDF models scale linearly in space if adja-
cency effects are assumed to be small. This allows for mixed
pixel cases, as indicated by the ared proportion parameter a
in the model factors listed in section 5.2. This feature also
allows scaling BRDF and albedo from one spatial resolution
up to a coarser one, for example, to a particular resolution
needed for a climate model. In an alternate interpretation of
the parameter a, linear models allow for land cover types
that display both a volume scattering and a geometric opti-
cal contribution to the BRDF (neglecting multiple scattering
between these two components).

Finally, since some of the parameters driving the models
depend on wavelength while others do not (e.g., if they are
structural), it maybe possible to extract information on some
of them from multiband analysis, making assumptions about
the others. For instance, for the Ross-thin plus Li-dense
model, the variation of ~g.o directly reflects the variation of
the sunlit component signature C with wavelength, since all
other quantities entering do not depend on spectral band.

These advantages of formulating BRDFs as a weighted
sum of fixed kernels need to be viewed in the light of the ba-
sic assumption underlying the approach, namely that BRDFs
can be composed from such a superposition. A superposition
may be justified for two reasons. First, a pixel that is made
up at the subpixel level of, for example, a forest and a field of

wheat, should have a BRDF that reflects both surface and vol-
ume scattering, each of the two components stemming from
the respective subpixel surface type. But equally important,
even a scene composed of only one uniform cover type may
display both types of scattering behavior. A forest canopy,
for instance, will be dominated by geometric-optical surface
scattering caused by the surfaces of the discrete crowns com-
posing the forest. However, light entering the crowns will
experience scattering inside the crowns that is more of a vol-
ume scattering type before exiting, adding this component to
the signal. Indeed, a complex physical hybrid model com-
bining surface and volume scattering in one model has been
developed to describe this case [Li et al., 1995].

What the superposition approach neglects to take into con-
sideration is the interaction of the two components, surface
and volume scattering: in the case of subpixel differences
in the cover type, such interaction takes the form of adja-
cency effects, in the case of a volume and surface scattering
uniform canopy it is due to the fact that the sourw of the
light to one type of scattering is partly the radiation coming
from the other type of scattering. While the adjacency ef-
fects are probably only minor in most cases except at very
large zenith angles, the coupling of the two terms in the other
situation is more problematic. However, even in this case
the most simple fist-order approach is superposition of two
components assumed to be distinct. Ultimately, an impor-
tant factor in judging this question is to demonstrate that
the concept of kernel-driven models serves well in modeling
BRDFs observed in the field, as is the case (as we will show
in a forthcoming paper).

5.5. Nonlinear Semiempirical Models (The Rahman
Model)

It is important to point out that semiempirical models need
not necessarily be linear combinations of kernels, as is al-
ready indicated by the two kernel-internal parameters present
in the Li kernels. Neither are semiempirical models neces-
sarily derived from approximating more extensive physical
theories.

An example for this is the semiempirical model introduced
by Rahman et al. [1993], which we discuss here briefly be-
cause it demonstrates an alternate approach to semiempiri-
cal BRDF modeling that has interesting potential. Starting
out from a two-parameter, purely empirical model by Min-
nuerf [1941] for the reflectance of the surface of the moon,
Rahman et al. improved the model by adding semiempiri-
cal elements that allow more realistic BRDF shapes. First,
Minnaert’s model is slightly altered to give a better basic
BRDF sha~, the BRDF is governed by the two parame-
ters surface reflectance and k, governing the steepness of the
BRDF dependence on the zenith angles. In a second step,
a Henyey-Greenstein function is multiplied to the model to
better represent forward and backward scattering. Finally, a
hotspot term is multiplied to the expression which has a form
inspired by the mathematical terms found in physical models
with a hotspot. Both of these last additions also introduce
a dependence of the BRDF on relative azimuth that was not
present in the original model, thus making it considerably
more realistic.

It is interesting how the Rahman model is built up from an
empirical core, adding physically meaningful terms, while
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the semiempirical models derived in this paper were derived
by severely simplifying physicat models. The model is an
obvious alternative to linear models and, due to the way it was
constructed, capable of adapting to a large variety of BRDF
shapes. However, it is not of the kernel-driven type that is
the focus of this paper. In applications it requires numerical
inversion, which may be a major problem in global fine-scale
applications.

6. Summary and Conclusions

As sensors capable of viewing the Earth’s surface from
various angles begin to play a important role in land remote
sensing, analysis of the BRDF of each pixel is necessary for
being able to compare observations obtained at different an-
gles or standardizing observations to a common geometric
situation. However, the BRDF found also contains otherwise
untapped information. It allows precise deduction of the
directional-hemispherical and bihemispherical integrals of
the BRDF (“albedos”) and inference of general surface prop-
erties, most notably coarse structural characteristics [e.g., Li
and Strahler, 1986].

Operational considerations, such as computing resources,
the problem of needing or not needing a priori land cover
knowledge, invertibility and number of observations re-
quired, make linear semiempirical models prime candidates
for large area BRDF analyses at a spatial resolution of the
order of 1km. Such kernel-driven models will, for example,
be employed for BRDF evaluation and albedo deduction for
the MODIS sensor of NASA’s Earth Observing System (in
combination with data from the MISR sensor on the same
platform) [see Strahler ef al., 1995; Wanner ef al., 1995].

Kemel-dtiven models are based either on BRDF functions
derived from approximations to physical BRDF models or on
empirical functions. BRDFs are formulated through linear
combinations of these functions, where ideally an isotropic
constant is combined with a radiative transfer-based vol-
ume scattering kernel and a geometric optics-based surface
scattering kernel. This paper briefly summarizes existing
kernels, the large-LAI approximation to Ross’ [1981] radia-
tive transfer theory, Roujean et al.’s [1992] geometric optical
model of rectangular protrusions, and the modified Walthall
functions [Walthall et al., 1985; Nilson and Kuusk, 1989].
It newly introduces three kernels that were previously given
without deduction in a report by Strahler er al. [1994; up-
dated 1995]. These are a low-LAI approximation to Ross’
theory and two approximations to the Li and Strahler [1992]
geometric optical mutual shadowing model for ensembles of
distinct crowns, one for dense canopies and one for sparse
canopies.

Together, these kernels allow formulating a number of
semiempirical BRDF models suitable for global BRDF anal-
ysis. They also are important elements of upcoming land
BRDF studies on the continental scale.

In a forthcoming paper the authors will demonstrate how
these models perform on observed BRDF data sets and how
land cover types differ in how well the individual models tit
the data. All models will be shown to perform well in cases
appropriate for them, thus validating them.

Code for scientific forward modeling and inversion of all
of the models discussed in this paper may be obtained from
the authors.
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