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Abstract — We have developed a physics-based land-surface temperature (LST) algorithm for

simultaneously retrieving surface band-averaged emissivities and temperatures from dayhight

pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in 7 thermal infrared

bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression

method and the least-squares fit method. This new LST algorithm was tested with simulated

MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of

terrestrial materials in wide ranges of atmospheric and surface temperature conditions.

Comprehensive sensitivity and error analysis has been made to evaluate the performance of the

new LST algorithm and its dependence on variations in surface emissivity and temperature, on

atmospheric conditions, and on the noise-equivalent temperature difference (NEAT) and

calibration accuracy specifications of the MODIS instrument. In cases with a systematic

calibration error of 0.5!%, the standard deviations of errors in retrieved surface daytime and

nighttime temperatures fall between 0.4-0.5 ‘K over a wide range of surface temperatures for

mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in

bands 31 and 32 are 0.009, and the maximum error in retrieved LST values falls between 2-3 “K.

L lNTRODIJcTION

Land-surface temperature (LST) is one of the key parameters in the physics of land-surface

processes on regional and global scales, combining the results of all surface-atmosphere interactions

and energy fluxes between the atmosphere and the ground [1, 2]. Therefore it is required for a wide

variety of climatic, hydrological, ecological and biogeochemical studies [3, 4]. In order to understand



the entire Earth system better on the global scale, the Earth Observing System (EOS) will provide

surface kinetic temperatures at specified accuracies of 0.3 ‘K for oceans and 10 K over land. The

international Tropical Ocean Global Atmosphere (TOGA) program has specified that sea surface

temperature (SST) should be accurate to 0.3 ‘K for global numerical models of climate.

During the past decade, significant progress has been made in estimation of land-surface emissivity

and temperature from airborne thermal infrared data. Kahle et al. [5] developed a technique to estimate

the surface temperature based on an assumed constant emissivity in one channel and previously

determined atmospheric parameters; this temperature was then used to estimate the emissivity in other

channels [6]. Other techniques, such as thermal log residuals and alpha residuals, have been recently

developed to extract emissivity information from multispectral thermal infrared data [7].

A variety of split-window methods have been developed to retrieve sea-surface temperature and

land-surface temperature from NOAA AVHRR data. The split-window LST method corrects the

atmospheric effects based on the differential absorption in adjacent infrared bands [8, 9, 10, 11, 12, 13,

14, 15, 16, 17]. A major problem in using split-window LST methods is that we need to know the

surface emissivities in the bands to better than 0.01. It seems possible to have such knowledge of the

emissivities for certain types of land covers, such as lake surfaces, snow/ice covers, dense evergreen

canopies, and some soils. For land covers with variable emissivities, especially in semi arid and arid

areas, it is almost impossible to estimate two band-averaged emissivities to such accuracy, so it is

necessary to develop new algorithms to retrieve LST without prior knowledge of surface emissivities.

In addition, surface emissivity is also needed to calculate up-welling thermal infrared radiation, and for

environmental monitoring and geological mapping [5].

Li and Becker [18] proposed a method to estimate both land-surface emissivity and LST using pairs

of day/night co-registered AVHRR images. They used a temperature-independent spectral index (TISI)

in thermal infrared bands and assumed knowledge of surface TIR BRDF (thermal infrared Bidirectional

Reflectance Distribution Function) and atmospheric profiles. Such combined a priori knowledge and

information are not readily available in most situations.



MODIS is an EOS instrument that will serve as the keystone [19] for global studies of atmosphere

[20], land [4], and ocean processes. It scans f55° from nadir in 36 bands, with bands 1-19 and band 26

in the visible and near infrared range, and the remaining bands in the thermal infrared from 3 to 15 pm.

The specifications of MODIS bands are shown in Table I. We used the updated atmospheric radiative

transfer model, MODTRAN3 code [21], to calculate spectral atmospheric transmission in a typical

mid-latitude summer clear-sky condition, where column water vapor is 2.9cm and visibility at surface is

23km. Viewing angle is selected at 45°. Figure 1 shows the total transmission and transmission

functions corresponding to water vapor (H20) band absorption and continuum absorption, uniformly

mixed gases (C02+) and ozone absorption. The transmission functions corresponding to molecular

scattering, aerosol scattering and absorption are also shown in this figure. By checking the atmospheric

transmission functions, we can have some general ideas for applications of the MODIS bands. Those

bands in transparent atmospheric windows are designed for remote sensing of surface properties. Other

bands are mainly for atmospheric studies. The exact location and bandwidth of MODIS bands are

selected to meet the requirements from atmospheric, ocean and land sciences. MODIS will provide

images of daylight reflection and day/night emission of the Earth every 1-2 days. It uses 12 bits for

quantization in all bands. The thermal infrared bands have an IFOV (instantaneous field-of-view) of

about 1km at nadir. MODIS will view cold space and a full-aperture blackbody before and after

viewing the Earth scene in order to achieve calibration accuracy of better than 1Yoabsolute for thermal

infrared bands. MODIS is particularly useful because of its global coverage, radiometric resolution and

dynamic ranges, and accurate calibration in multiple thermal infrared bands designed for retrievals of

SST, LST and atmospheric properties. Specifically, bands 3-7, 13, and 16-19 will be used to classify

land-cover to infer emissivities, band 26 will detect cirrus clouds, and thermal infrared bands 20,22,23,

29, 31-33 will correct for atmospheric effects and retrieve surface emissivity and temperature. The

atmospheric sounding channels of MODIS will be used to retrieve atmospheric temperature and water

vapor profiles [22]. Multiple bands in the mid-infrared range will provide, for the first time, corrections

for solar radiation in daytime LST estimations using mid-infrared data. Because of its multiple bands in

the mid-infrared range and in the 8-14pm window, MODIS provides an unprecedented opportunity to

develop a physics-based algorithm to simultaneously retrieve surface emissivity and temperature. In

Section II, we present the theoretical basis of the new LST algorithm. Section III describes numerical
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methods used in the algorithm. Section IV gives simulation results of the new LST algorithm and

results from sensitivity and error analysis. Finally, conclusions are given in Section V.

Il. THEORETICAL-BASISOFTHENEWLST ALGORITHM

For land covers with variable and unknown emissivities, obviously there is insufficient information

(mathematically under-determined) to retrieve surface temperature and band-averaged emissivities

from a one-time measurement of N thermal infrared channels even when atmospheric temperature and

humidity profiles are known exactly (we know that it is impossible), because there are N + 1 unknowns

(N band emissivities plus surface temperature). Therefore, we will consider using multi-temporal and

multi-channel data.

A. A Physics-Based Day/Night LST Model

In clear-sky conditions, the spectral infrared radiance -1@, V) at the top of the atmosphere is

composed of surface thermal emittance, thermal path radiance La(l, w), path radiance resulting from

scattering of solar radiation L@, p, W, $.), solar beam and downward solar diffuse radiation and

atmospheric thermal radiation reflected by the surface,

where p is cosine of the viewing zenith angle, E(I, p) is the surface spectral emissivity, B(A, 7“) is the

radiance emitted by a blackbody at surface temperature T~, E o(A) is the spectral solar irradiance

incident on the top of the atmosphere (normal to the beam), w is cosine of the solar zenith angle, $0 is

the relative azimuth between the viewing direction and the solar beam direction, ~r(p; p’, @’) is the

BRDF function, Ld(L, – p’, Q’) is the downward solar diffuse radiance, L1(A, – p’, +’) is the atmospheric

downward thermal radiance, their incident direction is represented by – ~’ and $’, and ti( ), i = 1,..,4

are transmission functions for the corresponding terms.



The wavelength, k, in (1) is the wavelength center of a narrow wavelength interval because there is

no way to measure the exact monochromatic signal as a continuous function of wavelength by satellite

sensors. Equation (1) is the generalized form used in the thermal infrared range 8-14 ~m [23] into a

wider wavelength range of 3- 14~m. It requires complete calculations of the atmospheric radiative

transfer to determine the values of all terms on the right-hand side. After the zenith and azimuth

dependent radiance at any levels from the Earth’s surface to the top of the atmosphere (TOA) is

provided by accurate atmospheric radiative transfer simulations, the TOA radiance can be represented

by its components in form (1). Its special form has been used for a long time in many atmospheric

radiation models including LOWTRAN [24], MODTRAN [25], and MOSART models [26]. In the

special form, ts(X,p) = t1(k,p) and t4(A,p) = t1(A,p) are assumed.

In order to retrieve surface emissivity and temperature from(1), we need to use suitable TIR bands.

According to the MODIS band specifications in Table I and the atmospheric transmission in Figure 1,

bands 20, 22, and 23 are in the transparent atmospheric window in the medium wavelength range 3.5-

4.2 Lm, bands 29-32 are in the atmospheric window range 8-13 Lm, while band 33 is just on the edge of

this atmospheric window. Band 30 is strongly affected by ozone absorption, so using this band does not

help to retrieve surface temperature. As shown in Figure 1, major absorbers in bands 20,22, and 23 are

C02, N2, and water vapor. Major absorbers in bands 29, and 31-33 are water vapor and C02. The

transmission corresponding to aerosol scattering and absorption in these bands is about 0.95-0.98. So

using average aerosol distribution in atmospheric radiative transfer is usually good enough unless

volcano eruptions strongly change the aerosol distribution. Since C02 and Oz mixing ratios are almost

constant, their densities are determined by atmospheric pressure and temperature. Water vapor is the

most variable absorber in the Earth’s atmosphere. Therefore, if we know atmospheric water vapor and

temperature profiles, we can calculate all atmospheric terms in the above equation to a quite high

accuracy, which is limited mainly by the accuracy of the coefficients of the water vapor continuum and

band absorption. The MODIS sounding channels can be used to retrieve atmospheric temperature and

water vapor profiles [22, 27]. But retrieving atmospheric profiles needs the knowledge of surface

emissivity in order to separate the surface contribution from the sounding data. Therefore, the quality

of retrieved profiles might not be very good in areas where surface emissivities are highly variable such



as in semi-arid and arid areas. Although the absolute values of the retrieved profiles are not accurate,

the shapes of the atmospheric temperature and water vapor profiles may be reasonably well obtained.

Radiative transfer simulations show that the radiance at the top of the atmosphere, in MODIS TIR

bands 20, 22, 23, 29, 31-33, is almost not affected by changing atmospheric temperature and water

vapor profiles at levels above elevation 9km. If the shapes of temperature and water vapor profiles in

the lower troposphere can be well retrieved from the MODIS sounding data, we can use two variables

to describe the atmospheric variations. One is the amount of shift in the temperature profile up to

elevation 9km. Another is the scale factor for the water vapor profile so that we can determine the

column water vapor with the shape and the scale factor. Then we use the atmospheric temperature at

the surface level, Ta, as the representative variable of the tropospheric temperature profile. Similarly,

we can use the column water vapor (CWV) as the representative for the water vapor profile.

Alternatively, we can consider it as the first order of approximation to describe the atmospheric

condition by using these two variables.

In order to make practical use of multi-temporal and multi-channel data, we need to simplify (1) by

using some realistic assumptions about the surface optical properties. We assume: 1) The surface

emissivity changes with vegetation coverage and surface moisture content, but it does not significantly

change in several days unless rain and/or snow occurs during the short period of time particularly for

bare soils in arid and semi-arid environments, for which the surface of the ground is dry most of time

[14]. 2) There are quite strong spectral variations in surface reflectance for most terrestrial materials in

the medium wavelength range 3.5-4.2~m [28] but their BRDF anisotropic factor in this wavelength

range has very small variations in the order of 21Z0 [29, 30]. So it seems appropriate to assume that a

single BRDF anisotropic factor can be used for the surface-reflected solar beam in MODIS bands 20, 22

and 23 located in this wavelength range. This anisotropic factor is defined by the ratio of the surface-

reflected solar beam at the view direction of the MODIS sensor to the radiance that would have resulted

if the surface reflected isotropically (such a surface is called Lambertian surface),

where r is reflectance of the assumed Lambertian surface. 3) Atmospheric radiative transfer



simulations show that in clear-sky conditions the surface-reflected diffuse solar irradiance term is much

smaller than the surface-reflected solar beam term in the thermal infrared range, and the surface-

reflected atmospheric downward thermal irradiance term is smaller than surface thermal emission. So

the Lambertian approximation of the surface reflection does not introduce a significant error in thermal

infrared region 3-14 ~m. Then we can replace the BRDF function ~r(p, p’, $’) in (1) with rln and link

it to the surface emissivity E by r = 1 – E according to the Kirchhoffs law.

It is important to point out that in (1) we separate the surface-reflected solar beam term from its

irradiance term (the integral of the downward solar diffuse radiance) because changing solar zenith

angle has different effects on these two terms. As solar zenith angle increases, the solar beam at the

surface level decreases, but the downward solar diffuse irradiance may increase in some situations. If

the solar beam is included in the total solar irradiance incident on a surface and surface reflectance

(also called as hemispherical reflectance or albedo in the visible and near-infrared range) is defined as

the ratio of the total solar radiance reflected from the surface to the total solar irradiance, the surface

reflectance will be dominated by the BRDF of the solar beam and therefore the reflectance depends on

solar zenith angle significantly [31 ]. After the solar beam is separated from the total downward solar

irradiance, we can use the BRDF anisotropic factor to calculate the surface-reflected solar beam and

use the surface reflectance to calculate the surface-reflected solar downward irradiance. In this way, the

solar angle and viewing angle dependence in the surface reflectance will be smaller so that we can

assume the surface as a Lambertian surface.

Based on above assumptions, we have developed the following physics-based day/night LST model

from (l). The radiance measured in MODIS band j can be expressed as

1 ‘E(i) [t~(j) (x po Eo(j) + t3(.j) Ei.j) + ~4(j) W.j)] >(3)L(j) = tl (j) E(j) 13j(T.) + L(j) + JW) + ~

where all terms are band-averaged, &(j) is the band emissivity which will be given in (5), similarly for

Bj(T~), La~), L,(j), and EO(j). Ed(j) and Et(j) are the band-averaged solar diffuse irradiance and

atmospheric downward thermal irradiance at surface. And ti(j) , i = 1, ... 4 are the band effective

transmission functions weighted by the band response function and the corresponding radiance and



irradiance terms. Note that we have neglected the in-band spectral variation of the surface emissivity in

reducing (1) into (3), and omitted symbols of view angle and solar angle for most terms in the above

equation. On the right-hand side of this equation, E(j), CL and Bj(T~) depend on surface properties and

conditions, all other terms depend on atmospheric water vapor and temperature profiles, solar angle and

viewing angle. These terms can be given by numerical simulations of atmospheric radiative transfer.

The spectral response functions measured from the Engineering Model of the MODIS instrument have

been used as weights in calculations of band averages of these terms.

If we use 2 measurements (day and night) in N MODIS TIR bands, we have 2 N observations. The

number of unknown variables are N band emissivities, daytime surface temperature T$–~aY, nighttime

surface temperature T~–night, 4 atmospheric variables (Ta and cwv at two times), and the anisotropic

factor U, totalling N + 7. The number of observations must be equal to or larger than the number of

unknowns,

2N2N+7 . (4)

So N 27 . Note that it is necessary to apply independent shapes of atmospheric temperature and water

vapor profiles for daytime and nighttime so that temporal variations and temperature inversion (more

often at night) could be considered in the LST retrieval. For the MODIS LST algorithm, these 7 bands

are MODIS bands 20, 22, 23, 29, 31-33. According to the experience from the Engineering Model of

the MODIS instrument, the NEAT in band 33 may be reduced from 0.25 ‘K to 0.12 ‘K, and it appears

possible to achieve the goal for absolute calibration accuracy, 0.5-0.75%, for these 7 TIR bands. It

seems that we can find unique solutions for the above 14 unknowns using 14 observations. But it is

actually not true because: 1) the atmospheric profile is a continuous function of height and there are

only a finite number of MODIS sounding bands so that the atmospheric temperature and water vapor

profiles can be retrieved only at a finite number of levels, 2) there are always uncertainties in the

retrieved atmospheric profiles and even in their shapes, 3) there are always instrument noises in the

measurement data, 4) there are uncertainties in the atmospheric optical properties including water vapor

absorption coefficients which we used in the development of LST algorithms. Therefore all we can do

is to use a best combination of available bands and use an appropriate method to find the best estimates



of the unknown variables. We also need to use enough a priori knowledge and constraints of the

atmosphere and the surface as “virtual measurements” to make the retrieval problem well posed [32].

The advantage of using daytime data in MODIS bands 20 and 22-23 is that solar radiation can be used

as TIR source in the medium wavelength range so that the day/night LST model is essentially an active

method to get the information of surface reflectance. Combining with the nighttime data in these 3

bands and day/night data in other 4 MODIS bands makes it possible to simultaneously retrieve surface

emissivity and temperature. The advantage of including 4 atmospheric

daytime and nighttime) is that they can in part absorb errors caused by

surface emissivity and temperature can be retrieved at better accuracies.

variables (Ta and cwv in

these uncertainties so that

B. Band-Averaged Emissivities of Lund-Surface Materials

(5)

The band-averaged emissivity is defined as

l;, “

~ Y(A) E(L) dk
kj,l_

&~) =
?Lj“

~ !l?(~)d~
?bj,~

where Y(A) is the spectral response function of band j, )wj,L and ~j, u are its lower and upper boundaries.

By using MODIS spectral response functions, band-averaged emissivities can be calculated from

published spectral reflectance data of 80 pure terrestrial materials [33, 28]. This spectral data base

includes igneous, metamorphic, and sedimentary rocks, varnished rock surfaces, lichen-covered

sandstone, soil samples, green foliage, senescent foliage, ice, and water surfaces with suspended quartz

sediment and oil slicks. The sample names and numbers are listed in Table II. The calculated band

emissivities in MODIS bands 20, 22, 23, 29, 31-33 are shown in Figure 2. The sample number

corresponds to the sample name and the type of material in Table II. As shown in this figure, there are

very strong variations in the band emissivities for rock and sand samples, and for some soil samples and

senescent vegetation foliages. For example, the emissivity of sands in MODIS band 20 could be as low

as 0.55. However, the band emissivities in MODIS bands 31-33 are larger than 0.8 for all samples in

the spectral reflectance database. For water, ice, and green vegetation leaves, there are small emissivity
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contrasts among these 7 bands and their band emissivities vary in small ranges.

C. Atmospheric Radiative 77ansfer Simulations

As well known, the accuracy of atmospheric radiative transfer numerical models depends on

numerical methods to solve the radiative transfer equation and our knowledge of the atmosphere and its

inherent optical properties [34]. There are many methods available to solve the atmospheric radiative

transfer problem because their fundamental theory has proved to be mathematically interesting and

because there are important applications in neutron diffusion theory, astrophysics, and earth sciences.

For example, there are a variety of methods based on two-stream approximations [35, 36], 4-stream

approximations [37], and others such as delta-M method [38], adding/doubling method [39], discrete

ordinate method [40], and Monte Carlo simulation method [41 ]. We developed a radiative transfer

model, which provides accurate matrix solutions of the azimuth-dependent scalar radiative transfer

equation for a vertical inhomogeneous, multi-layer atmosphere using the adding/doubling method for

the development of algorithms to estimate column ozone and LST in clear-sky conditions [42, 10, 17].

Results from this model match those from Stamnes and Conklin’s discrete-ordinates [40] calculations to

4 decimal places. Atmospheric radiative models based on the adding/doubling method have advantages

in easy implementation of surface interfaces, such as the air-water interface and interfaces for specular

reflectance or BRDF reflectance, and in efficiently getting solutions for multiple boundary conditions.

The continuous update of the LOWTRAN code [24, 43] and MODTRAN code [25, 21] developed

by the U.S. Air Force Geophysics Laboratory over the past two decades represents a significant

progress in improving our knowledge of optical properties of the earth’s atmosphere. A two-stream

approximation with multiple scattering parameterization [43, 44] is used in the LOWTRAN model.

The new versions of MODTRAN code have the option to use the discrete ordinate method.

In the TIR range, LOWTRAN7 [43] and MODTRAN [21] give transmission functions of each

molecule at a wavenumber interval of 5cm–1 and 1cm–l, respectively, based on degraded line-by-line

spectra [45], which have been validated against laboratory measurements. Note that these transmission

values are not monochromatic thus causing a violation of the Lambert-Bouguer-Beer law because of

the complexity of molecular band absorption. This is true even for a narrow wavenumber interval of 1
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‘1 One solution to this problem is to expand radiative transmission functions calculated fromcm .

LOWTRAN or MODTRAN by using “exponential-sum fitting” [46]. Following this technique the

monochromatic radiative transfer model [47] is applied separately to each term in the exponential-sum

expansion, and the results are then summed. After convoluting these results with the spectral response

function, we get band-averaged atmospheric terms in (3). Typically, the total number of the cross-

product terms in the exponential-sum fitting formulation is over 1,000 so it is very computationally time

consuming. The advantage in using the exponential-sum fitting formulation is that we can obtain more

accurate results, for example, the resulted 3 effective transmission functions for the viewing path in (1)

may be different by a few to several percents (ts > t1 and td < t1) because of selective, wavelength-

dependent molecular band absorption although these transmission functions are defined for a same

optical path from the target to the top of the atmosphere in the viewing direction of the sensor. The

correlated-k distribution method [48, 49] is an alternative to the exponential-sum-fitting method.

Usually the number of terms used in the correlated k-distribution method is smaller so that it is

computationally efficient and it gives quite accurate results. The multiple scattering algorithm in the

MODTRAN code is being upgraded to include a “correlated-k” absorption characterization.

As shown in Fig. 1, the atmospheric transmission in the 8-13 ~m window, where 3 MODIS bands

are located for the purpose of remote measurements of surface temperature, strongly depends on water

vapor absorption including band absorption and continuum absorption. A review for measurements of

water vapor absorption in the 8-13 pm atmospheric window reveals a considerable variation in its

magnitude over the past 20 years [50]. The accuracy of water vapor continuum absorption in five of the

measurements reviewed is about 10%, adequate experimental measurements are lacking at

temperatures below 280 ‘K. There is no accepted theory for the continuum absorption. Recent

theoretical studies [51, 52] on water vapor continuum absorption have led to significant progress in

understanding the physical mechanisms and the temperature dependence of the continuum absorption.

But it is still premature to theoretically determine the magnitude and the temperature dependence of the

water vapor continuum absorption coefficients. Thus, modelers must rely on empirical formulations

[53, 54] based on laboratory measurements [55]. Atmospheric conditions, especially cold temperatures

and/or high humidities, are difficult if not impossible to reproduce in the laboratory. This is particularly
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true in the vital area of continuum absorption. Studies at relative humidities over 7070 are a persistent

problem. This is the threshold for condensation on hydroscopic dust particles and therefore for fogging

of optical elements. Furthermore, laboratory spectroscopists have reached an impasse in the area of

line wings and the continuum that prevents progress in line-by-line modeling [56]. In the past several

years, the water vapor absorption has been compared and validated with High-Resolution

Interferometer Sounder (HIS) spectral radiance data involving vertical path measurements from an

aircraft, as well as from the ground [57, 58], and long-path atmospheric transmission measurements

[59]. The empirical continuum formulation used in the FASCODE code [45], as well as in LOWTRAN

and MODTRAN codes has been changed several times in the past decade. In the LOWTRAN7 code

[43] and earlier versions of the MODTRAN code [25], the magnitude of the water vapor self continuum

absorption coefficient in the 8.5-13 Lm window is smaller by about 20% compared to that used in the

LOWTRAN6 code [24]. Clough [60] made a new correction to the the water vapor continuum based on

the measurement of the downwelling radiance at Kavieng, New Guinea by Westwater et al. [61] and the

measurements by Revercomb and colleagues at the University of Wisconsin. This new continuum

formulation has been implemented in version 3 of the MODTRAN code in 1994. Because the

uncertainty in the water vapor continuum absorption coefficients may be larger than a few percents, it is

not critical to neglect the small differences between transmission functions t 1, t3 and t4 in (1) before

the accuracy of the water vapor continuum absorption coefficients is significantly improved. So we

make the same approximations ts = t1 and t4 = t1 in (1) as made in the MODTRAN3 code up to its

version 1.3 and in other models. The effect of these approximations should be considered along with

uncertainties due to other sources when actual data are used to retrieve surface emissivity and

temperature. Note that even we assumed that in each narrow spectral interval of 1cm–l or 5 cm-l the

transmission functions for the viewing path are equal in (1), the band effective transmission functions

ts(j)and tQ(j)may still be different from t1(j)in (3). Keeping in mind all the problems raised above

for radiative transfer models, in this study we use version 1.3 of the MODTRAN3 code [21] to calculate

all atmospheric and solar terms in (3). The discrete ordinate option with 8 streams is used in

MODTRAN3 calculations so that the effect of multiple scattering due to background aerosols is

considered in the calculations of the path radiances and the downwelling irradiance.
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The path radiance resulting from scattering of the solar radiation in (3), L,(j), does depend on the

relative azimuth between viewing direction and the solar beam direction. This dependence is

determined by the aerosol loading, its size distribution, type and scattering phase function. These

aerosol information and properties are not readily available in most situations. As shown in Fig. 1, the

total aerosol effect on the transmission function in the thermal infrared range is small in normal clear-

sky conditions. Radiative transfer simulations indicate that the value of L~ is only several hundredths

of the direct solar beam value at the surface level, and that the azimuth dependence in L~ is less than

10%. So it is appropriate to neglect this azimuth dependence and to use the azimuth-averaged value of

L. in the new LST algorithm.

D. Variations of Atmospheric Conditions

It is important that a practical LST algorithm should accommodate atmospheric variations in a

range that is wide enough to cover all possible real situations. For LST retrieval, we only consider

atmospheric variations in clear-sky conditions. In the thermal infrared range, the most important

atmospheric variables are atmospheric water vapor and atmospheric temperature profiles. Atmospheric

absorption and thermal emission occur mainly in the lower troposphere. Radiative transfer simulations

show that the effect of changing atmospheric water vapor and temperature profiles at elevation levels

above 9km is almost negligible. We assume that the MODIS product of the atmospheric temperature

and water vapor profiles retrieved from MODIS sounding channel gives the shapes of the profiles better

than their absolute values because of the difficulties in decoupling the atmosphere-land interaction.

Atmospheric temperature and water vapor at any level will be interpolated from their values retrieved at

fixed levels. Given the shapes of temperature and water vapor profiles, we can use only two variables

to describe variations of the clear-sky atmospheric condition: a shift of the temperature profile below

elevation 9km, and a scaling factor for the water vapor profile. The column water vapor can be

determined by the shape and the scaling factor. In order to build a data base for the atmospheric and

solar terms in (3), we will select two dozens of basic atmospheric profiles considering different shapes

of temperature and water vapor profiles, and the range of air surface temperatures in different regions

and seasons. Some basic atmospheric profiles include temperature inversion layers. Then we add more

variations to each of these basic atmospheric profiles in the following ways: 1) To add 8T to the
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atmospheric temperature profile at all levels between surface and elevation 9km, 6T varies from -10 “K

to +20 “K in steps of 2 “K. The modified atmospheric temperature at the surface level, Ta, will be used

as representative of the entire atmospheric temperature profile. 2) To scale the atmospheric water vapor

profile at all levels between surface and elevation 9km in steps of 109ZOso that the column water vapor

varies from 1070 to 120’% of the basic value.

E. Variations of the Land-Surface Temperature

In the simulation study of the new LST algorithm, we consider LST variations in a wide of range.

The daytime surface temperature varies from atmospheric surface temperature Ta_~y to Ta_~ay +24 ‘K

in steps of 60 K, and the nighttime surface temperature varies from Ta–nighl – 13.5 “K to

Ta-night + 4.5 ‘K in steps of 4.5 “K.

Ill. NUMERICALMETHODSUSEDIN THE NEWLST ALGORITHM

A. Look-Up T&le Method

In order to save computational time on numerical simulations of atmospheric radiative transfer for

calculating the atmospheric and solar terms in (3), look-up tables will be used in the new LST

algorithm. In this way, we only need to make a complete series of radiative transfer simulations once to

build these look-up tables. Because multi-dimension interpolations are involved in our look-up table

method, linear interpolation is most efficient. This requires smaller intervals (or steps) for these look-up

tables. For example, the step for the atmospheric temperature variation is 2 ‘K, the step for atmospheric

column water vapor is 1070 of the average value, the step for solar zenith angle and viewing zenith

angle is 100 for angles smaller than 300 and 50 for larger angles. The upper limits for solar and

viewing zenith angles are 75° and 65°, respectively. Similarly, a look-up table in a step of 0.1 ‘K is

also built for the band-averaged Planck functions in the temperature range 200-400 ‘K. It is required

that errors due to look-up tables and interpolation methods should be smaller than NEAT. If this

resolution scheme is used to build a look-up table for the 3 solar terms in (3) for about 24 basic

atmospheric profiles, the total size of the look-up table is about 20MB. If using less space for look-up

tables is a higher priority of considerations, we can use 3-point interpolation method so that 6 zenith
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angles are enough for viewing and solar angles. However, 3-point interpolation takes much more

computational time than linear interpolation. The size of look-up tables for other 3 atmospheric terms

(transmission, thermal infrared path radiance, and downward thermal infrared irradiance) is much

smaller.

B. Approaches to Solve the Retrieval Problem

We have developed two approaches to solve the LST retrieval problem. The first one is using

statistical regression method, and the second one is using other numerical methods to solve the set of

nonlinear equations (3).

In a linear approximation of equation (3) in the proximities of reference values of surface

temperature and band emissivities, the left-hand side reduces to the band brightness temperature and

the right-hand side reduces to surface temperature and band emissivities. Combining 14 equations

together, the solution for surface temperature and band emissivities should be a linear combination of

the band brightness temperatures, each of which corresponds to one of the 14 observations. Its

mathematical form is

14
Xi= ~ Wi, j yj+Wi, o , (6)

j=l

where x is a vector of the 14 variables including surface temperatures and band emissivities, yj is the

band brightness temperature for observation j, and ~i, j, i = 1, .... 14 and j = 1, .... 14 are coefficients.

And ~i, o is the coefficient for the offset term. We can find these coefficients in two steps. In step 1, we

construct a large sets of simulated observation values in wide ranges of atmospheric and surface

conditions. In step 2, we make a statistical regression analysis using the band brightness temperatures

associated with these simulated band radiance values as independent variables and using the given

surface band emissivities and temperatures, and atmospheric parameters as dependent variables. The

output of this regression analysis will be the coefficients in (6). The process of statistical regression

analysis takes a lot of computational time. But it needs only to be done once. The values of ~i

provided by this approach are the best estimates of these unknown variables in the statistical sense.
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If we have better information on the shapes of the atmospheric temperature and water vapor profiles

for the time which makes it possible to have a clear-sky day/night pairs of MODIS data, we can use

other methods to numerically solve the set of nonlinear equations (3). We tried the Quasi-Newton

method [62] and the Least-Squares Fit (X2 fit) method [63]. As Rodgers [32] pointed out, retrieval

problem in remote sensing is generally nonlinear. The main sources of the nonlinearity in (3) are: 1)

temperature dependence of the atmospheric transmission, 2) the dependence of transmission on

absorber concentration, 3) temperature dependence of the Planck function, 4) wavelength dependence

of the Planck function across a spectral band, 5) wavelength dependence of the Planck function

between spectral bands, and 6) nonlinear constraints.

The initial values of the 14 unknown variables are given in their constrained ranges based on

reasonable guesses or statistical analysis. The Quasi-Newton method is slightly more computationally

efficient. These two methods give similar results in cases not including noise. It is well known [63, 62]

that global convergence to right solutions is not guaranteed for nonlinear problems, especially when

noise is included. The X2 fit method is selected in the new LST algorithm because it is more stable in

our simulation studies. We are only interested in real situations

measured data due to the intrinsic instrument noise and the turbulence

A measure of the goodness of %2fit is defined by [63]

X2= 5 /+[~@ti)12) ~
j=l Oj

where Lj is the scaled band radiance observation value, ~ = 1, 7 for

where there is noise

in the atmosphere.

daytime, j = 8, 14 for

in remote

(7)

nighttime.

L(j) is the scaled band radiance function in (3), which depends on unknowns xi , i = 1, 14. We use the

values of band-averaged Planck functions at a reference temperature, 300 ‘K, to scale the band radiance

in corresponding bands so that the scaled differential radiance may be comparable, The term ~j is the

uncertainty in observation value Lj. In cases without noise, ~j is identically equate to 1. However, for

cases which include noise NEAT, Oj will be
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~j ATneq (~ )~j = Lj
Tb(j)

(8)

based on the following approximation for the band-averaged Planck function

Lj c Cj Tbnj (~ ) (9)

where ATneq (~ ) is the ~AT value in band i and Tb(j ) is the brightness temperaturecorresponding to

band radiance Lj. In the temperature range 240-400 ‘K, regression analysis gives the best fitting values

for nj, they are 12.91, 12.25, 11.98, 6.00,4,70,4.11, and 3.74 for MODIS bands 20, 22, 23, 29, 31-33.

Note that this approximation is used only in calculation of ~j, which determines the weight in (7). The

effect of errors due to this approximation on solutions is negligible.

One of the difficulties in the X2 fit processing is that there may be more than one local minimum for

X2 within a reasonable range of values for variable xi, particularly in cases including noise. Therefore

the final solution may depend on their initial values. We use two different ways to make the

initialization. In the first way, we use a dozen sets of initial values that are spread over preassigned

ranges all from minimums to maximums to get different solutions and select the solution associated

with the minimum X2 value. In noisy situations, this selected solution may not be the best one we

searched for. An alternative way is to use the estimates provided by the statistical regression method as

the initial values. We use the second way in our LST algorithm. Typically, the X2 fit method takes 3-4

iterations to reach the final solution.

IV. SENSITIVITYAND ERRORANALYSIS

Using look-up tables, we can quickly construct 14 band radiance values (7 values for daytime and

other 7 values for nighttime) at the top of the atmosphere for any given conditions of surface band

emissivities and BRDF anisotropic factor, daytime and nighttime surface temperatures, daytime and

nighttime atmospheric surface temperatures and column water vapor values, solar angle and viewing

angle. Then we can use these 14 radiance values as simulated MODIS observations to retrieve the

given surface and atmospheric variables. We can then construct a sensitivity and error analysis,



18

presented in the following sub-sections.

A. Errors Due to Look-up Table and Interpolation Methods

In the first numerical simulation experiment, we do not include any noise in the data construction in

order to test the numerical method to solve the nonlinear problem and to evaluate the errors due to

using look-up tables and interpolation methods. We use the temperature and water vapor shapes in the

“standard” mid-latitude summer atmospheric profiles and set the daytime and nighttime atmospheric

surface temperatures at 298.2 “K and 290.2 “K. The column water vapor is set at 2.6cm for both

daytime and nighttime for simplicity. In real applications, we use independent variables for the column

water vapor in daytime and nighttime. We set anisotropic factor as 1, solar zenith angle at 450, viewing

angle at nadir for daytime and nighttime, 5 different daytime surface temperatures ranging from

298.2 “K to 322.2 ‘K, and 5 different nighttime surface temperatures ranging from 276.7 ‘K to 294.7 ‘K.

There are 25 cases of different daytime and nighttime surface temperatures for each sample of 80

surface materials. The band emissivities of these 80 terrestrial material samples cover the range from

0.55 to almost unity. The standard deviations of errors in retrieved surface temperatures are 0.27 and

0.21 ‘K for daytime and nighttime, the standard deviations of errors in retrieved emissivities are in

0.005-0.008 for bands 1 to 6, and 0.012 for the last band because of the low transmission of MODIS

band 33 in the atmospheric condition. The standard deviations of errors in retrieved BRDF anisotropic

factor, atmospheric temperatures, and column water vapor are 0.08, 0.10-0.15 ‘K, and 0.06cm,

respectively. These numbers indicate that look-up tables are appropriate and the X2 fit method works

well.

B. Sensitivities to the Uncertainties in Atmospheric Pro$le Shapes

In the second simulation experiment, we set the NEAT values for the 7 bands at 0.05, 0.07, 0.07,

0.05, 0.05, 0.05, and 0.12 ‘K, set 0.5% as the systematic calibration error for all bands, and keep all

other parameters as in the first experiment. In our simulation, NEAT is treated as a random noise. We

consider 4 different atmospheric conditions in mid-latitude summer, one of them is the “standard”

condition used in MODTRAN code (‘‘standard” means averaged here). As shown in Fig. 3, three of

them have almost the same air temperature at the surface level, but they have very different shapes in
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the temperature and water vapor profiles. The temperature profile in the last condition, labeled by

‘‘standard-4 K”, is the “standard” temperature profile shifted by – 4 “K. Its water vapor profile is as

same as in the “standard” profile in mid-latitude summer. The temperature discrepancy y between the

standard profile and profile A 109 may be as large as 10 “K at elevations near 2km and between 6- 10km.

The difference in water vapor profiles in atmospheric conditions of “standard”, A109, and Al 15 may

be 20% to 50% or more. We established separate data bases of the atmospheric terms in (3) through

atmospheric radiative transfer simulations for these different atmospheric conditions. The separate data

bases will be used to calculate the daytime and nighttime band radiances in 7 MODIS bands in wide

ranges of surface temperature for 80 surface samples. These calculated band radiances are then used as

simulated observations. The coefficients in (6) were obtained by statistical regression analysis on the

observations simulated for the standard atmospheric condition. We suppose that there is enough

information available for the standard atmospheric condition, but there is no information available on

the shapes of the atmospheric profile for atmospheric conditions Al 09 and Al 15. In the statistical

approach, we apply the same set of regression coefficients to the 4 sets of simulated observations data

for retrieving surface temperatures and emissivities. In the X2 fit approach, these surface temperatures

and band emissivities retrieved by the regression approach are used as initial values for further iterative

processing. The standard deviations of errors in surface temperatures and band emissivities retrieved

by the statistical regression method are given in the first part of Table III, and those retrieved by using

the X2 fit method are given in the second part. Comparing the results from the statistical approach and

X2 fit approach for the standard atmospheric condition indicated that the X2 fit method gives significant

improvements on retrieved surface temperatures and band emissivities. This is because we know the

shapes of the atmospheric temperature and water vapor profiles well enough so that we can select the

right set of the regression coefficient and the right parts from the look-up tables for the atmospheric and

solar terms in (3). But for atmospheric conditions A 109 and Al 15, we do not have the information for

making these right selections. So the results retrieved from the X2 fit approach are worse than those

from the statistical approach. However, for the case with the shifted “standard” temperature profile,

the standard deviations of errors in surface temperatures retrieved by using the X2 approach is reduced

by a factor of 2, and the accuracies of retrieved band emissivities are improved by about 5070 because

the shapes of atmospheric temperature and water vapor profiles in this case are as same as those in the
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standard profiles. From this experiment we gained the following insights: the statistical method is less

accurate but is also less sensitive to uncertainties in the atmospheric profile shapes; and the X2 fit

method may be more accurate but it is more sensitive to uncertainties in the profile shapes. In the

following part of this paper, we assume that the information of the profile shapes is available so that it is

appropriate to pursue the X2 fit approach.

C. Sensitivities to the Three Assumptions of Surface Optical Properties

In the first test, Cl, of the third simulation experiment, we set the NEAT values for the 7 bands at

0.05, 0.07, 0.07, 0.05, 0.05, 0.05, and 0.12 “K, set 0.570 as the systematic calibration error for all bands,

and keep all other parameters as in the first experiment. The errors in surface temperatures retrieved by

the X2 fit method for a total of 2,000 different cases are shown in Fig. 4A. The errors in retrieved band

emissivities in MODIS bands 31 and 32 are shown in Fig. 4B. The standard deviations of errors in

retrieved surface daytime and nighttime temperatures are in range of 0.4-0.5 ‘K, and the standard

deviations of errors in band-averaged emissivities in MODIS bands 31 and 32 are 0.009 over a wide

range of surface temperatures in the mid-latitude summer atmospheric condition. We can see the effect

of the 0.5% systematic calibration error in Fig. 4A. This forces the retrieved temperature to shift to the

positive direction by about 0.2 ‘K. The histograms of errors in retrieved surface temperatures and

emissivities in bands 31 and 32 for a total of 2,000 cases are shown in Fig. 5A and 5B. We also applied

the day/night LST method to “sample” mixed with two samples of the 80 terrestrial materials at

different surface temperatures. Similar results have been obtained as long as band emissivities of the

mixed sample are calculated from the components with their proportions as weights and its effective

surface temperature is calculated from the total thermal radiation in MODIS band 31. The effective

surface temperature of a mixed pixel does depend on band number, but this dependence is very small

(at the instrument noise level) in normal surface conditions. We do not consider forest fires in the LST

processing because the MODIS TIR bands may be easily saturated by subpixel fires at a small size and

there is no sufficient knowledge on the optical properties of fires and smoke for making atmospheric

corrections, In test C 1 of this experiment, the maximum error in the retrieved LST is 3.2 ‘K for only

one case (for the Indian grass sample at temperature 322.2 ‘K). Without considering this extreme case,

the maximum error in retrieved LST will be 2.2 ‘K. Note that we simulated the surface temperature
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variation in a very wide range. For each sample, the surface temperature varies in a range of 24 ‘K in

daytime, and in a range of 18 “K in nighttime. These ranges are too wide for some land covers in real

situations. For example, the temperature of snow cover and ice could not be above a few degrees C

even considering possibly some small proportion of other land covers mixed in the scene, and the

temperature of water surface and green vegetation leaves is not likely to be warmer than the surface air

temperature by 24 ‘K. In favorable conditions (for example, higher solar elevation and surface

temperature being in a normal range are favorable conditions for land covers with low reflectance), the

solar beam can be effectively used as an active TIR source for remote measurements of the surface

reflectance so that the band emissivities in MODIS bands 31 and 32 can be retrieved at an accuracy

better than 0.01. Then these retrieved emissivities can be used in the generalized split-window LST

algorithm [17] to quickly retrieve LST in the same area for a period of one or more weeks depending on

season and weather conditions.

Now we check whether it is possible to relax the three assumptions of surface optical properties

made in section 11.A. The first row in Table IV gives standard deviations of the surface temperature and

emissivities retrieved in test C 1 of this experiment. In tests C2 and C3, we introduce some variations

for the nighttime surface band emissivities to simulate its possible change with surface moisture

content. In test C2, the nighttime band emissivities increase by 0.01 and they are only limited by its

maximum value 1. In test C3, the emissivity increment depends on its value, a lower band emissivity

could increase more. This may be the case for sands, its emissivity in MODIS band 20 is about 0.56, it

could increase to 0.604 at night. The standard deviations of errors in daytime and nighttime surface

temperatures, and band emissivities retrieved by the X2 fit method are increased slightly. Note that the

retrieved emissivities are compared to daytime emissivities only. In tests C4 and C5, we set different

BRDF anisotropic factors for the three bands in the mid-infrared range by differences of 5% and 10%.

There is no significant change in the retrieved surface temperature and emissivities. In tests C6 and C7,

we use non-Lambertian reflectance for the surface-reflected solar diffuse irradiance and atmospheric

downward irradiance terms. They differ from the reflectance of a Lambertian surface by +2070. The

effect of the non-Lambertian reflectance is also not significant. Comparing the standard deviations in

tests C2 through C7 to those in test C 1 shows that the maximum difference in standard deviations of
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errors in retrieved surface temperatures is 0.17 “K and the maximum difference in standard deviations

of errors in retrieved band emissivities is 0.005, they are comparable to or smaller than the effects due

to NEAT and calibration errors of the instrument. Therefore, we do not need to understand the three

assumptions of surface optical properties described in section 11.A as strict constrains to the new LST

algorithm.

D. Sensitivities to NEAT and Calibration Errors

In the fourth simulation experiment, we keep the atmospheric and surface temperature parameters

as in the first experiment, but change NEAT and calibration error values in a series of tests, as shown in

Table V. The first column in the table indicates the test number. Seven NEAT values for 7 bands used

in the new LST algorithm are listed in the second column block, and a systematic calibration error for

all bands in the third column. Standard deviations (5T~) and maximum errors (AT~) of the retrieved

daytime and nighttime surface temperatures are given in columns 4-7. The standard deviations of errors

in retrieved emissivities for MODIS bands 31 and 32 are given in the last two columns. Comparison

between test D1 and test D2 indicates that the effect due to a systematic calibration error of 0.5% is

comparable to the effect of the given NEAT values. Test D3 indicates that doubling the NEAT values

increases the standard deviation of retrieved daytime surface temperature by about 0.2 “K. Comparing

tests D4 and D5 to test D2 indicates that errors in retrieved surface temperatures and band emissivities

become larger as the calibration error increases. In order to achieve the 1 “K requirement for the LST

accuracy and to retrieve band emissivities in MODIS bands 31 and 32 at an accuracy of the 0.01 level,

the calibration error should be smaller than 1%. The new LST algorithm requires small NEAT (large

signal-to-noise ratio) and a high consistent calibration accuracy for the 7 bands used. The split-window

SST and LST algorithms also need these requirements for MODIS bands 31 and 32. However, the new

LST algorithm needs these requirements over a much wider spectral range.

V. CONCLUSION

We developed a physics-based LST algorithm that retrieves surface band emissivities and

temperatures from day/night pairs of MODIS data in 7 TIR bands. Look-up tables and linear
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interpolation scheme are used in order to achieve high efficiency. The look-up tables for atmospheric

transmission, path radiance, downward thermal irradiance, and solar diffuse irradiance are calculated

with the MODTRAN3 code. The set of 14 nonlinear equations in the LST algorithm is solved with the

statistical regression method and the least-squares fit method. The new day/night LST algorithm has

been tested with simulated MODIS data in wide ranges of atmospheric and surface conditions.

Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new

LST algorithm and its dependence on surface optical properties, the ranges of atmospheric conditions

and surface temperatures, and on the noise-equivalent temperature difference and calibration accuracy

specifications of the MODIS instrument. In cases with a systematic calibration error of 0.570, the

standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4-

0.5 ‘K over a wide range of surface temperatures for mid-latitude summer conditions. The standard

deviations of errors in retrieved emissivities in bands 31 and 32 are 0.009, and the maximum error in

retrieved surface temperatures falls between 2-3 ‘K. The new LST algorithm is being validated with

daytime and evening MAS (MODIS Airborne Simulator) data, ground measurements data of the surface

emissivity and temperature. We will focus on validation of the algorithm in our next paper.
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Figure and Table Captions

Fig. 1, Atmospheric transmission functions at view angle 45° in mid-latitude summer condition

(column water vapor 2.9cm, visibility 23 km).

Fig. 2, Band-averaged emissivities of 80 terrestrial material samples in MODIS bands 20, 22, 23, 29,

31-33.

Fig. 3, Atmospheric temperature (A) and water vapor (B) profiles in mid-latitude summer.

Fig. 4, Errors in surface temperatures (A) and in surface emissivities (B) retrieved by the X2 fit method.

Fig. 5, Histograms of errors in surface temperatures (A) and in surface emissivities (B) retrieved by the

X2 fit method.

Table I

Specifications of the EOS MODIS bands.

Table II

List of terrestrial material samples.

Table HI

The standard deviations of errors in surface temperature and emissivities retrieved with two

approaches of the day/night LST algorithm.

Table IV

The standard deviations of errors in surface temperature and emissivities retrieved with the X2 fit

approach of the day/night LST algorithm in the sensitivity study on assumptions of surface optical

properties in conditions of NEAT= 0.05–0. 12 ‘K, systematic calibration error = 0.5Y0, cwv = 2.6 cm,

u = 1.0, Ta–daY= 298.2 “K, and Ta_.i~~l = 290.2 “K.

Table V

The dependence of standard deviations (i5Tr) and maximum errors (AT,) in surface emissivities and

temperatures retrieved with the ~2 fit approach of the day/night LST algorithm on NEAT and calibration

errors.



Wan & Li Fig. 1 30

0.6

0.4

0.2

0

1

7(X)

0.8

0.6

0.4-

0.2-

0-

total

I I
0.4

II

Ii

0.7 1 1.5 2 2.5

I
x Jl,l

x plfl v
till,

x !“11,

3 4 5 6 7 8 9 10 11 12 13 14

l.(pm)

-1

-0.8

-0.6

-0.4

-0.2

-o

-1

-0.8

-0.6

-0.4

-0.2

-o

Fig. 1, Atmospheric transmissions at view angle 45° in mid-latitude summer condition (CWV= 2.9cm, vis. = 23km).



Wan & Li Fig. 2 31

1 10 20 30 40 50 60 70 80

1

&(j)

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

! I 1 I I
I I I 1 1 I 1

%

A ● O+ x ‘4@A
a ‘A + “+~A AA X’e A

. .
A x 9 ‘A xxx ❑ “

;A

“4 AA
●

z’
+fJ

i

x

A

A
●

x band 20
+

A band 22
●

. band 23 ●

A
+ band 29 A
❑ band 31 >

x
@ band 32

@ band 33

I

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

.0.55

0.5

1 10 20 30 40 50 60 70 80

sample no.

Fig. 2, Band-averaged emissivities in MODIS bands 20,22,23,29, 31-33 versus samples in Table II.



Wan & Li Fig. 3 32

320

F?

solid line standard

/Jh)
A ❑ A109

300 – x A115

5 A standard-4K

280 –
‘ “’%::2

~ c%
%$. . .x,

Sl$ . . . . . .
260 _

Q,A “~...,.,
‘N; A .,

I Q
240

,’ Ax”...

1~’”

. .
‘Q

~ :.
., .,‘. . . .‘.

‘Q ““”...
220 -.. . .

. . . .
.,. . . ;””....,,.

-.
200

. . . . . .
.B”x . . . . . . . . . .

o 2 4 6 8 10 12 14 16 18 20

154

wv(h)

(cm3/m3)

10:

5–

o–

\ solid line standard
\
\ B ❑ A109

x A115

..

I
I

\

Q–Q. =.= . . . . .
n X.m . . . . . . . . . . . . ..y. .

I I I 1-
&.

I
n“

I
>

0 2 4 6 8 10 12 14 16 18 20

h - elevation (km)

Fig. 3, Atmospheric temperature profiles (A) and water vapor profiles (B) in mid-latitude summer.



Wan & Li Fig. 4 33

~Ts-da
~K~

2

1

0

-1

-2

0.05

t5E31

0.04

0.03

0.02

0.01

0

-0.01

-0.02

-0.03

-0.04

A solar zenith angle 450 x x daytime

viewing zenith angle 00 0 nighttime

column water vapor 2.6cm

xx
x x o
x x

Q x xxx

ox ~ x x
x x xx

Y

8 x x
x i

o x
x

x

I I I I I I I T
1 10 20 30 40 50 60 70 80

sample no.

B solar zenith angle 450
6E31 x

viewing zenith angle 00 :

columnXwater vapor 2.6cm
x 8E32 o ~
o x

Q

-0.05 I
I I I I I I I I

JTswig~t
- 3~K)

-2

-1

.0

-1

. . 2

-0.05

6 E32

-0.04

-0.03

-0.02

-0.01

-o

--0.01

--0.02

--0.03

--0.04

--0.05

1 10 20 30 40 50 60 70 80

sample no.

Fig. 4, Errors in surface temperatures (A) and emissivities (B) retrieved by the Xz fit method.



Wan & Li Fig. 5 34

200 I

H(8T~)

150–

A ❑
solar zenith angle 450

viewing zenith angle 00
❑ column water vapor 2.6cm

● daytime 6T~
❑ nighttime 5T~

totally 2,000 cases
4°

●

❑ o

●

●

1004 ● n

50;

~ “c

4?’-#!&”%iime●

-5 -4 -3 -2 -1 0 1 2 3 4 5

6T~ (“K)

200 –

150

H(5&)

100

50-

B
solar zenith angle 450

viewing zenith angle 00
column water vapor 2.6cm

● 6&37
6&32

●

●0 totally 02,000 cases

●

❑ o
●

●

●O
●

● OD
❑

☎

❑

❑
●

“& ❑o

●
●

❑0 ❑

●

I I I I I I I I I

-200

-150

-100

-50

-o

-200

-150

100

-50

0

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

6&

Fig. 5, Histogram of errors in surface temperatures (A) and emissivities (B) retrieved by the ~z fit method.



Wan & Li

TABLE I.

Table I

Specifications of the EOS MODIS bands.
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band bandwidth IFOV primary

(rim) use

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

26

620-670

841-876

459-479

545-565

1230-1250

1628-1652

2105-2155

405-420

438-448

483-493

526-536

546-556

662-672

673-683

743-753

862-877

890-920

931-941

915-965

1360-1390

250m

250m

500m

500m

500m

500m

500m

1km

1km

1km

1km

1km

1km

1km

1km

1km

1km

1km

1km

1km

L

A, L

L

L

L

A, L

A, L

o
0
0
0
0
0
0
A

A

A

A

A

cirrus

band bandwidth IFOV NEAT primary

(pm) ( ‘K) use

20

21

22

23

24

25

27

28

29

30

31

32

33

34

35

36

3.660-3.840

3.929-3.989

3.929-3.989

4.020-4.080

4.433-4.498

4.482-4.549

6.535-6.895

7.175-7.475

8.400-8.700

9.580-9.880

10.780-11.280

11.770-12.270

13.185-13.485

13.485-13.785

13.785-14.085

14.085-14.385

1km

1km

1km

1km

1km

1km

1km

1km

1km

1km

1km

1km

1km

1km

1km

1km

0.05

0.07

0.07

0.25

0.25

0.25

0.25

0.05

0.25

0.05

0.05

0.25

0.25

0.25

0.35

0, L

fire, volcano

A, L

A, L

A

A

A

A

L

ozone

A, L

A, L

A, L

A

A

A

Note: A - atmospheric studies; L - land studies; O - ocean studies. Ref: MODIS Level 1B Algorithm

Theoretical Basis Document, 1995, NASA/GSFC, Greenbelt, MD.
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TABLE II. List of terrestrial material samples.

sample sample type of
no. name material

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

basalt.f
basalt.v
ijolite.f
ijolite.v

rhyolite.f
rhyol ite .V

crustose. 10
crustose.65

basalt.h7
dunite.hl
granite.hl
syenite.hl

greywack.ehl
Iimeston.ehl
limeston.eh2
limeston.eh3
sandton.ehl
sandton.eh2
sandton.eh4

shale.h3
shale.h5
shale.h6

siltston.ehl
siltston.eh2
gneiss.hla
gneiss.h3a
gneiss.h4
marble.h2
marble.h3
marble.h4

quartzit.ehl
quartzit.eh4
quartzit.eh6
schist. h3a
schist. h6a
schist.h7
.sIate. hla
slate. h2a
slate.h3

0127

desert vanish coated roc
desert vanish coated roc
desert vanish coated roc
desert vanish coated roc
desert vanish coated roc
desert vanish coated roc

lichens coated rock
lichens coated rock

igneous rock
igneous rock
igneous rock
igneous rock

sedimentary rock
sedimentary rock
sedimentary rock
sedimentary rock
sedimentary rock
sedimentary rock
sedimentary rock
sedimentary rock
sedimentary rock
sedimentary rock
sedimentary rock
sedimentary rock
metamorphic rock
metamorphic rock
metamorphic rock
metamorphic rock
metamorphic rock
metamorphic rock
metamorphic rock
metamorphic rock
metamorphic rock
metamorphic rock
metamorphic rock
metamorphic rock
metamorphic rock
metamorphic rock
metamorphic rock
soil (Spodosols)

sample sample type of
no.

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

name

0135
0145
0211
0219
0226
0475
1530
4717

foliose.1
indiangr. ass

redoak
white. ine
senbeech
senpine

senredoa. khl
senryegr.ass

oakbark. 1
pinebark.1

ypoplarb.ark
coniferous
deciduous

wood
seawater
distwa.ter

disticel .00g
distices.moo
seaice.lO. ogr
seaicesm.oot
qtzwater.23
qtzwater.64
qtzwater.7

foam
oil15465
oi134792
oi139076
oi142667
soilfl.oat
qtzfloat
oi135473
qtz.hem

material

soil (Entisols)
soil (Ultisols)
soil (Molisols)
soil (Alfisols)

soil (Inceptisols)
soil (Vertisols)
soil (Aridisols)
soil (Oxisols)
veg., lichens

veg., green foliage
veg., green foliage
veg., green foliage

veg., senescent foliage
veg., senescent foliage
veg., senescent foliage
veg., senescent foliage

veg., tree bark
veg., tree bark

veg., senescent foliage
veg. decomposing litter
veg. decomposing litter
veg. decomposing litter

water
water

ice
ice
ice
ice

suspended sediments
suspended sediments
suspended sediments

water coatings
water coatings
water coatings
water coatings
water coatings
water coatings
water coatings
water coatings

quartz
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TABLE III. The standard deviations of errors in surface temperature and emissivities retrieved

with two approaches of the day/night LST algorithm.

atmospheric ~ Ts-day ~ Tsnigt-rt 6E20 i5E22 6E23 6E29 i3&37 6E32 6E33

profile ( ‘K) ( ‘K)

standard

Al 09

A115

standard-4K

standard

A109

A115

standard-4K

0.91

0.82

1.18

0.94

0.51

2.13

0.97

0.45

with the statistical regression approach

0.73 0.021 0.025 0.027 0.013

0.75 0.026 0.024 0.027 0.032

0.73 0.021 0.027 0.033 0.015

0.64 0.019 0.022 0.024 0.013

with the X2 fit approach

0.36 0.015 0.014 0.016 0.008

1.91 0.057 0.068 0.076 0.030

0.58 0.028 0.024 0.032 0.023

0.32 0.014 0.013 0.015 0.008

0.012

0.013

0.013

0.013

0.009

0.036

0.017

0.009

0.014

0.018

0.016

0.014

0.009

0.043

0.020

0.009

0.012

0.014

0.013

0.013

0.012

0.014

0.013

0.013
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TABLE IV. The RMS errors in surface temperature and emissivities retrieved with the X2 fit

approach of the day/night LST algorithm in the sensitivity study on assumptions of

surface optical properties in conditions of T~~aY =298.21’K, T~ni~~t =290.2”K,

cwv =2.6cm, u = 1.0, NEAT =0.0~0. 12°K, and systematic calibration error= 0.5Y0.

test test ~T*day ~ Ts-night 6E31 6E32

no. conditions ( ‘K) ( “K) (daytime)

En~)=Ed~)

cl fl=fz=fs 0.51 0.36 0.009 0.009

Lambertian surface

C2 &“~)=&dU)+o.ol 0.75 0.55 0.013 0.013

C3 En(j)=&d~)+ 0.1 (1 –Ed) 0.51 0.41 0.009 0.009

C4 f2=o.95fl, f3=o.9ofl 0.71 0.58 0.012 0.011

C5 fl = 1. lof3, fz= 1.05f3 0.68 0.60 0.011 0.011

C6 non-Lambertian surface ( 80%) 0.61 0.43 0.011 0.010

C7 non-Lambertian surface (120%) 0.58 0.41 0.010 0.010
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TABLE V. The dependence of standard deviations (6T~) and maximum

surface emissivities and temperatures retrieved with the ~z fit

day/night LST algorithm on NEAT and calibration errors.

errors (A T~) in

approach of the

test NEAT calibration ~ T+day ~ Ts.nightA T+day A T+njght &I ~E32

no. ( “K) errors (%) ( ‘K) (“K) ( ‘K) ( ‘K)

D1 0.05,0 .07,0 .07,0 .05,0.05,0 .05,0.12 0.00 0.41 0.31 3.3 2.6 0.007 0.007

D2 0.05,0 .07,0.07,0 .05,0 .05,0 .05,0.12 0.50 0.51 0.36 3.2 2.1 0.009 0.009

D3 0.10,0 .14,0.14,0 .10,0 .10,0 .10,0.25 0.50 0.69 0.49 3.7 2.2 0.011 0.012

D4 0.05,0 .07,0.07,0.05,0.05,0.05,0.1 2 0.75 0.58 0.40 3.3 2.1 0.010 0.011

D5 0.05,0 .07,0 .07,0.05,0 .05,0 .05,0.12 1.00 0.66 0.45 4.4 2.5 0.012 0.012


