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Calculation of the Angular Radiance Distribution 
for a Coupled Atmosphere and Canopy 
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Abstract-The radiative transfer equations for a coupled at- 
mospberr and canopy are solved numerically by an improved 
Gauss-Seidel iteration algorithm. Tbe radiation field is decom- 
posed into three components: unscattered sunlight, single scatter- 
ing, and multiple scattering radiance for which tbe corresponding 
equations and boundary chditions are set up and their ana- 
lytical or iterational solutions are explicitly derived. Tbe classic 
Gauss-Seidel algorithm has been widely applied in atmospheric 
research. This is its first application for calculating the multiple 
scattering radiance of a coupled atmosphere and canopy. This 
algorithm enables us to obtain the internal radiation field as well 
as radiances at boundaries. Any form of bidirectional reflectance 
distribution fhction (BRDF) as a boundary condition can be eas- 
ily incorporated into the iteration procedure. The botspot effect 
of the canopy is accommodated by means of the modification of 
the extinction coefficients of upward single scattering radiation 
and unscattered sunlight using the formulation of Nilson and 
Kuusk. To reduce the computation for the case of large optical 
thickness, an improved iteration formula is derived to speed 
convergence. The upwelling radiances have been evaluated for 
different atmospheric conditions, leaf area index (LAI), leaf angle 
distribution (TAD), leaf size and so on. The formulation presented 
in this paper is also well suited to analyze the relative magnitude 
of multiple scattering radiance and single scattering radiance in 
both the visible and near infrared regions. 

Keywords-Radiative transfer, bidirectional reflectance distri- 
bution function (BRDF), leaf canopy, atmosphere, radiance. 

I. INTRODUCTION 

C ONVBNTIONAL uses of remote sensing have empha- 
size near-nadir reflectance measurements to identify ter- 

restrial objects and determine their characteristics. Unfortu- 
nately, nadir reflectances are inadequate for many purposes 
because surface covers often have the same or nearly the 
same nadir reflectance patterns and because natural terrestrial 
surfaces reflect radiation anisotropically. The limitations of 
nadir reflectances in classification and other analyses have led 
to alternative approaches in the use of multiangle imagery. 

Several sensors with multiple viewing angles, proposed as 
part of the Earth Observation System (EOS), will offer new 
capabilities for remotely observing directional variations in 
surface reflectance. In the pre-EOS era, there is at least one air- 
craft mounted sensor that can acquire off-nadir imagery-the 
Advanced Solid-state Array Spectroradiometer (ASAS) [l]. 
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This has produced a number of directional datasets for research 
applications. 

These developments provide unique opportunities for var- 

ious scientific communities, but the potential utilization of 

directional data to retrieve quantitative estimates of land sur- 
face properties is highly dependent on our understanding of the 

physical processes, which is often inadequate. Development of 

physical models describing such processes is required. 
The radiative transfer theory for a turbid medium has been 

widely employed for many years, but for vegetation canopies, 

the classic theory and its mathematical approaches are inap- 
propriate because of the large size of canopy leaves and the 
important role played by the geometrical structure of the plant 
stand in its radiation regime. Some different modifications 
of the classic radiative transfer theory for canopies have 

been proposed in the past years [2]-[4]. The presence of 

oriented leaves makes the scattering by the plant medium 
much more complicated. Various forms of scattering phase 
functions based on rotationally invariant scattering models, 

such as Henyey-Greenstein functions, are not appropriate for 
the leaf canopy problem. In this paper, a simple but realistic 
leaf scattering model called the bi-Lambertian scattering model 
is used. Proposed by Ross and Nilson [5], it has been widely 
applied [6], [7]. Marshak [8] extended it to incorporate a 
specular component of reflection and to consider the hotspot 
effect, and Myneni et al. [9] used this model within a three- 
dimensional radiative transfer framework. 

Most canopy reflectance models decouple atmospheric scat- 

tering and assume that the diffuse flux from the atmosphere 
into the canopy is isotropic. But the real distribution of sky 
radiance is not so simple [lo], [ll], and realistic models 
are required for the coupled atmosphere and canopy. In an 
earlier study, Weinman and Guetta [12] used the two-stream 
approximation to describe fluxes for a coupled atmosphere 
and canopy. In their model, empirical coefficients for the 

canopy were employed. Gerstl and Zardecki [13] used the 
discrete-ordinates finite element method to study the radiance 
distribution. However, they assumed isotropic scattering in the 
canopy, which for realistic canopies can give poor approx- 
imations for the reflected angular flux [6]. In a later study 
[14], they used the Henyey-Greenstein phase function as an 
approximation to the actual scattering phase function of the 
canopy. 

Many numerical approaches to obtain an accurate solution 

to the radiative transfer equation for canopy problems have 
been published, including successive order of scattering ap- 
proximations (SOSA) [lj], discrete ordinates [13], [16], [17], 
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Fig. 1. Schematic illustration of radiation field on the coupled atmosphere- 
canopy medium and its decomposition. 

the doubling or adding method [18], the integral-equation 
method [7], and the recent simplified X and Y function method 
[19]. This paper will explore the Gauss-Seidel algorithm 
in application to the coupled atmosphere-canopy radiative 

transfer problem. This algorithm has been widely used in 
atmospheric radiative transfer work [20]-[22], but no ap- 

plication has“ been reported to solve the canopy radiative 
transfer equation, specifically for a coupled atmosphere and 
canopy. The technique employing a Gauss-Seidel iteration is 
attractive, as it does not require any more time or complexity 
to handle vertical inhomogeneities, absorption, emission, scat- 

tering, and any form of soil directional reflectance function. 
A corresponding algprithm suitable for supercomputer parallel 
implementation can be easily developed. The major limitation 
of the Gauss-Seidel algorithm for canopy problems is that it 
becomes too tedious for deep plant canopies. In this paper, an 
improved version is developed to speed up the convergence 

for the coupled system. 
Often the solution to the radiative transfer equation is pre- 

sented in terms of directional reflectance functions. However, 
our primary survey has found some confusion in the literature 
regarding the use of reflectance concepts for directional func- 
tions. In this paper, the absolute radiance will be used instead 
of a reflectance function. Also, the emphasis will be put on 
the angular characteristics of the radiation field of the coupled 
medium instead of wavelength dependence. 

II. DECOMPOSITION OF RADLM-ION FIELD 

Although we focus on the radiation field of the atmosphere 
and canopy as a single coupled medium, the radiative transfer 

models of atmosphere and canopy will be separately described 
because of their different attenuating properties. The coupled 
medium is illustrated in Fig.1, in which optical depth 7 
replaces geometric altitude E. The top of atmosphere is set 
to T = 0, the bottom is set to T,, and the total optical depth is 
rt. Therefore the optical depth of the canopy is rt - TV, which 
may be interpreted as the leaf area index (LAI). (Table I 
defines the mathematical notation used in this text.) Both 
atmosphere and canopy are assumed horizontally infinite and 
homogeneous. Thus one-dimensional radiative transfer equa- 
tions considering only vertical variations are dealt with in this 
paper. The general radiative transfer equation and definitions 
of related variables are given in an appendix. 

In order to characterize the hotspot phenomenon effectively 
and obtain stable solutions of multiple scattering, the radiation 
field is decomposed into three parts; unscattered radiance 

TABLE I 
NOTATION 

Symbol Explanation 

Dirac delta function 
extraterrestrial solar irradance 
Fresnel reflectance function 
BRDF of soil 
distribution function of the leaf normal orientation 

area scattering transfer function of canopy 
height of canopy in meters. 
extraterrestrial solar net flux incident on the top of 

atmosphere 
unscattered solar radiance 

single scattering radiance 

multiple scattering radiance 

source function of radiative transfer 
leaf dimension parameter 
wavelength 
leaf angle distribution 
leaf area index 
cosine of solar zenith angle 
leaf wax refractive index 
total number of layers of the coupled medium split for 

multiple scattering calculation, each of thickness AT. 
solid angle consisting of cosine of zenith angle p and 

azimuth angle C$ 
phase function of atmosphere 
solar azimuth angle 
leaf reflectance 
bidirectional reflectance factor of soil surface 
reflectance of Lambertian surface 
optical depth of medium 
atmospheric optical depth 
aerosol optical depth 
molecular optical depth 
total optical depth of the coupled atmosphere-canopy 

medium 
leaf transmittance 
leaf area density 
single scattering albedo 

(Only the main symbols used in the paper are listed. Transient notation 
and symbols generated by subscriptions and superscriptions are omitted 
here.) 

F(T, fi), single scattering radiance I’ (T, Q), and multiple 
scattering radiance I”(r, Q) 

I(T, i-2) = 10(r, f-2) + P(r, n> + P(T, q. (1) 

A simple scheme is represented in Fig. 1. I”(r, R) is denoted 
by 1, which is neither scattered by the atmosphere nor canopy, 
but is reflected directly by the soil surface. I1(r, 0) is radiance 
either scattered once by the atmosphere, denoted by 2, or once 
by the canopy, denoted by 3. I”(r, 0) is the most complicated 
component, which includes all of other components in the 
radiation field of the coupled medium. TWO of them are 
illustrated by 4 and 5 in the figure. 

Unscattered sunlight radiances I’(r, 0) are characterized 
by the following radiative transfer equation and corresponding 
boundary conditions. When r < I-=, 

1 

-p +qyQ + P(T, i-l) = 0 
IO(0, cl) = &cl - cl&J P<O (2) 
IO(T,y, R ) = 1°(T,t”P,f2) IL > 0 
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where ~2~ and ri”* are the optical depths at the bottom of 

the atmosphere and the top of the canopy, respectively. Here 

different notations have been used to indicate the physical 
meaning of the boundary condition. The second equation in 
(2) gives the upper boundary condition, which means only 
parallel sunlight illuminates the atmosphere at the top in the 
direction Ra. When r > ra, 

1 

-,u v + h(~, C2)G(fi)1°(~, iI) = 0 
IO(T*“*, i-2) = I0 c (TY, q p < 0 (3) 

I0(% q = f@o, fl>lPol~O(n, 00) p > 0. 

Jointly solving (2) and (3) with these boundary conditions, it 
is easy to obtain 

L . exd-l-r, - Well P > o,r ITa 
(4) 

where &(T, 0) represents the upwelling sunlight radiance 
within the canopy, and the function <(7, fl), due to modifying 

the extinction coefficient of the canopy, has been evaluated by 
Marshak [8] 

E(T, 5-t) = ; /% h(t, R)G(il) dt 
7 

I G(a) 7 - 
C5) 

where to is defined as 

to = exp 
Wo, Qb AWo, fib 

- - 
kH 1 i - exp 1 kH ’ 

For single scattering radiances, unscattered sunlight be- 
comes the scattering source, and the boundary conditions are 
determined based on the fact that no incident single scattering 
radiances are from above the top of atmosphere or below the 
bottom of the canopy. When r < r,, 

-p v + P(T, i-2) = 
2p(fl0 -9 Sl)exp -6 

( > T-1(0, f-2) = 0 (6) PC0 11(7-p*, n) = 11(-p, cl) 
where T > r,, 

p > 0. 

-P 9 + h(~, Q)G(s2)11(~, R) = 

~r(n~in)exp[-(r-r,)~] 
(7) 

P<O 

P>O 

where ib is the incident solar net flux arriving at the top of 

the canopy, 

& = i0 exp(-~a/lclOl). 

The solutions to equations in (6) and (7) as well as boundary 
conditions will be separately discussed. In the downward 
direction (p < 0), the solution can be easily derived. When 

7- L 7h, 

P(7, i-2) = 

where tl is defined as 

1 [ -exp -G(R)= 
IPI 1 

and Al’(r, n) = I1(ra: Q)exp[-G(R)(T - ~~)/lpl], which 
is the single scattering radiance emerging from the atmosphere 
without further scattering in the canopy. 

In the upward direction (CL > 0), the solutions are a little 
more complicated because of the hotspot effect: 

P(T, q = 

I- < r, 

(10) 

where t2 is defined as 

t2=exp[-h] -exp[t-- (k++)Ta] 

and the second integration at r, 5 I- 5 rt in the above 
equation can be explicitly obtained by means of (5) with an 
alternative integrand range, and 

ib 
F(T), i-2) = 7 IyRo -+ Q) w [-WO>(~ - ~a)ll~~ll. 

(11) 

The radiance Ii(r, 9) at ?a 5 T 5 rt needs to be numerically 
evaluated without further assumptions. An explicit approxima- 

tion to 1l(~, a) has been derived and used for inversion [23]. 
In the following, Gauss-Legendre quadrature is employed to 
calculate the integration. 

The source function for multiple scattering consists of 
an internal component which arises from the scattering of 
the multiple scattering component itself and two external 
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components due to scattering of attenuated direct sunlight and 
the single scattering component. The lower boundary condition 

is specified based on the fact that both downward single 
scattering radiation and multiple scattering radiation can be 
reflected by the surface. The radiative transfer equations and 
their boundary conditions are given by 

where 

. I”(q 0’) da’ + 2 j-,, p(5-L’ -+ !2) 

. I’(T, i-2’) dR’ 7 5 Ta 

Q2(7-, f4 = $ S,,, W’ + 9 

* P(7, cl’) dR’ + f J4x rpl + R) 
. I’ (T, fl’)dCl’ 7, < 7 < rt. 

(13) 
Notice that the correction function is not used in the second 
equation in (12), since no hotspot effect is taken into account 
in the multiple scattering calculation. It is obvious that no 
closed solution can be derived from above equations. In the 
following, a Gauss-Seidel iteration procedure for the coupled 
medium is developed to provide numerical solutions. 

III. THE IMPROVED GAUSS-SEIDEL ALGORITHM 

For simplicity of discussion, assume that we are faced with 
such a general equation 

xy7-, 9) 
-p dr 

+ f(fqPqT, !a) = J(T, Q) (14) 

where 

(15) 

and the source function is 

J(T,R) = 

i 

z J4, I@ + a> [WT w + Ilk, W] 

+E J2=+ p(@ -+ ~)I’(T, a’) dS1’ T I 7, 

+ J,, rp’ + n) [P+, n’) + I+-, n’)] 

+$ s,,, r(fi’ + L?)1°(7-, 0’) dfl’ 7-a < 7 I rt. 

(16) 

If the source function J(T, a) is treated independent of mul- 
tiple scattering radiance I”‘(T, 0) the “formal” solution of 
the radiative transfer equation subject to the above boundary 

conditions is 

i 

I”(7, 0) = IMP, 0) =P[-f(W~llA 

+ h Jo’ J(T’, 0) exp[-f(fl)(r - ~‘>/I~11 dr’ P < 0 

I”(7, 0) = I”(n, Wexp[f(W~ - n)/pl 

+ $ J,” J(T’, 0) exp[-f(fl)(r’ - 7)/p] dr’ p > 0. 

(17) 

The source function J(T’, R) is related to the multiple 

scattering radiance I”(T, a) as displayed in (16), and the 

coupled integral equations (17) are not the final solutions. 

As a result, the coupled medium is split into N(Na + NC) 

contiguous layers, each of thickness AT, or AT, where N,and 

NC are the number of layers of atmosphere and canopy, 

respectively. From the spatial interval (ri, 7i+a), Herman and 

Browning [24] assume that the source function J(T,~) may 

be taken to be independent of T’ and equal to its value at the 

midpoint of the interval, letting J(T’, a) = J(r;+r, 0) for all 

T’ in this interval. But it has been proved [25], [26] that for a 

given choice of AT, the accuracy of Herman and Browning’s 

scheme could be improved if a linear variation of J(T’, 0) 

with T’ is assumed inside the integral instead of using a value 

independent of T’. For three arbitrary layers ~-i 5 T’ 5 7i+a, 

the linear relation can be given by: 

i 

J(r’, 0) = J(Ti, R) 

+ J(c+I.~~I~J(LW (+ _ 7i) 
PC0 

J(T’, R) = J(Ti+2: iz) (18) 
+ J(ri+z,R)-J(T,-I,Q 

AT (7’ - Ti+2) /J > 0. 

Now we first derive the iteration formula for the downwelling 

direction (p < 0). From (17), it follows 

I”(C+2, 0) = eXP[-f(s2)~i+2/lcll]IM(o, a> 

+ f-~ eXP1-f(~h+2llclll 

*I 
?-x+2 W, W exPlf(W~‘ll~ll &-’ 0 

= exP[-f(~)~i+2/l111)~“(0, fi) 

+ & eXP[-f(~h+2/1~11 

.I 
7; 

J(T’: 0) exp[f(fl)#/lpI] dr’ 
0 

+ b exP[-f(s2)Ti+2/l~ll 

.I 
T:-2 

J(?‘, Q) ewMWlM1 dT’ 
7, 

= I*‘(Ti. R) exp[-2f(fi)Ar/lpl] 

+ h e~P[-f(W~i+2/1~11 

..I 

71-2 

Jb-‘, 0) exPlf(fW’ll~ll dr’ W) 
7, 

Replacing the source function in the above by the corre- 

sponding term in (18), we finally obtain after some algebraic 
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manipulation 

I~(T;+~, 0) = P(T~, i2) exp(-2Ar’) 

+ J(G+I, W 

fW 

2 _ 1 - exd-2W 
AT’ 1 

J(Ti, fl) 
--7m-- 
. [l - l/Ar’ + (1 + AT’) exp(-2Ar’)] 

P<O (20) 

where AT’ is the effective optical depth of each layer in the 
direction p defined by 

(21) 

The same procedures will yield the formula for the upwelling 
direction ’ 

I”(Ti,s2) = I”(ri+arR)exp(-2AT’) 

+ J(Ti+l, fi) 
f@-u 

2 _ 1 - exp(-2AT’) 
AT’ 1 

J(Ti+z,fi) - 
f(Q) 

. 1 - -& + (1 + A#) exp( -2Ar’) 1 
P>O (22) 

For the first layer at the top and the last layer at the bottom, 
we have 

I”(q, 52) = J(0, a)[1 - exp(-AT’)] 
+ I”(O, i2) exp(-AT’) P<O 

I”(~N-l, i-2) = J( TN,R)[l - exp(-AT’)] 
+ I”(TN, 0) eXp(-AT’) p > 0. 

(23) 

According to Herman and Browning’s assumption about 
the source function within the medium, the iteration formula 
corresponding to (20) and (22) can be written as 

P”(Ti+2, Cl) = I”(Ti, R) exp(-2A7’) 

+ w [l - exp(-2Ar’)] 
’ < ’ 

I”(Ti, R) = I”(7i+2y 0) exp(-2AT’) 
(24) 

+ w (1 - exp(-2A#)] ,Ll > 0. 

The angular variables can be discretized by choosing a 
finite set of M directions using Gauss-Legendre quadrature 
in the unit sphere, and applying the Gauss-Seidel iteration 
technique as follows. Start at the top of the atmosphere and 
work downwards at successive interfaces using (20) or (24) 
until the lower boundary (soil) is reached. Reflection of the 
background given at the bottom (12) provides the upwelling 
radiance, and so work upwards at successive interfaces using 
(22) or (24) until the upper boundary is reached. At this state, 

update the source function based on (16). This downwards and 

upwards cycling is continued until convergence is obtained. 
One comment on this algorithm is about its parallel property. 

From (20) and (22) or (24), it can be shown that for every 
discrete direction (a;,) the iteration formulas are identical and 

independent of each other. If multiple processors are available, 
such as a Connection Machine or other parallel supercomputer, 
each processor can manipulate the iteration for a specific angle 
Rij, and the calculation time will be dramatically reduced. 
This is highly desired because solving such a radiative transfer 
equation is very time consuming. 

Further, after calculating the downward radiance of the 

bottom layer, the upward radiances are calculated based on the 
bottom reflectance function, which can be of any form. Thus, 
a non-Lambertian boundary condition can be used without 
extra computational expense. However, if we use the discrete- 
ordinate approach, the non-Lambertian reflectance function 
usually needs to be expanded in Legendre polynomials [27]. 
If the number of terms of the Legendre polynomials, which is 
equal to the number of streams of the discrete-ordinate method, 
is not large enough, the constructed directional function would 
not represent the actual reflectance well. 

IV. NUMERICAL IMPLEMENTATION AND MODELVALIDATION 

The Gauss-Seidel algorithm, like most other numerical 

techniques, restricts photon travel to discrete directions. The 
lack of rotational invariance precludes the use of Legendre 
polynomial expansions and the addition theorem for the spher- 
ical harmonics expansion of the argument of the Legendre 
polynomials [6]. Thus, the exact kernel method [6], [17], 
[28] is applied in this study, and the scattering function is 
evaluated directly for transfer between all possible directions 

CLI + Rij). The major drawback of this method is that 
much higher storage and computation are required if high 
angular resolution is desired. Some symmetry relations [6], 
[8] are quite useful in overcoming this problem: 

r(i-2’ -+ q = r(n -+ c-2’) 
r(fi’ + 0) = q-n -+ R) 
ryn + 0) = qpL: g, Q - 4’) 

All integrations in the formulae shown in the previous 

section are numerically calculated by using Gauss-Legendre 
quadratures. If we are interested in radiances in specific 
directions instead of double-Gauss discrete directions, (17) 
can be applied to obtain radiance at arbitrary angles by 
integrating the source function. This procedure is sometimes 
referred to as the iteration of the source-function technique, 
but essentially amounts to an interpolation [27]. Another way 
to calculate the radiance at arbitrary directions is to apply (19) 
and (20) after the source function has been calculated based 
on Gauss-Legendre quadratures. 

In our computations, a pointwise convergence criteria [16] 
of 0.002 is used, and the coupled medium is divided so that the 
optical depth of each layer is about 0.08-0.20. Experiments 
show that the iteration could be unstable if the optical depth 
of each layer is greater than 0.2. 
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TABLE II 
VALIDATION OF GAUSS-SEIDEL ALGORITHM USING DISCRETE-ORDINATE ALGomhi 

upwelling radiance 

viewing angles 

/l = case 

0.067 
0.283 
0.574 
0.840 
0.987 

7 = 0.1 T = 1.0 7 = 3.0 

Gauss - Seidel 
Discrete- 
Ordinate 

Gauss - Seidel Discrete-Ordinate Gauss - Seidel Discrete-Ordinate 

0.43419 0.43408 0.59566 0.59400 0.62154 0.62237 
0.25950 0.25955 0.47818 0.47954 0.52799 0.53298 
0.22143 0.22146 0.32526 0.32689 0.39136 0.39783 
0.21233 0.21234 0.24526 0.24652 0.29265 0.29904 
0.20962 0.20963 0.21330 0.21441 0.24804 0.24803 

The program has been tested using many datasets, two 
of which will be illustrated here. One compares with the 
upwelling radiances of a aerosol atmosphere calculated by 
DISORT based on a discrete ordinate algorithm [27]. The 
results using 20 by 20 Gauss-Legendre directions in the 
Gauss-Seidel code and 32 streams in discrete directions in 
DISORT code are compared in Table II, where Fn = 1.0, 
G = 0.65, W = 0.96, 19~ = d&3”, $. = O’, R, = 0.3. 

From the table, we can see that the relative error is about 

O.l%-0.5%. The improved algorithm is not sensitive to the 
optical depth of each layer, but quite sensitive to the number 
of discrete directions. The larger the number of the discrete 
directions, the smaller the relative error. 

Another validation was carried to test the formulation of 
the canopy radiative transfer model. Marshak [8] compared 
this model with a Monte Carlo simulation [29] in the visible 
region using a discrete ordinate numerical method. The same 

formulation and parameters are used but with different nu- 
merical algorithms. The reflectance is the upwelling radiance 
normalized by cosine of the solar zenith angle: 

nqo, fl> 
R(flo,fl) = Ipol (25) 

where the incident flux has been assumed unity. Fig. 2 shows 
that our results are basically equivalent to Marshak’s for the 
specific set of parameters. In this case, the multiple scattering 
radiance is small, but the main purpose of this calculation is to 
validate the formulation and the single scattering calculation, 
especially for the hotspot effect. 

V. NUMERICAL SOLUTION AND DATA ANALYSIS 

For this analysis, two wavelengths were selected: 0.65 pm 
standing for the red band and 0.90 pm standing for the near- 
IR band. The Rayleigh optical depth is calculated based on 
the formula 

7 = 0 OO88Xo.2x-4.‘5(X in pm) P . (26) 

and aerosol optical depths are taken based on different at- 
mosphere visibilities [30]. The canopy parameters are taken 
from the literature [8], [31], and are discussed further in the 
following paragraphs. The extraterrestrial solar incident net 
flux at the top of atmosphere is always assumed to be r (i.e., 
F0 = 1.0). 

Fig. 2. Comparison of the canopy retlectances calculated by the Gauss- 
Seidel algorithm with the discrete ordinate algorithm and the Monte Carlo 
simulation in the visible band. Solar zenith angles are Bo = 30’ and 
Bo = 60°, rI = tl = 0.04, R, = 0.0, n = 1.0, k = 0.08, L-41 = 4.0. 
The leaf orientation is uniform (spherical). Solid lines stand for our results, 
dashed lines for the Monte Carlo method, and dotted lines for the discrete 
ordinate method. 

A. Atmosphere Perturbation 

The upwelling radiances with different aerosol optical depths 
above both atmosphere and canopy in the visible and near- 
IR regions are illustrated in Fig. 3. The optical parameters 
of canopy leaves are taken from data measured by Ranson 
et al. [32]. In the visible region, the atmosphere largely 
masks the hotspot, and the angular distribution of radiance 
above the atmosphere mainly reflects the atmospheric path 
radiance characteristics. The forward scattering peaks are also 
detectable. In the near-IR region, however, the canopy has a 
higher reflectivity and aerosol optical depth becomes much 
smaller. Thus the radiances received by sensors above the 
atmosphere basically depend on the canopy radiation field. 
Large attenuation occurs in the large viewing angles in the 
backscattering direction. 

B. Effects of Canopy Roughness Coefficient k 

Fig. 4 illustrates the influence of the canopy roughness 
coefficient k, which characterizes the leaf dimensions in the ra- 
diation field of the coupled medium. The parameters are shown 
in the figure caption. As stated previously, the parameter k is 
directly proportional to the ratio of leaf diameter to canopy 
height. When the leaf is infinitesimal (k = 0), no shadows 
occur and no hotspot peak is observed. As k becomes larger, 
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red 

Fig. 3. Upwelling radiances above both canopy and atmosphere at different aerosol optical depths. 80 = 40°, k = 0.08, R = 1.2, LAI = 3.0, and 
the leaf orientation is erectophile. In the near-IR region, rl = 0.454, tl = 0.518, R, = 0.23, three curves stand for three aerosol optical thicknesses: 
O.Ol(dashed line), O.l(dotted line), and O.lS(soIid line). For the visible region, q = 0.0878, tl = 0.932, R, = 0.13, four curves stand for four aerosol 
optical thicknesses: O.Ol(dot-dashed line), O.l(dashed line), O.lS(dotted line), and 0.25(solid line). 

upwelling radiance increases, mainly in near-hotspot region 
and the width of the hotspot peak goes up as well. This implies 
that other viewing directions are not sensitive to the variation 
of leaf sizes. Notice that the heights of the hotspot peak remain 
constant, since soil reflectance and other optical parameters do 
not vary. The dependence of reflectance of the canopy on lc at 
visible wavelength is evaluated by Marshak [S]. 

C. Effect of Leaf Area Index (LAI) 

LAI is of great interest for many applications of remote 
sensing. Fig. 5 is an illustration of the upwelling radiance of 
canopy at different LAI levels. In the near-IR region, when 
LAI increases, the upwelling radiances increase correspond- 
ingly, but the angular dependence remains about the same. 
This observation implies that LAI retrieval is not enhanced by 
fine resolution in view angles. This fact also shows that the 
LAI variation may cause large errors if the canopy is treated 
as a semi-infinite medium [2] [33]. Note that the upwelling 
radiance in the visible region above the atmosphere does not 
vary significantly with increasing LAI if LAI is greater than 
3.0. Thus it will be quite difficult to retrieve large LAI values 
using visible bands. 

D. Effect of Leaf Angle Distribution (LAD) 

The effect of leaf orientation on the canopy radiation 
field has been investigated for many years. In the earliest 

approaches, such as the Suits model [34], only projected 
horizontal and vertical components of leaf orientation were 
considered. Further efforts explicitly incorporated the leaf 
orientation angle in models [35]-[37]. LAD is parameterized 
by the leaf inclination function gl(pl). Different theoretical and 
experimental models for this function have been published, 
such as elliptical [38] or beta distributions [39]. Here the 
triangular formulae of Bunnik [40], based on the data of 

de Wit [41], are used: gl(&) = a + bcos 281 + ccos4&, 
where parameters b and c characterize different canopies. For 
example, for a planophile canopy (mainly horizontal leaves), 
b = $ and c = 0; for an erectophile canopy (main vertical 

leaves), b = -1 and c = 0; for a plagiophile canopy (mainly 
leaves with 45” inclination angles), b = 0 and c = -5; and 
for a uniform (spherical) canopy (random distribution), b = 0 
and c = 0. 

The results for these four LADS in the near-IR region are 
illustrated in Fig. 6. From the figure, it can be observed that not 
all of viewing angles can distinguish different LADS. There- 
fore, the selection of the optimum viewing angles becomes 
important. For these examples, a comparison of nadir response 
with the response at +75’ (forward scattering) would be most 
effective. 

E. Multiple and Single Scattering 

The significance of the multiple scattering component as 
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over atmosphere 

over canopy 

Fig. 4. Evaluation of the effect of the canopy roughness coefficient k on 
upwelling radiance above both canopy and atmosphere in the near-IR region: 
T,,C = 0.05, w = 0.92, r, = 0.46, tl = 0.46, R, = 0.3. 00 = GOD, 
n = 1.2, LAI = 3.0, and the leaf orientation is erectophile. The four curves 
stand for four k values: O.O(dot-dashed line), O.OS(dashed line), O.OS(dotted 
line), and O.lS(solid line). 

compared to single scattering has been analyzed by Bohren 
for the atmosphere [42]. Otterman and Brakke examined the 
canopy case, but under somewhat restricted conditions [43]. 
Our formulation for solving the radiative transfer equations 
allows straightforward analysis of the relative magnitudes of 
single scattering and multiple scattering components. Fig. 7 
illustrates the ratio of the upwelling multiple scattering radi- 
ance to the total upwelling radiance in the red and near-IR 
regions. The mean value of the ratio of multiple scattering to 
total scattering radiance in the principal plane is 19.6% and 
29.2% above the canopy and atmosphere in the visible region, 
and 52.0% and 53.8% in the near-IR region, respectively. 

VI. DISCUSSION AND CONCLUSION 

The radiative transfer equations for a coupled atmosphere- 
canopy system and its boundary conditions are presented 
in this paper. The radiation field of the coupled medium 
is analyzed in the context of three components: unscattered 
sunlight, single scattering and multiple scattering radiance. 
The first two components have analytical solutions, but the 
multiple scattering radiance has no closed-form solution, and 
an improved Gauss-Seidel algorithm is used to derive the 
iteration formula. 

This study shows that the angular characteristics of up- 

welling canopy radiance in the visible region are heavily 

masked by the atmosphere. However, in the near-IR re- 

gion, the radiance above the atmosphere mainly depends 
on canopy biophysical parameters and the configuration of 
the canopy. Therefore, the near-IR bands are of great sig- 
nificance for potential inversion of radiance obtained from 
the multiangle satellite imagery. The upwelling radiance is 

quite sensitive to the leaf size and leaf angle distribution in 
some viewing regions. Thus, selection of optimum viewing 
angles is important if inference is desired. Variation in leaf 
area index mainly affects the absolute magnitude of the 
upwelling radiance, and the angular characteristics do not 
significantly vary. In the visible region, the upwelling radiance 
does not significantly vary for different LAI’s if LAI is larger 
than 3.0. The numerical comparisons of single scattering and 
multiple scattering components indicate that an oversimplified 
calculation of the multiple scattering component will result in 
a large error in the prediction of directional reflectance of the 
atmosphere and/or canopy system. Finally, we have already 
noted that the Gauss-Seidel algorithm lends itself quite easily 
to computation on a Connection Machine or other parallel 
supercomputer. 

APPENDIX I 

ATMOSPHERE AND CANOPY RADIATIVE TRANSFER EQUATIONS 

A. Atmospheric Radiative Transfer Model 

For a plane-parallel homogeneous atmosphere in the ab- 

sence of polarization, the radiative transfer equation can be 
written as [44] 

CL p(R’ --+ ~)I(T, Q’) a!0 (Al) 

where w is the single scattering albedo, and T is the optical 
depth varying from zero at the top of the atmosphere to r, 
above canopy. The solid angle sL(p, 4) has the azimuthal angle 

4 and a zenith angle 19 = cos-1 (cl). 
The scattering properties of the atmosphere depend on 

Rayleigh and aerosol particles. Thus, the scattering phase 
function can be defined as a weighted average of individual 
scattering phase functions at specific scattering angles: 

with the constraint 4 seZ p(Q) sin XP d9 = 1. Here Q is 
the scattering angle dependent on solar zenith angle 6’0 = 
cos- l ILO, viewing angle 8. and angle difference between solar 
azimuth and viewing azimuth 4 - $0. r,. and r,, are the 
molecular optical depth and aerosol optical depth, respec- 
tively. The One-Term Henyey-Greenstein (OTHG) function 
is used as the aerosol phase function. It does underestimate the 
forward scattering so that the reflected radiance will be under- 
estimated a little bit, but our primary calculations using both 
Mie phase function and Henyey-Greenstein function show 
that the approximation does not obviously affect the angular 
patterns of the radiance distribution. The asymmetry parameter 
0.65 has been assumed in all our calculations. For simplicity, 
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near-IR 

over atmosphere 

Fig. 5. Evaluation of the effect of canopy LAI on upwelling radiance above both canopy and atmosphere. 80 = 30°, k = 0.08, n = 1.2, and the 
leaf orientation is erectophile. In the near-IR region, rot = 0.05, in = 0.92, rl = 0.5, tl = 0.3, R, = 0.3. Four curves stand for four LAI values: 
2.0(dot-dashed line), 3.0(dashed line), 4.0(dotted line), and 6.5(solid line). In the visible region, 7,. = 
Five curves stand for five L4I values: 0.45, 1.0, 2.0, 3.0. 4.5, and 6.5. 

0.1, in = 0.96, rI = 0.04, tl = 0.04, Rs = 0.1. 

it is assumed that only molecules and aerosols are included in 
the atmosphere. Aerosols are treated as absorbing as well as 
scattering particles; all the cases with single scattering albedo 
w = 0.96 for visible region and w = 0.92 for near-IR region 
are examined. 

To obtain a solution of (Al), appropriate boundary condi- 

tions must be specified. On the upper boundary, the atmos- 
phere is illuminated by a parallel beam in the direction (0,) 
with net flux ie = TFO, i.e., 

I(o,n) = qn - Ro)io 

where p < 0. For the coupled medium, the lower boundary 
condition at the bottom of the canopy will be discussed in the 
following section. 

B. Canopy Radiative Transfer Model 

The one-dimensional radiative transfer equation of a flat 
homogeneous canopy is given by [6]: 

1 - 7T J l?(fl’ + fl)I(~, Cl’) dfl’ (A2) 
437 

with the boundary condition 

for p > 0, where fs (a’, a) is the directional reflectance 
distribution function (BRDF) of background (e.g., soil) under 
the canopy, and 27r- stands for the lower hemisphere. For 
an almost Lambertian surface with reflectance R,, the above 
boundary condition can be written as 

1(7&R) = 2 J I(q, sZ’)lp’l do’. (A41 
ZK- 

G(a) is a geometry factor defined later, h(7,0) is an empirical 
correction function for accounting for the variation of extinc- 
tion coefficient [8], [45], which will be discussed in more 
detail later. 

The function G(0) is the mean projection of a unit foliage 
area in the direction R, i.e. 

2r+ 

where 27r+ stands for the upper hemisphere. gl(Q) is the 
probability density of the distribution of the leaf normals with 
respect to the upper hemisphere. It is assumed that the zenith 
and azimuthal angles of the distribution of the leaf normals are 
independent and the distribution in the azimuth is uniform, 
that is gl(CI,) - gl(pr). More explicit formulas have been 
evaluated by Shultis and Myneni [6]. 

In (A2), the area scattering phase function I(R’ -+ n), 
consisting of both diffuse and specular components, is defined 
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over atmosphere 

Fig. 6. Evaluation of the effect of canopy LAD on upwelling radiance in 
the near-IR region. 00 = 60°, k = 0.08, n = 1.2, LAI = 3, roe = 0.05, 
w = 0.92, rl = 0.46, tl = 0.46, R, = 0.3. Solid lines stand for 
uniform canopy, dotted lines for planophile, dashed lines for plagophile, and 
dot-dashed lines for erectophile. 

as: 

r(n’ -+ n) = rD(f-2’ -+ n) + rsp(fY --+ f-2). (-46) 

We will find that I’(@ + a) depends on not only the scatter- 
ing angle between 52’ and R, but also on the absolute value 
of 0 and 0. It is assumed that the diffuse scattering for the 

leaves follows the bi-Lambertian scattering model, giving 

Here Cl+, Q2- indicate that the 01 integration is over that 
portion of the 0-2~ range for which the integrand is either 
positive (+) or negative (-). In this model, a fraction ~1 of the 
intercepted energy is radiated in a cosine distribution about the 
leaf normal (i.e., Lambertian reflectance). Similarly, a fraction 
tl is transmitted in a Lambertian distribution on the opposite 
side of the leaf. It is obvious that Q+, R- is a part of the 
hemisphere for which f&o > 0, (Y’ = Q’ 1 RI, cr = Cl. RI. 

The area phase function of specular component l?,,(P -+ 
Q) can be evaluated as [8] 

rsp(o’ + 0) = $g@;)K(n, R’ x O;)F(n, R’ . f-l;> (A8) 

near-IR 

Fig. 7. Ratios of multiple-scattering to single-scattering radiance in the 
upwelling direction above both canopy (solid line) and atmosphere (dot-dashed 
line) in both visible and near-IR regions. The parameters are the same as 
Fig. 5. 

where Q; = Cl;(CY + 0) defines the direction of the appro- 
priate leaf normal for specular scattering between the incident 
and the reflected rays. It has been shown that [46] 

(A% 

where 

The term f(n, cr’) is the Fresnel reflectance, indicating the 
amount of specularly reflected energy for incident unpolarized 
radiance: 

1 
F(n,cr’) = z 

sin’(j - i) + tan’(j - i) 

sin’(j + i) tan’(j + i) 1 (AlO) 
where j = cos-1 (]a’]), i = sin-’ (v’m/n), n is the 
wax refractive index of canopy leaves. If the leaf is optically 
smooth and flat on a microscale, the Fresnel reflectance law 
is enough to compute the amounts of specularly reflected ra- 
diance, besides considering the number of leaves contributing 
to specular reflectance gr(O;). However, a leaf wax surface 
is rarely optically smooth, and the hair structure on the leaf 
surface reflects light diffusely, producing incompletely specu- 
lar reflectance. Therefore, a smoothing factor K is defined to 
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account for this reduction in the amount of specularly reflected 

light [47]. Nilson and Kuusk [45] give a form of this factor: 

K(rc, CY’) = exp[-26 tan (cY’)/x] 

where (Y’ = cos- 1 (a’ a Q). The argument K 2 0 characterizes 
the dimension of the hair on the leaf surface. )c = 0.3 has 
been used in this paper. 

The area scattering phase function defined above is required 
, to meet the normalization condition [8] 

1 

J 

qn --f a) - dR = 1 
7r 4n G(W) 

where 

The correction function h(~, 52) in (A2) is used to account 
for hotspot phenomena. Such functions have been discussed 
in detail by Jupp and Strahler [48]. Here we use Nilson and 
Kuusk’s formulation [45], for unscattered solar radiation and 
single scattering radiation in the upwelling directions (p > 0). 
It is given by 

h(T, 0) = l- 
J 

Wo) P - - exp[-A(:i’)r] (A13) 
G(R) I4 

otherwise h(~,fl) = 1, where A(Ro,R) = 

4 pi2 + q2 + 2(520 . fl)/I~o~l . The parameter k character- 

izes the dimension of the leaf and is proportional to the ratio 
of the average diameter of round leaf to the canopy height 
H. Notice that in the case of backscattering (i.e., R = -Ro), 

A(Ro, 0) = 0 and h(7, 0) = 0. The absence of extinction 
results in the local maximum of reflectance which is widely 
termed the hotspot peak. 

Notice that the correction function h(~, Q) becomes smaller 
than unity only for unscattered sunlight and single scattering 

components in the upwelling direction. Esposito’s numerical 
calculation [49] shows that including a hotspot effect in higher 
order scattering than single scattering has a negligible effect. 
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