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ABSTRACT

From the viewpoint of interaction with electromagnetic radia-
tion, a vegetation canopy can be considered to be a stochastically
macro-nonhomogeneous scattering medium characterized by a
random geometric structure (random shapes, dimensions, amounts
and spatial locations of individual plant crowns) and a stochastic
internal structure, such as the macroscale fluctuations in optical
properties and dimensions of leaves. To model this interaction, the
most promising approach is the use of a stochastic radiative
transfer equation, whose coefficients are random scalar fields of
the optical parameters of the elementary volumes of plant crowns.
By averaging the stochastic transfer equation over the ensemble of
realizations of the stochastic canopy field, we can thus obtain the
lower-order moments of the stochastic radiation field, such as its
mean and variance.

In this work, we formulate the radiative transfer equation for
the ensemble average radiance based on a two-component random
mixture model from kinetic theory. The resulting model can
account for non-Markovian statistics as well as both vertical and
lateral variations in the canopy. The key parameters of this model
include the ratio of the height of the plant crown to its horizontal
dimension and the percentage coverage of crowns on the ground,
In addition are parameters of the ordinary one-dimensional canopy
radiative transfer model. The radiative transfer equation for this
model is solved most accurately using the Gauss-Seidel iteration
algorithm; the asymptotic solution is comparable to that of the
deterministic model we have developed earlier,

INTRODUCTION

There are many versatile techniques for solving the radia-
tive transfer equation in a plane parallel canopies, (Goel, 1988;
Myneni et af., 1990), which assume that the canopy is horizontally
homogeneous wrd infinite. However, we frequently observe three
dimensional isolated canopies or canopy fields composed of three
dimensional plant crowns on the earths surface. Myneni et al.
(Myneni, et al., 1990) developed a three-dimensional radiative
transfer model of leaf canopy, that is horizontally inhomogeneous
and infinite. Their numerical calculations (Myneni, et al,, 1992)
show that radiative transfer in the inhomogeneous canopy is rather
different from its plane parallel counterpart. Suits ( 1983) proposed
a technique to investigate radiative transfer in the discontinuous
canopy by use of a so-called modulation function. This technique
has been employed with the SAIL model to investigate of radiative
transfer of crop canopies by Goel and Grier (Goel and Grier, 1986;
1988). Given a realization of of the canopy field, these models can
provide us the spatial and angular characteristics of the canopy
radiation field. Since the spatial distribution of the canopies are
random in nature, the calculation of the statistical characteristics
of the canopy radiation field will require a number of runs of com-
puter codes based on different realizations of the canopies, which
are very computationally expensive.
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In many cases, canopies we Stochasticah macro-
nonhomogeneous scattering media as a result of the random
geometric structure (random shapes, dimensions, amounts and spa-
tial locations of individual canopy) and stochastic internal struc-
ture, such as the macroscale fluctuations in optical properties and
dimensions of leaves. This paper will deal with the canopies with
random geometric but deterministic internal structure.

It is obvious that the radiation field of a stochastic canopy
must be a random field. The most promising approach is the use of
a stochastic transfer equation, whose coefficients are random

scalar fields of the optical parameters of the elementary volumes
of canopies. By averaging the stochastic transfer equation over the
ensemble of realizations of the stochastic canopy field, it makes us
possible to obtain the lower-order moments of the stochastic radia-
tion field. This approach has been used for the broken cloud (Titiv,
1990; Zuev et al, 1987). The similar idea already has been used for
canopies (Anisimov and Menzhulin, 1981).

THE MODEL OF THE CANOPY RANDOM FIELD

Let a canopy field occupies the layer A: O S z S H in Ihe
OXYZ cartesian coordinate system. The coefficients of extinction

cr(r, to) and scattering ~.,(r. W) me the random scal~ fields.
namely, a(r, to) = o(to) k(r) and o.~(r,W)= OJUS)k(r), where
k (r) is the random indicator function, i.e.

I
1 ifr (-G

k (r) = (1)
—

o ifr (-G,

where G is the random set of points in A covered with canopies.
Tbe field k (r) is assumed the poison point field. The statistical
characteristics of optical parameters within A are completely

determined by the probabilistic properties of a random field k (r).
Based on some simple assumption, the first two moments are
(Titov, 1990)

<k(r)>=P

<k(rok(r2)> = P V(rl, rz) (2)

V(rj, rz)=(l-P)expI-A (w)lrl -rzl]+f’ ,

where the angular brackets denote the expected value of the field
k(r), A(w) = la IAX+ lb IAy + Ic IA:, the direction vector rocan
be calculated, by

1
to=(rl- r2/lrl- r~l=(a, b, c), and

IV(rl, r2)=P k(rl)=l lk(r2)=l is the conditional probabil -

L J

ity of the canopy occupied in the point r], under condition that the

point r2 is covered with canopies. A,, AY and A: are the average
numbers of points per unit length.

According to (2), the field k (r) is statistically homogeneous
and anisotropic and has the exponential correlation factor

B(rl–r2) =B(lxl– x21) B(ly1–y21) B(zl–z21).



From the stochastic properties of the poison field, the absolute
canopy coverage N can be expressed as:

N=l-(l-P)exp(–Az H) . (3)

Since the canopy has the random altitude at the top and the bottom,
Az # O in general. From (3) we can see N 2 P.

RADIATIVE TRANSFER MODEL

For a random leaf canopy, the radiative transfer equation can
be written as:

@VI(r, W) + @to)k (r)l(r, to) = ~ IS.(m’-xo) k (r)](r, to’)dto~4)
4K

where the total cross-section o(o) is defined
Myneni, 1988 )

cr(m) = UIG(o.1) ,

and U1is the leaf area density and G(m) is related
distribution function gf ((01)

G (W) = ~\2x+g@) 100/ Idq

as (Shukis and

to the leaf angle

where 2rr+ indicates the integration over the upper hemisphere.
The functions, UI and gl(wl) characterize the architecture of the
leaf canopy. The differential scattering cross-section cJ~(61‘+co)
may be expressed by (Shultis and Myneni, 1988)

CMtO ‘+w) = UI r(w‘+wY77 ,

where r(w ‘+w) is the area scattering phase function originally
introduced by Ross ( 198 1).

In order to solve the radiative transfer equation effectively,
the differential operator in equation (4) is changed to the integra-
tion operator, thus the radititive transfer equation can be
expressed:

I(r, w) + ~~ul G(w)k(r31(r’, w)d<

(5)

= +~r(wo>wy(r-, w)k(r?dg

where

I~:=(O!z), C>o
(z, H), c <0

Let’s average above equations over the ensemble of the k(r)
random field realizations, then

<l(r, w)> + %~ U(r’, w)d<
E:

= *JEr@o+@ U(r

(6)

W)d<

where U function is defined as

U(r, co) = <k (r) I(r, w)MI

If equations (5) is multiplied by k(r) and averaged once again, we
have

P U(r, to) + w~ <k(r)k(r~l(r’, w)> d~

= fi~ r(oo+w) <k(r) k(r’)I(r’, w)> d<

In order to generate the closure equations, we have to split
the correlation function <k(r) k (r ~ I (r’, o)>. Based on the Mar-
kovian properties of the Poison process, one splitting formula has
been used to approximate the correlation function (Titov, 1990)

<k(r) k(r~l(r’, w)> = V(r, r~<k(r~I(r’, w)> (7)

Thus above equation for the mean radiance can be described:

U(r, w) + %~ V(r, r~ds
E.

(8)

= ~~ r(wO+w)v(r’, r) U(r’, co)d&

So far the closed equation systems for the mean radiance
have been derived. As soon as U(r, W) is solved from (8), the mean
radiance <l(r, w)> can be calculated from (6). Note that since the
canopy field is statistically homogeneous and the boundary condi-
tions are homogeneous, then

<l(r, 0))> = <((z, w)>

<U(r, w)> = <U(Z. w)> ,

which implies that we have converted a three-dimensional prob-
lem into a one-dimensional.

It is noticed that the models introduced in the kinetic theory
literature concerning particle and radiation transport in stochastic

media can very easily be applied to canopy radiative transfer. Mal-
vagi et al. (1993) demonstrated that radiative transfer equation for
the partially cloudy atmosphere given by Titov (1990) is the spe-
cial case of the two-component mixture model. This special case is
the case corresponding to no emission, no interaction between the
radiation and the clear sky, and Markovian statistics. If we treat
canopy as one component, and air between the canopy is another
component, the two-component stochastic mixture theory can be
used to account for arbitrary (non-Markovian) size and spacing
distributions, and it has the form of integro-differential equations
that are convenient for analysis.

Thus, the averaged mean radiance equation for the stochastic
canopy field can be derived from two-component stochastic mix-
ture theory
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where the average mdiance is the sum of two components:
Suits, G. W., “Extension of a uniform canopy reflectance model to

<I(z)> =po(:)lo(z) +PI(:YI (Z) include row effects,” Remote Sens. Environ., 13(1983): 113-129.

p ~ is the percentage cover of the canopy, p. = 1- p,, 1, are sim- Titov, G. A., “Statistical description of radiative transfer in
ply the Markov transition lengths depending on the shape of the clouds,” J. /h?os. Sci., 47( 1990):24-38.
crown.

NUMERICAL SOLUTIONS Zuev, V. E., Zhuravleva, T. B., and Titov, G. A., “Modeling of out-
going long-wave radiation in the presence of broken clouds: J.

Equations (9) and ( 10) are the typical form of the integro- Geophys. Res., 12(1987):5533-5539.

differential equations for which an extensive body of numerical
solution methods is readily available, in this study the Gauss-
Seidel algorithm used in our earlier study (Liang and Strahler,
1993) is applied to solve these two equations. Due to limitation of
the space, data analysis will be omitted. Details are available in the
separate paper (liang and StraMer, 1994).
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