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ABSTRACT

A thresholding technique applied to a time series of 1 km,
biweekly composite AVHRR-NDVI data stratifies a Sietm
Nevada test site into broad vegetation classes based on temporal
habit. These classes provide a basis for developing strata specific
neural network classifiers which operate on single date 250 m and
500 m data simulmd from Landsat Thematic Mapper, as well as
1000 m digitaJ elevation data. The results of this combined
hierarchical approach are compared to results from a network
developed for the site as a whole without prior stratification. The
artificial neural networks are feedforwmd models based on the
multilayer percepwon structure trained by a backpropagation algo-
rithm. The combined approach appears to perform slightly better
than the sitewide model, although the results are compmable. The
results from both approaches produced cover-type proportions
which are closer to the proportions in the original 30 m reference
class map than to the aggregated 250 m map used for training and
testing the network models.

INTRODUCTION

The application of artificial neural networks to the extraction
of information ftum remotely sensed data is attracting increasing
interest from numerous scientific perspectives. In particuhr,
neural networks have been applied to remote sensing classification
tasks with notable successes (Benediktsson et al., 1990; Kanello-
poulos et al., 1992). This has led to the consideration of using
neural networks as part of the global land-cover classification algo-
rithm currently being developed for processing data from the
planned MODIS instrument (Moderate Resolution Imaging Spec-
troradiometer) due for launch aboard the EOS-AM platform in
1998 (Moody et al., 1994). MODIS will provide 2-day coverage
of the globe and will produce red and near infrared data at 250 m
resolution, visible and near infrared data at 50U m and middle and
thermal infrared data at 1 km. Other possible MODIS land-cover
algorithms will rely on temporal-threshold bm.ed decision rules to
stratify land cover into behavioral/structural forms (Running et al.,
1994). This paper represents a preliminary investigation into the
integration of these two techniques for a Northern Califomi%
Sierra Nevada test site. The basic premise is that thresholding
algorithms applied to time trajectories of the coarser scale data can
provide an initial s~atification of cover types, and single-date or
reduced temporal frequency, high resolution data can further refine

the classification based on strata specific neural network afgo-
nthms. This speaks in part to the definition and development of
algorithms for global land-cover characterization from MODIS, as
well as to the understanding of how the combination of spatial
resolutions that MODIS will provide can best be employed. The
purpose of this work is to compare the classification performance
of the integrated two level processing approtich to a neural net-
work classifier developed for the test site as a whole,
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TEST DATASET

This research employs data from the Plumas National Forest
in Cafifomia. The Plumas is ruughly 8000 sq. km. and lies at the
mansition between the northern extent of the Sierra Nevada Moun-
tains and the southern edge of the Cascade Range. This site has
been studied recently as part of a project to develop land-cover
mapping and timber-inventory methods for the U. S. Forest Ser-
vice (Woodcock et al., 1993). A vegetation map was producuf
using Landsat Thematic Mapper imagery and unsupervised image
classification supported by air-photo and field validation. This
map has been aggregated to 250 m and serves as a reference for
the work presented here. Aggregation was performed using a sim-
ple plurality rule over a 240 m grid and the resulting map was then
resampled to 250 m. Small random samples of “pure” class pixels
were extracted from this data for a-aining of the networks. Cover
classes for this damset include grasslbarren, brush, hardwood,
meadow, conifer and wafer. Meadows are omitted from this study
due to their small size and relative infrequency. Inputs are June
1990 TM data which have been spatially filtered to simulate
MODIS 250 m data in red and near infrared bands 3 and 4, and
500 m data in bands 1, 2, 5, and 7. Biweekly composite 1 km
AVHRR-NDVI data from March to December 1990 is core-
gistered to the filtered TM dxa artd the resampled vegetation map.
A digital elevation model at 1 km resolution is also registered and
used as input.

THRESHOLD METHOD

The temporal thresholding technique involved a series of
decision rules applied to AVHRR-LAC data. This is a largely
modified version of a similar approach suggested by Running et al.
(1994). These data were in the form of biweekly composite
NDVI images. The complete data set for the procedute consisted
of nineteen such images, representing nearly complete temporat

coverage for 1990. The first decision involved selection of
representative images for the growing and non-growing seasons.
The purposes of this prccedum were two-fold. During this phase
significantly snow-covered images were removed from the non-
growing season data. Also, late spring and early summer dates
were selected as representative of the growing season in order to
avoid the use of data collected during periods of strong seasonal
uansitions.

After selecting the representative images, an NDVI threshold
of 0.35 was applied on a per-pixel basis to the entire representative
subset in order to discriminate between vegetated and non-
vegetated surface features. Where the values of particular pixels
failed to exceed this threshold in every image of the representative
subset, the pixels were designated barren of vegetation. The next
decision concerned discrimination of annual and perennial vegeta-
tion types. Where the values of paniculw pixel types exceeded the
barren threshold (NDVI=O.35) during the growing season, but
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failed to do so during the non-growing season, the pixels were
labeled annual vegetation. Those pixels that exceeded this thres-
hold over both seasons were designated as perennial vegetative
features.

The final step in the thresholding procedure further divided
the perennial vegetation category into deciduous and evergreen
classes. For each pixel associated with perennial vegetation, mean
NDVI values were calculated for both growing and non-growing
seasons. These means were compared on a per-pixel basis via a
Student’s t-test for samples of unequal variance. Pixels exhibiting
statistically significant differences in NDVI across the seasons
were labeled deciduous, while those pixels that were not statisti-
cally different were designated evergreen. Using this technique,
the test site was stratified into annual, barren, deciduous and ever-
green strata.

NEURAL NETWORK METHOD

This research employs fully connected, feedforward network
models which are based on the multilayer perception structure and
trained by the backpropagation algorithm (RumeIhart and McClel-
land, 1986). The network is composed of layers of “neurons”
which are interconnected through weighted synapses. All nodes in
a given layer are connected to each node in the subsequent layer of
the network and each connection has an associated weight which
can be excitatory or inhibitory. The first layer represents the
classification input variables and the last layer represents the out-
put classes. Intermediate “hidden” layers represent an internal
representation or neural pathways through which input data are
processed to arrive at output values or conclusions. Through an
iterative presentation of input/output pairs, the network can “learn”
to recognize patterns of input signals and relate them to desired
output responses. In a supervised approach input patterns are first
fed forward through the network. The internal structure of the net-
work, or hidden layers, allow interactions between inputs to
develop and provide the basis for discrimination surfaces. Outputs
ase linear combinations of throughput signals and the synapse
weights. During the learning phase, errors are calculated as the
RMS error between the network outputs and the desired outputs
and am backpropagatcd through the network. On each iteration,
the synapse weights are adjusted in order to reduce the total RMS
error until a convergence criterion has been satisfied. Once the
network has been trained, it can be applied to new input data and
evaluated.

For this analysis, all networks have seven inputs (spatiaIly
filtered TM bands 1, 2, 3, 4, 5, and 7 and the DEM data) and six
outputs (,grasslbarren, brush, hardwood, water, confer and none).
Each network has only one hidden layer, but the number of hidden
nodes varies between the models for the different strata. The dif-
ferent models have varying momentum terms, learning rates, con-
vergence criteria and and varying numbers of training samples
cable 1). All of the networks employed the delta learning rule
and a sigmoid transfer function. Network training was based on
small subsets of relatively “pure” pixels selected from each class
(see Table 1). Roughly 2.5% (5000 pixels) of the total unmasked
image area was used for training. For the combined approach, net-
works were developed separately for each strata defined using the
temporal thresholding method. The results of this method are
compared to a network which was developed for the entire test site
without prior stratification.

ANALYSIS OF RESULTS

Both the combined threshold/network approach and the site-
wide network model were trained and applied to the Plumas test
site and results were evaluated using the aggregated 250 m class

map. Tables 2 and 3 are confusion matrices showing results from
the two methods. The first value at each matrix element represents
the number of pixels falling into that confusion category. The
second element is the percent confusion with respect to the size of
the reference map class, and the third element (in parentheses) is
the percent confusion with respect to the size of the output map
class.

The combined approach has better correct classification per-
formance for brush, hardwood and wafer when evaluated with
respect to the reference map. For example, for the pixels which
were actually classified as hardwood on the reference map, 76%
were also classified as hardwood by the combined approach and
73% were classified as hardwood by the sitewide network. With
respect to the network outputs, the combined approach performs
better for grass, water and con~er. For example, of all the pixels
which were classified as conifer by the combined approach, 87%
actually were con~~er on the reference map. This value is 85% for
the sitewide model. On the whole, it appears that the combined
approach performs better than the sitewide approach. This is only a
slight advantage, with improvements in the range of 270 to 4%, is
dependent on the method of evaluation, and is not consistent for all
classes. It is interesting to note, however that the combined
approach performed as well or better than the sitewide approach
with a very small number of within strata ~aining samples (Table
1). For example, the barren and annual strata employed only 75

Table 1. Number of hidden units, momentum terms, number of
training samples and convergence criteria for the sitewi& network
and the four strata-specijic networks.

Network Information
Threshold Based Strata

Sitewide Barren Ann. Decid. Evrgm.

Hidden 15 5 8 10 12
Mom. 0.8 0.5 0.8 0.8 0.9

Samples 5000 75 325 1280 3125

Conv. 0.04 0.04 0.04 0.05 0.04

Table 2. Accuracies for combined method: First entries are pixel
quantities, second entries are confusion proportions with respect
to reference map, and entries inside parentheses are proportions
with respect 10 output class map. Total number of phels in each
output class are indicated below lhe class type in the left most

Confusion Matrix for Combined Approach

Reference Map Classes
outputs

Grss Brsh Hrdwd Wtr Confr

Grss 7789 5617 63 19 459
13947 0.625 0.229 0.005 0.017 0.007

(0.56) (0.40) (0.005) (0.001) (0.03)

Brsh 3529 13780 1260 28 12254
30851 0.283 0.561 0.091 0.024 0.197

(0.11) (0.45) (0.04) (0.001) (0.40)

Hrdwd 569 1664 10510 17 8380
21140 0.046 0.068 0.759 0.015 0.135

(0.03) (0.08) (0.50) (0.001) (0.40)

Wtr 36 53 100 978 1995
3162 0.003 0.002 0.007 0.855 0.032

(0.01) (0.02) (0.03) (0.31) (0.63)

Confr 541 3449 1918 98 39083
45089 0.043 0.140 0.138 0.086 0.628

(0,01) (0.08) (0.04) (0.002) (0.87)

Ref Tot 12464 24563 13851 1140 62171
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Table 3. Accuracies for single network method: Entry e.rplanarions
are the same as in Table 2.

CONCLUSION

Confusion Matrix for Sitewide Network

Reference Map Classes
output

Grss Brsh Hrdwd Wtr Confr
1

Grss 8422 6264 75 24 627 I
15412 0.669 0.254 0.005 0.021 0.010

(0.55) (0.41) (0.005) (0.002) (0.04)

Brsh 3328 12837 1227 22 10329
27743 0.265 0.521 0.088 0.019 0.166

(0.12) (0.46) (0.04) (0.CQ1) (0.37)

Hrdwd 127 1569 10103 11 6603
18413 0.010 0.064 0.727 0.010 0.106

(0.01) (0.09) (0.55) (o.tMl) (0.36)

Wtr 31 44 191 963 3410
4639 0.002 0.002 0.137 0.833 0.055

(0.01) (0.01) (0.04) (0,21) (0.74)

Confr 672 3958 2308 136 41301
48365 0.053 0.160 0.094 0.118 0.663

(0.01) (0.08) (0.05) (0.003) (0.85)

Ref. Tot 12569 24630 13879 1152 62142

and 325 training samples and made up 7?10and 11’% of the image
area, respectively. The networks for these suata therefore mined
on only 1.5’70and 6.570 of the total training dmset. It is likely that
the combined method could be enhanced significantly with a more
statistically representative training dataset.

With respect to the 250 m reference class map, both
classification approaches overestimated the occurrence of all
classes except for conifer, which was underestimated. One of the
more interesting results of this analysis is that the classification
outputs produced overall CIMS proportions which were much
closer to the propornons in the original 30 m class map than to the
proportions in the 250 m aggregated reference map (Table 4). It is
unclear at this point whether this translates into a better locational
accuracy for these methods if they were evaluated using the 30 m
map. It remains to be tested whether this result is merely coin-
cidental or has a physical explanation that will hold across
landscapes. It is likely thm the networks are responding to the
spectral mixing of subpixel components and/or, that land cover
proportions as determined tiom remotely sensed data may scale
more effectively than expected or than represented by the class
map aggregation procedure used. If this is the case, then the rela-
tively poor performance of the classifiers may have more to do
with distornons in the reference map than with limitations in the

information content of the data or the strength of the techniques.

Table 4. Cover-type proportions for the original 30 m reference
map, the 250 m aggregated reference map used for training and
testing the models, the combined threshokilnetwork results, and
the sitewide network approach.

Comparison of Cover Proportions

Clusses
Class Maps

30m Ref 250m Ref Combined Sitewide

While both methods tested provide similar results, it is likely
that the combined method using preclassification stratification
based on temporal thsesholding would improve if the networks for
the individual strata were trained on more representative samples.
While the two stage approach is considerably more labor intensive,
it provides an avenue through which multiresolution data can be
combined, and through which both high temporal and high spatiaf
frequency data can be exploited to develop large area land-cover
datasets. This approach also provides a structure which allows
separate networks to be trained and applied over reasonably self-
similar strata. On a continental or globaf scale, some such
stratification is needed to allow for regional extensibility of the
network algorithms.

The apparent ability of these methods to output cover-type
proportions which are close to the high resolution proportions of
the scene components needs to be further investigated. This result
may point out the need to develop improved methods for scaling
categorical spatiaJ data and may also highlight the value of investi-
gating the sensitivity of this type of neural network algorithm to
subpixel mixtures of scene components.
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