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ABSTRACT

It has been shown that mutual shadowing, which induces a spatial comrelation
between illumination and viewing directions, plays an important role in modeling
the BRDF of a rough surface consisting of large primary grains such as forest tree
crowns [1]. This paper describes a Monte Carlo simulation of these mutual sha-
dowing effects. Some new results of these simulations and the correspoading
modeling efforts arc also presented. For example, simulation results show that
our simple assumption that all illumination shadows will preferentially occupy the
lower surface of crowns is not realistic enough and may cause a considerable
discrepancy between modeled results and simulation. Therefore, we have
modified our model accordingly. This was accomplished by making the probabil-
ity that a point on the surface of the crown is illuminated to be a function of height
from the base of the crown, while still accounting for the fact that at the hotspot
the probability that all lluminated points are viewed is one, With this change,
modeled results show better agreement with the simulations, Forest BRDFs and
BRFs as inferred or observed from real data often show a sharp rise at the edge of
the "bowl," especially at large zenith angles opposite o the sun position. Modeled
results do not always match this behavior. For example, our modeled BRDFs for
dense stands remain high and flat at high view zenith angles because once & cer-
tain view zenith is reached, only sunlit crown is visible. Since the proportions
don't change with further increase of zenith angle, the BRDF remains constant.
The remedy for this is the introduction of a specular lobe in the refiectance func-
tion for a sunlit crown.

INTRODUCTION

The spatial correlation of mutual shading effects in viewing and illumination
directions plays an important role in the bowl-shape of the observed BRDF of
discrete element canopies [1]. In our model, mutual shadowing effect of primary
grains is described first for two extreme cases: 1) all grains are centereded at the
same height ("Uniform Case”); and 2} they are randomly distributed over such a
large range of heights ("Random Case”) that any surface element may get shaded
independently in illumination and view directions. A structural parameter P is
used to describe situations between these two extremes. Two quantities were
found imponiant for describing the mutual shadowing effect in the Uniform Case
UC): PiM; and P, M, , where M, is defined as the mutual shadowing propor-
tion of grain surface in the view direction; P, is defined as the probability of this
this proportion facing illumination. P; and M; are defined in the same way with
two direction interchanged. In addition, P, is defined as the proportion which is
mutually shaded in both directions.

In order o further validate our model and better undersiand the mechanism, we
have done more Moate Carlo simulations for different canopy structures and
illumination conditions. From the simluation results so far, we can conclude that:

1. For UC on PP (Principa! Plane), it is quite accurate 1o model P,=P;M; st
0, >0;; and P,=P, M, at 0, <0;, until the large zenith in the forward direc-
tion is reached where P, M, >P; M; again. This suggests that we can directly
mode! Py M, and P;M;, rather than model all M;, M,,, P;, P,, hence some
difficulties we had before can be avoided.

2. The M; boundary defined in our model should be "fuzzier”.

3. For UC on places off-PP, a cosine function of azimuth can fit A, (proportion of
both illuminated and viewed surface) better than linear function previously used
in our model.

4. The "Random Case™ (RC) hardly exists for spheroid shaped primary grains,
because the top layer plays more significant role in determining the bowl-shape. A
wide range of realistic structures can be approximated as UC with good accuracy.
A “probability weighted overlap area” is used 1o derive a new index B which is
mathematically more robust than the one we used before,

5. Simulations show that for a given (large) coverage, the variance of A (¢) for a
given viewing zenith angle may be a good indicator of the height variation of
crown centers, as well as crown size. The larger viewing zenith angle, the better
this indicator will be, since the less common parts of crowns can be viewed at all
azimuth. A possible advantage of this approach may be its relative independence
to background variation,
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Our work presented here is a further step in persuing geometric-optical modeling
of BRDF over a vegetation canopy consisting of crowns [1). Since we treat
cTOwns as opaque primary grains and such grains are allowed to overlap freely,
our model can be used to calculate the BRDF of any rough surface which can be
modeled with similar free overlapping opaue primary grains, A possible advan-
tage of our model is that the spatial correlation of the surface of such primary
grains is taken into account. In other geometric-optical models of rough surface,
such as the Beckman-Spizzichino model or the Torrance-Sparrow model (cited in
{2]), where the surface is described as independent small facets, and the mutual
shadowing is only described by a density distribution or normal-vector distribu-
tion along height, the spatial correlation among these facets are ignored.

ALGORITHM

Our Monte Carlo simulation program first generates 3-D random locations of the
centers of spheroids according to the given parameters: mean crown radius R,
mean height & of crown centers, ratio b of vertical axis over horizontal axis of
the spheroid, and the distribution range of crown center in height. We assume it is
uniformly distributed from A 1 0 k7. We keep the ratios R /h and b constant for
all crowns, thus the higher a crown center is, the larger the crown. Then, the pro-
gram performs & linear transform in the vertical direction so that all the spheroids
will look like spheres, the given zenith is also transformed to 6 at the same time.
This is only for the convenience of calculation, as we explained in [1). Later
works art all done in this transformed 3-D space.

Then the program calculates and stores the area, location, and orientation of flat
surface elements conforming to the surfaces of each spheroid using a given step
size in a spheroid coordinate system originateding at the center of the crown. This
accomplished, the program calculates the surface normal of each alement, and if
the dot-product <5 ,{ >of its normal and illumination direction is negative, the
element is classified as an element “facing away from the sun.” Otherwise, the
program calculates whether it is in the illumination shadow of any other crown.
This is achieved by first calculating whether a surface element is inside (inter-
sected by) other crowns, and if not, a ray-tracing algorithm is used to see whether
it is obstructed by other crowns along the given direction (in this case, the illumi-
nation direction). Then the whole crown surface is classified into four categories:
facing away, free of mutual shading, intersected, and mutual shaded.

Border effects are handled by projecting the shadows of the far edge 10 the near
edge. This is equivalent to repeating the crown center distribution pattern in all
neighbouring pixels in our program.

Keeping the classification of all surface elements of this crown recorded, the
above procedure is repeated for a given viewing direction. Each surface element
is nagain classified into four viewing categories, resulting in 16 combined
categories. The total surface area, as projected to viewing direction, is accumu-
lated for each category.

Finally, the above procedure is repeated for every crown, and we get the totoal
arcas of all 16 categories of crown surface in the pixel at a given illumination and
viewing direction. The program then prints out the total crown surface arca, as
projected to the sensor; and the proportion of area in each category in this total.

In order to better understand cases other than PP and principal cone as in [1], the
program has been changed to give the simulation results along an arbitrary
azimuth, changing viewing zenith from 90 ° - AB, to nadir, at siep A,,. For the .
case of 30 crowns in a pixel, a Spark station needs about an hour to get the result
for a given azimuth at A8, = 2 ° and crown surface spliting to 90x90 elements.
When the number of crowns is 120, the algorithm will take about 8 hours on a
Sparc workstation for a given viewing azmuth. In order to do more simulations,
we have further rewritten the program into C*, so that the simulation can be run
on a supercomputer Connection Machine (CM) which has 64k parallel processors.
By simply spreading the surface elements of a crown into parallel processors, the
computing time is reduced from 8 hours on a Sparc to a few minutes on CM.,

Thus far, several different parameter sets have been used for simulations. Time
and space prevent us from presenting all the results here. We will give only one
example for each of our conclusions listed previously.



The “default” parameter set is the same one used in [1]. That is, a density of 30
crowns of 3-m radius per 900 m? area, a crown shape ratio b/R =1.5,
b/h =0.18, and a consiant canopy height s =25m. Vertical coverage for this
example is 1 —e &’=(0,61. The illumination zenith angle is taken as

8, =30°.

Figure 1 shows P, M, Ps My and P, varying with zenith on PP, We can find
that modeling P,=P; M; at two ends and P,=P, M, in middle on PP curve is
' quite accurate, so we almost can’t find the third curve. ‘

Hence we may think P, M, +P;M;~P, is the curve on the top. Though the
P,M,+P;M;~P, calculaied from model in [1] catches the basic pattern of this
top curve, the agreement needs 1o be improved. By analysis of simulation results,
we can easily identify the disagreement as being that our assumption for the "M
boundary* is too strict, and real boundary is much fuzzier.
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Fig. 2 shows A () can be better fitied by a cosine function rather than a linear.
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Fig. 3 shows A, ($) when the height distribution range is 25m$20%. In com-
parison with Fig. 2, note that the bowl shape decreases with height variation (c.g..
the curve for 0, = 88 °). It is clear that at the small zenith, more crowns contri-
bute 10 A () then the curves are more regular, while at larger zenith, only few
top layer crowns will contribute then greater randomness.
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These simulations confirm the difficulty in clearly defining a top layer indepen-
dent 1o illumination and viewing geometry when the crown centers are randomly
distributed in height. On the other hand, this may also offer us a new approach to
reveal the 3-D structure of forest. Of course it will be very difficult: the greatest
correlation between the height variation and variance of A (§) occurs at large
zenith, where SNR is the lowest

In many natural forests, there may be physically clear-defined layers. Such case
can be handled relatively easily by G-O model, by recursively treating the BRDF
of lower layer as background of upper layer. Simulations also suggest that the
definition of the top layer has to consider both coverage and variation in height.
The higher the coverage, the thicker of crowns can be treated as a single layer.
The lower the coverage, the thinner the top layer will be.,

In order to evaluate possible specular reflectance components, we further
modified the simulation program so that the norm of each surface elemnet of A,
can be in some way recorded. At present, we weight each surface element by the
cosine of the angle between the norm of surface element and the ideal norm direc-
tion which may yield specular reflectance, and accumulate all such elements, cal-
ling the ratio of the weighted sum over A, the "specular index”, (Fig. 4). This
may not be the best way 1o evaluate the specular effect, but before we have more
knowledge about such components of real crown, such an index may still give us
8 hint. Simulation resulis shows that it may explain why at large zenith angles the
bow! edge rises much higher than a lambertian reflectance of crown surface could,
especially at the azimuth opposite to the sun.
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MODELING A,

As revealed by the Monte Carlo simulation, even in UC, the illumination shadows
do not all fall below M, boundary. This makes accurate modeling more difficult.
Modeled mutual shadowing is systematically less than that simulated in a wide,
imponant range, which is basically govemned by M; P; in UC.

In order to improve the accuracy, we need to make the M; boundary fuzzy. In
{1}, M; indicates the mean probability of the hemisphere facing the sun to be
mutually shaded by other crowns. A strict M; boundary means that all points
under the M; boundary have a probability equal 1o one 1o get mutual shadowing,
while all points above the boundary have a probability of zero. In order to model a
fuzzy boundary, we need to consider the probability of a point on the illuminated
hemisphere more realistically. We have obtained the probability that a point Z on
the illuminated half of spheroidal surface in UC will be free from mutual shadow-

ng:
p! = e_u-1 ] (l)

where T Y is the shaded area on a horizontal plane passing 2, cast by the part of
spheroid above the point; A is the counts density of spheroids. Knowing p,’, we

can obtain;
PiM; =1-[p, (1i.5<isl+1Tfi:>5S ’ @

where ds is spheroidal surface element facing both illumination and viewing
direction v ; 8 is the surface narmal of ds .

The numerical integration according to the above formulas agrees with the simu-
lation results fairly well, see Fig. 5. This better agreement proves that the strict
M; boundary is the major limitation of the formulas used in [1):

P;M; = (1—cos(81,~(8;~9, cos$)))/2 ; (©))
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P, M, = M,~(1-cos(8,cosd—8))2 , L@

where By, s an angle indicating the size of 8 strict M slice. However, since
¢qs. (3) and (4) have already caught the basic characters of the simulation, and
numerical integration is not as easy and understandable as simple approximation,
we prefer 10 use (3) and (4) as basic frame of our modeling. The basic ides is lo
define & fuzxy factor to extend the M| boundary, such an extention should reflect
some basic characiers of simulations and eqs. (1), (2), which suggests the weaker
the mutual shadowing, the fuzzier the M; boundary, and vice versa. Secondly,
such an approximation should guarantee the right result at the hotspot. The fol-
lowing simple modification is finally adopted after the comparison of a féw possi-
ble choices:

PiM; = (1~cos(8y, (1-(8;-8,cosd)/n)))/2 . )

This implies that the slice between M; and viewing boundaries contains only
81,/T% of shadow, remaining shadow may be cast above M boundary. This
formulation guarantecs that 1) at the hotspot, PiM; = M;: 2) the larger M;, the
less fuzzy the boundary would be; 3) =M; gocs to zero only when 8,~8;cosd
gets . Using eqs (4) and (5), the result is shown in Fig. 6.
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PRACTICAL HEIGHT DISTRIBUTION CASES

In [1], we have modeled realistic cases as linear combination of extremes UC and
RC. The interpolation weight P used there is somewhat intuitive and arbitrary,
Though it agrees with simulation results reasonably well so far, it depends on the
height distribution range only, and has totally ignored the effect of coverage. This
may cause some theoretic inconsistency or significant emor in some special cases.
Thus we need to get a more mathematically sound solution.

“In order to achieve this, we first need to obtain & I'(A ,z) simifar to th Tyabove
but one which also includes the viewing shadow and overlap function at height z
of a spheroid centered at height h. Since plane z is allowed (0 intersect the
spheroid, the expression will be very tedious,

Fortunately, as we have observed from the simulation results, P, is very close to
M, Py from hotspot to nadir and very close to PiM; outward from hotspot. This
implies that we can determine I'(h,2) by ©; only from hotsopt to nadir; by 0,
only outward from hotspot. On the other half on the PP opposite 1o sun, the over-
tap arca of I'(h ,z) will be a circle.

With this approximation, similarly to eq. (1) and (4) in {1] we can obtain a sha-
dow function I'(h 3) =Ty (h 2 4T, (A ,2)-0 (h,2).

Glven the height distribution of centers, the variation of average overlap function
O(z) at z may be conceptually important for us to better understand the differ-
ence between UC and practical cases. In the UC, at near the tops of crowns:

Lith2)=Ty(h2)=0(h.1),

the situation is just like it always is at hotspot, where the same equality holds,
When 2 gets Jower, O (h,z) in I'(h,2) will get smaller. However the probabil-
ity of a crown surface being illuminated also gets smaller and hence this smaller
O (h,z) will play less significant role in the BRDF. Thus the bowl-shape can be
undersiood in the same way as the hotspot when only tops of crowns which satisfly
I; =T, = O dominate. By the same token, we may introduce the "Probability
Weighted Overlap Function® at nadir viewing for describing practical cases. We
define;

_ L::o (h)e"MBINA) 4 (h)

, ©)
0(0,0) L:" MO g k)

where [ (k) is defined similarly as O (h), i.e, the average shadowing arcas at
level A, of all the crowns which may cast shadows on that level, A(A) is the
accumulation distribution of crown counts. If we further assume d A(h )Y/dh is
constant within range / | 10 & 2 and zero outside, we may use a simple approxima-
tion: O (h)=0(0,0) e~h7M¥D where the correlation depth of a single
crown at nadir viewing is: D = Rcor (6;/2) . Then eq.(6) can be analytically
solved:

B - krl 1_¢-M'4- (Ar-hyD
= A+ kD e m

This equation is simple but it reasonably reflects almost all factors which deter-
mine the canopy structure and illumination geometry, though the values derived
from it are not significantly different from those from {1) for all our simulations
and for seven forest sites where our BRDF mode! validation is in process.
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