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A full multiple-scattering algorithm for inverting profiles of the upwelling and downwelling irradiances
to yield profiles of the absorption and backscattering coefficients in a vertically stratified water body is
described and tested with simulated data. The algorithm does not require knowledge of the scattering
phase function of the medium. The results are better the closer the phase function assumed in the
retrievals is to the true phase function, although excellent retrievals of the absorption coefficient can still
be obtained with an inaccurate phase function. Simulations show that the algorithm is capable of
determining the vertical structure of a stratified water body and usually provides the absorption coeffi-
cient profile with an error &2% and the backscattering coefficient profile with an error &10%, as long as
the spacing between pseudodata samples is sufficiently small that the necessary derivatives of the
irradiances can be accurately computed. The performance is only slightly degraded when the upwelling
radiance ~nadir viewing! is substituted for the upwelling irradiance. © 1998 Optical Society of America

OCIS codes: 010.0010, 010.4450, 290.0290, 290.1350, 290.4210.
1. Introduction

In an earlier paper we1 reported an iterative algo-
rithm for retrieving the absorption coefficient a and
the backscattering coefficient bb of a homogeneous
water body from the measurement of depth profiles of
the upward and downward irradiances Eu and Ed or
the nadir-viewing radiance Lu, and Ed. The algo-
rithm accounted for all significant orders of multiple
scattering. An attractive feature was that it did not
require precise knowledge of the scattering phase
function of the medium. For the Eu–Ed algorithm,
the error in the retrieved a and bb usually were found
to be &1% and 10–20%, respectively. The perfor-
mance of the Lu–Ed algorithm was not as good, being
more sensitive to the scattering phase function as-
sumed in the inversions. The algorithm was ex-
tended to accommodate the presence of a Lambertian
reflecting bottom, and tests showed that it was still
possible to retrieve a; however, in this case, the re-
trievals of bb could contain large errors.

In this paper we extend the algorithm to a verti-
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cally stratified water body. First we present the de-
tails of the algorithm. Next, using pseudodata, we
present a series of tests in which the algorithm is
applied to a homogeneous medium and a medium in
which the optical properties are continuously strati-
fied. Finally we consider situations in which the
performance of the algorithm can be degraded, e.g.,
the presence of thin layers that cannot be resolved
given the vertical density of the irradiance data.

2. Inversion Algorithm

We begin with a brief review of our Eu–Ed algorithm
for a homogeneous water body and then provide the
extension to a stratified water body.

A. Homogeneous Water Body

At any depth z in the medium, the absorption coeffi-
cient can be obtained from the irradiances by use of
Gershun’s law,2 i.e.,

a~z! 5 m# ~z!Kv~z!, (1)

where m# ~z! is the average cosine of the radiance dis-
tribution, m# ~z! [ @Ed~z! 2 Eu~z!#yE0~z!; E0~z! is the
scalar irradiance; and Kv~z! [ 2dydz$ln@Ed~z! 2
Eu~z!#% is the attenuation coefficient of the vector or
net irradiance. Equation ~1! is exact, and in our
algorithm it is used at each step in the iteration.
Unfortunately there is no exact relationship for bb



similar to Eq. ~1!. In our algorithm, bb is obtained
from the irradiance reflectance, R~z! [ Eu~z!yEd~z!,
by use of a relationship for R that is approximately
valid near the surface:3,4 R ' 0.33bbya. We as-
sumed that this relationship is valid ~locally! at all
depths, so

bb~z! 5 3R~z!a~z! (2)

provides bb from the measured value of R and the
computed value of a at each depth. As the water
body is assumed to be homogeneous, i.e., a~z! and
bb~z! are independent of z, the constant values for
these properties are obtained by computing average
values of these quantities ~weighted by Ed or by ln Ed!
over depth.

Given Ed~z! and Eu~z!, a~z! and bb~z! could be ob-
tained from Eqs. ~1! and ~2! if m# ~z! were known. In
our algorithm, m# ~z! is determined iteratively by solv-
ing the radiative transfer equation ~RTE! by use of
trial values of a and bb. The full procedure works in
the following manner. First, to start the algorithm
we need estimates of a and bb. We achieved the a
estimate by replacing m# ~z! in Eq. ~1! by m0, the cosine
of the solar zenith angle in the water, i.e., by assum-
ing that there is no atmosphere and no scattering in
the water. This initial guess for a~z! is then used to
provide an initial guess for bb~z! with Eq. ~2!. Next,
a scattering phase function P~Q!, where Q is the scat-
tering angle, is assumed for the medium, and the
backscattering probability bb̃ is computed from

bb̃ 5 2p *
py2

p

P~Q!sin QdQ.

However, bb̃ 5 bbyb, where b is the total scattering
coefficient of the medium. Thus, given bb~z! and the
scattering phase function, we are able to determine
the scattering coefficient. The inherent optical prop-
erties ~IOP’s! a, b, and P~Q! are then introduced into
the RTE, which is solved for the irradiances Ed~z!,
Eu~z!, and E0~z!. These irradiances provide a new
estimate of the average cosine m# ~z! and a computed
profile of R~z!. This estimate of m# ~z! is then used to
obtain a new estimate of a~z! by Eq. ~1!, and a~z! and
the difference between the computed and true pro-
files of R~z! are then used to determine bb~z! by Eq.
~2!. This process is continued until the residual er-
ror after n iterations, defined as

d~n! 5
1

2N (
i51

N

uln@Ed
~n!~zi!# 2 ln@Ed~zi!#u 1

1
2N

3 (
i51

N

uln@Eu
~n!~zi!# 2 ln@Eu~zi!#u, (3)

reaches a minimum. This results in values of a and
bb that, when inserted into the RTE ~with the as-
sumed phase function!, reproduce the irradiance
data.
B. Vertically Stratified Water Body

Equation ~1! is exact and therefore can also be ap-
plied in a vertically stratified medium. In contrast,
the approximation leading to Eq. ~2! is valid only for
homogeneous media, and then only for z 5 0. This is
because R~z9! is dependent on the optical properties
of the water for z . z9. Thus an alternate approach
is required to estimate bb~z!.

Based on the research of Gordon and McCluney5

and Gordon,6 Gordon and Clark7 showed that the
irradiance reflectance just beneath the surface ~z 5
02! of a vertically stratified water body is approxi-
mately given by

R~02! <
^X~02!&

3
,

where

^X~02!& ;
*

0

z90

X~z!g~z!dz

*
0

z90

g~z!dz

,

g~z! 5 @Ed~z!yEd~0!#2,

X~z! 5 bb~z!ya~z!.

The quantity z90 is called the penetration depth5 and
is the depth above which 90% of the upwelling irra-
diance at the surface is scattered, and also the depth
over which the downwelling irradiance falls to 1ye of
its value at the surface. Following the spirit of the
homogeneous medium algorithm, we assume that a
similar equation is valid at all depths, i.e.,

R~z! <
^X~z!&

3
, (4)

where

^X~z!& 5

*
z

z909

X~z9!g~z, z9!dz9

*
z

z909

g~z, z9!dz9

,

g~z, z9! 5 @Ed~z9!yEd~z!#2,

where z9 $ z, and z909 is the depth over which Ed~z9!
falls to 1ye of its value at z 5 z9. As relationship ~4!
is only approximate, for simplicity we carry out the
vertical integrations from the depth z9 5 z down to
the maximum depth at which irradiance data are
obtained ~zmax!. Approximation ~4! can be solved for
X~z! given the R~z! profile:

X~z! 5 3HR~z! 2
dR~z!

dz *
z

zmax

dz9FEd~z9!

Ed~z! G2J . (5)

Because a~z! can be estimated from Eq. ~1!, X~z! pro-
vides bb~z!. Note that replacement of z909 by zmax is
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a good approximation only if dR~z!ydz 3 0 as z 3
zmax.

By use of these estimates the algorithm proceeds in
a manner similar to the homogeneous medium case.
Let the measured values of the downwelling irradi-
ance and the upwelling irradiances be denoted by
Ed

m~z! and Eu
m~z!, respectively. These provide the

measured reflectance Rm~z! and the measured vector
irradiance attenuation coefficient Kv

m~z!. The algo-
rithm is initialized by approximating m# ~z! by m0, i.e.,

a0~z! 5 m0 Kv
m~z!, bb

0~z! 5 a0~z!Xm~z!,

where Xm~z! is computed with Rm~z! and Ed
m~z! in

Eq. ~5!. Then, making an assumption regarding the

scattering phase function, which provides bb̃, the to-
tal scattering coefficient is found from

b0~z! 5
bb

0~z!

bb̃~z!
.

The quantities a0~z!, b0~z!, and the assumed phase
function are then introduced into the RTE that is
solved for the irradiances Ed

c~z!, Eu
c~z!, and E0

c~z!,
providing a new estimate for m# ~z!, which we call
m# ~1!~z!. Then m# ~1!~z! is used to provide a new esti-
mate of the absorption coefficient profile, etc. Thus,
going into the ith from the ~i 2 1!th iteration, the
absorption coefficient is approximated through

ai~z! 5 m# ~i21!~z!Kv
m~z!,

i.e., the new absorption coefficient profile is always
determined by the previous estimate of the average
cosine.

Incrementation of the backscattering coefficient
bb~z! from one iteration to the next is based on the
difference between the current value of X~z!, i.e.,
Xi~z!, and the measured value Xm~z!. At the end of
the ith iteration this difference is

DX i~z! 5 Xm~z! 2 X i~z!.

This would imply that bb~z! should be changed by

Dbb
i~z! 5 DXi~z!ai~z!;

however, because Eq. ~5! is not precise, we introduce
a relaxation parameter8 f to stabilize the iteration
procedure. The new estimate for the backscattering
coefficient is then

bb
i~z! 5 bb

i21~z! 1 fDbb
i~z!,

where 0 , f , 1. The fundamental difference be-
tween the present algorithm and that described in
Subsection 2.A is the dRydz term in Eq. ~5!.

As in the homogeneous case, the retrieved values of
a~z! and bb~z! are those for which dn in Eq. ~3! is a
minimum. The minimum is established by storing
dn after each iteration and choosing the n value that
provides a minimum. In reality, one never knows if
an absolute minimum in dn is achieved. Thus we
perform a number of tests to simply determine if a
3888 APPLIED OPTICS y Vol. 37, No. 18 y 20 June 1998
relative minimum has been reached, or if significant
progress is being made toward a minimum. Other-
wise we stop the algorithm after 50 iterations.

In complete analogy with the homogeneous medi-
um,1 the algorithm utilizing Lu~z! instead of Eu~z!
simply uses the value of Q~z! [ Eu~z!yLu~z! to derive
Eu~z! from the measured value of Lu~z!. Eu~z! is
then used in the algorithm as already described in
this subsection. At each iteration, the profile Q~z! is
estimated. For the ith iteration the measured value
of Eu~z! is taken to be

Eu
m~z! 5 Qi21~z!Lu

m~z!,

where Qi21~z! is the estimate of Q~z! after i 2 1
iterations, and Lu

m~z! is the actual measured quan-
tity. Thus in the Lu~z!–Ed~z! algorithm the actual
data used for the upwelling irradiances are changed
along with a~z! and bb~z! at each iteration.

The algorithm uses a Monte Carlo code as a sub-
routine to solve the RTE. This code includes a 50-
layer atmosphere with both aerosol and Rayleigh
scattering and has been thoroughly tested through
comparison with other radiative transfer codes.9 Of
course any of a number of well-known codes that are
available, e.g., see Ref. 9, could be used as well.

3. Examples of the Eu–Ed Algorithm Performance

In this section we provide several representative ex-
amples that demonstrate the performance of the
Eu–Ed algorithm.

A. Homogeneous Medium

Our first application of the algorithm was to test its
ability to correctly determine the vertical structure of
a homogeneous ocean. Figure 1 provides Monte
Carlo simulations of the vertical profiles of R~z! for a
medium in which the a~z! 5 0.1 m21 and b~z! 5 0.9
m21 and for which the ocean is illuminated by the
Sun at the zenith @Fig. 1~a!# and at a solar zenith
angle u0 of 60° @Fig. 1~b!#. The scattering by the
water body was governed by the Henyey–
Greenstein10 ~HG! phase function with an asymme-
try parameter g 5 0.85. There was no atmosphere
above the ocean ~Sun in a dark sky!. The filled cir-
cles provide the true values of R~z!. Note the strong
variation of R~z! with depth, even though the IOP’s
are independent of depth. Clearly, Eq. ~2! is a very
poor approximation to the variation of R~z! as a and
bb are both constant in this example. The pseudo-
data generated in these simulations at the 20 depths
shown in Fig. 1 were introduced into the Eu–Ed re-
trieval algorithm described in Subsection 2.B, and
values of a~z! and bb~z! were retrieved at each depth
at which data were provided. The solid curve in Fig.
1 joins points of the computed value of R~z! by use of
the values a~z! and bb~z! provided by the algorithm.
These retrieved parameters reproduce the measured
Ed~z!, Eu~z!, and R~z! with an error of &0.5%. In
this case the phase function used by the inversion
algorithm was the correct one, i.e., a HG with g 5
0.85. Figure 2 provides the error in the recovered



Fig. 1. R~z! for a medium in which the a~z! 5
0.1 m21 and b~z! 5 0.9 m21. The filled circles
are the values of R~z! introduced into the al-
gorithm as data ~the pseudodata!. The solid
curve joins the points of the value of R~z! com-
puted with the values of a~z! and bb~z! that
were retrieved by the algorithm: ~a! u0 5 0,
~b! u0 5 60°.
values of a~z! @Fig. 2~a!# and bb~z! @Fig. 2~b!#. As
with Fig. 1, the solid circles represent the true values,
whereas the solid curves and broken curves represent
the errors in the recovered values for u0 5 0 and 60°,
respectively. We note that the error in the recovered
a~z! is typically ,1%, whereas the error in bb~z! is
usually &2%. Considering the strong variation of
R~z!, Eq. ~5! shows a remarkable ability to recognize
the fact that the IOP’s are independent of depth.
Table 1 provides a summary of the errors for a variety
of similar situations in which a and bb are constant.
The parameter v0 in the table is the single-scattering
albedo, defined to be by~a 1 b!. For Figs. 1 and 2, v0
5 0.9. In Table 1, ^Da& and ^Dbb& are the averages
over depth of the absolute value of the relative errors
in a~z! and bb~z!, respectively, e.g.,

^Da& ;
1
N (

i51

N Uaretrieved~zi! 2 atrue~zi!

atrue~zi!
U , (6)
where aretrieved~zi! and atrue~zi! are the retrieved and
true values of the absorption coefficient at a depth zi,
respectively. The quantities ~Da!max and ~Dbb!max
are the maximum values obtained for the error in
a~z! and bb~z!. ~Throughout this paper when errors
carry signs, a positive sign means that the computed
or retrieved quantity is greater than the true quan-
tity.! These maxima typically occur at or near the
surface ~Fig. 2! where numerical computation of the
required derivatives is less accurate. ~We use a
three-point algorithm to compute the derivatives.!
Clearly, the algorithm performs as well for other val-
ues of v0 as it did for v0 5 0.9 in Figs. 1 and 2.

Comparison of ^Da& and ^Dbb& in Table 1 with the
errors da and dbb for similar simulations made by use
of the homogeneous medium algorithm ~Table 1 of
Ref. 1! shows that in these cases the homogeneous
medium algorithm leads to smaller errors; however,
it has the advantage of already knowing the vertical
Fig. 2. Error in the recovered values of ~a!
a~z! and ~b! bb~z!. The solid circles represent
the true values, whereas the solid curves and
broken curves join the errors in the recovered
values for u0 5 0 and 60°, respectively.
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structure of the water body—the present algorithm
must determine the vertical structure.

B. Continuously Stratified Medium

To test the algorithm’s performance when the me-
dium is actually stratified, we devised profiles for a~z!
and bb~z! that had Gaussian shapes, i.e.,

a~z! 5 a0 1 a1 expF2
~z 2 za!

2

2sa
2 G ,

bb~z! 5 b0 1 b1 expF2
~z 2 zb!

2

2sb
2 G ,

where za and zb are the depths of the maximal values
of a and bb, respectively, and the parameters a1, b1,
sa, and sb control the magnitude of the maximal
values above a0 and b0 and the depth range of the
maxima. We simulated profiles for which either a1
or b1 was zero ~no variation with depth! and for which
a1 5 a0 andyor b1 5 b0. In addition, za and zb were
allowed to take on the values of 1, 2, or 3 m. In all
cases, sa and sb were set to 1 m. Thus, over the
range of depths from 0 to 5 m, a~z! and bb~z! could
each vary by as much as a factor of 2. The specific
combinations of za, zb, a1, and b1 that we used in this
test are provided in Table 2. In each case, a0 5 0.10
m21 and b0 5 0.0072 m21. The scattering phase
function was the HG with g 5 0.85, for which bb̃

5 0.036. The total scattering coefficient corre-
sponding to b0 is b0ybb̃ 5 0.2 m21. Thus the range
in values for the total attenuation coefficient c~z! 5
a~z! 1 b~z! over the test cases in Table 2 is from 0.3
m21 ~a2bu at the minimum value! to 0.6 m21 ~a2b2 at
the maximum value!. These pseudodata were gen-
erated for an ocean illuminated with the Sun in a
dark sky with u0 5 0 and 60° and for an infinitely
deep medium. The resulting Ed~z! and Eu~z! at 20
uniformly spaced depths from z 5 0 to 4.75 m were
then used as input to the algorithm described in Sub-
section 2.B and the profiles of a~z! and bb~z! were
retrieved. Note that the scales of variation of a and
bb are of the order of 1 m or larger. Thus the 0.25-m

Table 1. Summary of the Average and Maximum Errors in Percent
Obtained for a~z! and bb~z! for a Homogeneous Mediuma

u0 v0 ^Da& ^Dbb& ~Da!max ~Dbb!max

0° 0.2 1.36 2.26 23.24 24.98
60° 0.2 0.78 1.81 22.68 18.69
0° 0.4 0.87 1.01 13.67 12.54

60° 0.4 1.07 1.92 14.91 14.45
0° 0.6 0.88 0.85 22.62 22.81

60° 0.6 0.79 1.24 23.00 13.82
0° 0.8 0.67 0.79 11.57 22.34

60° 0.8 0.55 0.72 21.15 22.40
0° 0.9 0.44 1.21 21.50 27.24

60° 0.9 0.36 1.68 11.55 25.44
0° 0.95 0.53 3.60 11.36 217.54

60° 0.95 0.62 1.20 13.86 23.58

aThe correct phase function was used in the retrieval.
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separation between the points at which the pseudo-
data were provided was sufficient to completely re-
solve the vertical structure.

An example of the resulting retrieval is presented
in Fig. 3~a!, which provides the measured ~filled cir-
cles! and the retrieved values of R~z! for the aub2 case
in Table 2 with u0 5 0. The solid curve in Fig. 3~a!
connects points at which R~z! was reconstructed by
use of the retrieved values of a~z! and bb~z! when the
correct phase function ~HG, g 5 0.85! was used in the
retrievals. The dashed curve connects points of R~z!
reconstructed by use of the retrieved values of a~z!
and bb~z! when an incorrect phase function ~HG, g 5
0.95! was used in the retrieval algorithm. In both
cases ~retrieval with the correct and incorrect phase
functions! the reconstructed R~z! is within a fraction
of a percent of the true values; however, the error is
clearly larger when the incorrect phase function is
used. Figures 3~b! and 3~c! provide the error in the
retrieved values of a~z! and bb~z!, respectively. In
these figures the solid and dashed curves have the
same meaning as in Fig. 3~a!. The errors in the
retrieved a~z! are seen to be slightly larger when the
incorrect phase function is used in the retrieval, and
there appears to be a systematic bias of ;1–1.5% for
z . 2. The error in a~z! follows the same pattern for
the two retrievals. This is due to the fact that a
significant portion of the error in a~z! results from the
computation of Kv~z! in Eq. ~1!. This portion of the
error is independent of the operation of the inversion
algorithm, depending only on the accuracy of the nu-
merical derivative that is used in the initial ~and
only! computation of Kv~z!. The error in this deriv-
ative sets the lower limit to the error in the algo-
rithm. The reason our derivatives appear to have
small random errors is that the pseudodata were gen-
erated with a Monte Carlo solution of the RTE, which
inevitably contains statistical fluctuations. The in-
creasing bias in a~z! with increasing z when the in-
correct phase function is used is due to m# ~z!. It is
clear that near the surface, m# ~z! is nearly indepen-
dent of the phase function because the light field is
dominated by the solar beam; however, as z in-
creases, m# ~z! will begin to depend on P~Q! through
single and multiple scattering. This provides the
increased error in m# ~z! with increasing z. Although
the incorrect phase function is more strongly forward
scattering, which would increase m# ~z! in the single-
scattering approximation, the error in m# ~z! is increas-
ingly negative with increasing z. This is caused by
the increase in b~z! required by the algorithm to pro-
vide an appropriate bb~z! when the incorrect phase

Table 2. Gaussian Profile Parameters and Identification Code

za

~m!
zb

~m!
a1

~m21!
b1

~m21! Code

2 – a0 0 a2bu
– 2 0 b0 aub2
2 2 a0 b0 a2b2
3 1 a0 b0 a3b1



Fig. 3. Retrieval results for the case aub2 in Table 2. ~a! R~z! pseudodata ~solid circles! and reconstructed values by use of a~z! and bb~z!
retrieved with the correct ~solid curve! and an incorrect ~dashed curve! phase function. ~b! Percent error in a~z! retrieved with the correct
~solid curve! and an incorrect ~dashed curve! phase function. ~c! Percent error in bb~z! retrieved with the correct ~solid curve! and an
incorrect ~dashed curve! phase function.
function ~bb̃ too small! is used. Larger values of b~z!
at fixed a~z! result in more multiple scattering that
tends to reduce m# ~z! when the Sun is at the zenith.
Note, however, that the error in m# ~z! that is due to the
incorrect phase function is &1.5%. The ability of the
algorithm to provide an excellent estimate of m# ~z! is
the reason for its robustness in the estimation of a~z!.

For bb~z! there is little bias when the correct phase
function is used; however, with the incorrect phase
function there is clearly a bias of ;8% for z . 2. It
is important to note that when the incorrect phase
function is used, bb̃ 5 0.011 compared with 0.036
for the correct phase function, i.e., the error in bb̃

when the incorrect phase function is used is over a
factor of 3. In contrast, the error in bb~z! induced by
the incorrect phase function is ,9%. A similar be-
havior was found for the homogeneous medium algo-
rithm in Ref. 1.

Tables 3 and 4 provide summaries of the algo-
rithm’s performance for the cases listed in Table 2
when the correct and incorrect phase functions, re-
spectively, are used in the retrievals. The tables list
the depth-averaged absolute error @in the sense of Eq.
~6!# in the quantities indicated. Clearly, the retriev-
als of bb~z! are better when the correct phase function
is used in the retrievals; however, the phase function
has little affect on the error in a~z!.

We also carried out simulations with stronger
stratifications, e.g., with a1 5 4a0 andyor b1 5 4b0.
The results are similar to those presented in Fig. 3
and Table 3; however, the errors were somewhat
larger. The increase in error with increasing strat-
ification appears to be due entirely to difficulty in
computing the numerical derivatives required by the
algorithm with a 0.25-m spacing between the sam-
ples.
C. Lu–Ed Algorithm Performance

For all cases described in Subsection 3.B, we re-
trieved the IOP’s using the Lu–Ed algorithm as well.
Tables 3 and 4 compare the performance of the Lu–Ed
and Eu–Ed algorithms. Although there is some deg-
radation in the accuracy of the retrieved a~z!, there is

Table 3. Depth Averages of the Absolute Error in a~z! and bb~z!
~percent! When the Correct Phase Function is Used in the Retrievalsa

Code u0 ^Da&Eu
^Da&Lu

^Dbb&Eu
^Dbb&Lu

a2bu 0° 0.67 0.70 1.38 2.08
a2bu 60° 0.85 1.02 1.80 1.61
aub2 0° 0.81 0.68 1.10 2.81
aub2 60° 0.88 1.20 1.31 3.16
a2b2 0° 1.52 1.72 1.32 2.32
a2b2 60° 1.38 1.92 1.56 1.79
a3b1 0° 1.05 1.11 1.52 1.93
a3b1 60° 1.28 1.21 1.32 1.70

aThe subscripts Eu and Lu refer to retrievals made with the
Eu–Ed and Lu–Ed algorithms, respectively.

Table 4. Depth Averages of the Absolute Error in a~z! and bb~z!
~percent! When an Incorrect Phase Function is Used in the Retrievalsa

Code u0 ^Da&Eu
^Da&Lu

^Dbb&Eu
^Dbb&Lu

a2bu 0° 0.90 1.35 3.34 7.24
a2bu 60° 1.23 1.51 5.76 5.56
aub2 0° 1.21 1.65 5.06 5.99
aub2 60° 1.24 2.30 8.07 8.42
a2b2 0° 1.23 1.45 3.96 4.88
a2b2 60° 1.28 1.59 6.66 5.87
a3b1 0° 1.65 1.39 4.62 4.48
a3b1 60° 1.88 2.18 7.02 7.32

aThe subscripts Eu and Lu refer to retrievals made with the
Eu–Ed and Lu–Ed algorithms, respectively.
20 June 1998 y Vol. 37, No. 18 y APPLIED OPTICS 3891



little difference in the accuracy of the retrieved bb~z!
for the cases that we examined.

4. Difficult-to-Handle Situations

In addition to the tests described in Section 3, we
devised several tests to try to make the algorithm fail
with large error. In this section we discuss cases in
which the algorithm has difficulty deriving the IOP’s:
absorbing layers that are so thin that Kv~z! cannot be
estimated accurately, situations in which dR~z!ydz is
large and positive, and situations in which there is
excessive noise in the input data.

A. Thin Absorbing Layers

When a thin ~thickness defined as the spacing be-
tween irradiance samples! absorbing layer is encoun-
tered, the algorithm can produce large errors. As an
example of this we generated pseudodata for Eu and
Ed using za 5 2, a1 5 4a0, sa 5 0.1, and b1 5 0. This
provided a thin, strongly absorbing layer in an oth-
erwise homogeneous medium. Approximately 68%
of the additional absorption provided by this layer
falls between z 5 1.90 and 2.10 m, and 98.7% of the
additional absorption is between z 5 1.75 and 2.25 m.
We found that, although large errors in a and bb were
encountered near z 5 2, the algorithm performed well
elsewhere.

To make recovery of the IOP’s more difficult, we
omitted the Eu–Ed pseudodata at a single depth, z 5
2, the maximum in the a~z! profile. In this case
almost all the additional absorption near z 5 2 is
missed in the pseudodata. Figure 4 provides the
results for both simulations: with the pseudodata
present and with the pseudodata absent at z 5 2 m.
As expected, there are large errors in a and bb near
the absorbing layer. Interestingly, the error in bb is
not significantly altered by the absence of pseudodata
at z 5 2 m. In contrast, the absorbing layer is some-
what better delineated in a in the presence of pseudo-
data at z 5 2 m.

The profiles of Ed~z! and R~z! derived by use of the
recovered a~z! and bb~z! are revealing. When the
pseudodata at z 5 2 m are omitted, the algorithm
cannot identify the presence of the strongly absorbing
layer, and the absence of this contribution to the
absorption is reflected in a constant bias in the re-
constructed Ed~z! for z . 2 m. In this region ~z . 2
m! there is no a~z! that will remove the bias, e.g., a
larger ~smaller! a~z! would increase ~decrease! Kv~z!
thereby changing the slope as well as the magnitude
of ln Ed. Such a bias in Ed~z! must result from
missed absorption somewhere in the water column,
and the shape of Ed~z! clearly suggests it must be
near z 5 2 m. Similarly, although a and bb are quite
accurate for z & 1.5 m, the R~z! profile cannot be
reconstructed accurately in the absence of some
knowledge of the presence of the absorbing layer.

These simulations demonstrate the importance of
having samples with sufficiently close spacing so that
thin absorption layers can be identified. They also
demonstrate that the presence of such layers can be
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ascertained by comparing the reconstructed and the
true irradiance profiles.

B. Large Values of dRydz

Equation ~5! suggests that the algorithm will have
difficulty if dRydz is large and positive where R is
small. Such a situation is possible with a strongly
absorbing surface layer over a highly reflective layer
below the surface. We examined a situation in
which the pseudodata were generated by use of a
two-layer model with v0 5 0.5 from z 5 0 to 2 m and
v0 5 0.9 from z 5 2 m to `. The phase function was
a HG with g 5 0.85. The retrieval algorithm as-
sumed a HG phase function with g 5 0.95. Huge
errors were found in the retrieval, and these were
traced to the fact that Eq. ~5! produced negative val-
ues of X~z! near the surface where R is small. When
this happened, the default was to set bb~z! to a small
positive number. The algorithm then proceeded to
diverge. In fact, this is the only case we have ever
run in which the algorithm clearly diverged. We ran
this case again, but when Eq. ~5! yielded a negative
X~z!, the default was changed to replace the negative
X~z! by X~z! 5 3R~z!, i.e., we set dRydz 5 0. This
produced reasonable ~not excellent! retrievals.

C. Excessive Noise in the Irradiances

The downward irradiance near the surface is gener-
ally strongly fluctuating in time because of the effects
of surface waves. Thus the downward irradiances
may have considerable random errors. These errors
can cause a large error in derivatives, and this is
especially significant in the case of Kv~z!. This fluc-
tuation error is largest at the surface and decreases
with depth.11 We performed several tests in which
random errors, decreasing in magnitude with depth,
were applied to the pseudodata. The results suggest
that the error in the computation of Kv~z! is the most
significant. Error in Kv~z! leads to a similar error in
a~z! through Eq. ~1!. The error in a~z! usually pre-
vents the reconstructed Ed~z! and Eu~z! from fitting
their pseudodata counterparts well. Biases usually
appear that are similar in nature to those that would
be induced by thin absorbing layers, e.g., Fig. 4.
However, the reconstructed reflectance R~z! usually
follows the noisy R~z! pseudodata reasonably well.
Thus, given a~z! ~including its noise-induced error!,
the algorithm tries to determine a bb~z! that will
reproduce the apparent R~z!. As the error in R~z! is
not correlated with the error in Ed~z! because of the
error in Eu~z!, the error in a~z! and bb~z! show few
similarities.

This problem is not really a flaw in the algorithm,
but it is a problem that is common to any application
of irradiance data in which the various irradiance
attenuation coefficients are required. There has
been much effort devoted toward analysis of irradi-
ance data to produce accurate attenuation coeffi-
cients.12 Improvements in such analysis must be
incorporated into the present algorithm for its full
utility to be realized.



Fig. 4. Profiles of quantities retrieved in the presence of a thin absorbing layer at z 5
2 m. Filled circles are the true values, the dashed curves refer to retrievals when
pseudodata at z 5 2 m are missing, and the solid curves are for retrievals made when
pseudodata at z 5 2 m are present: ~a! absorption coefficient, ~b! backscattering
coefficient, ~c! downwelling irradiance, ~d! irradiance reflectance.
5. Depth Variations of P~Q!

In all the computations presented thus far, the phase
function used in generating the pseudodata has been
independent of depth. In reality, unless the medium
is homogeneous, or there is no particle scattering, the
phase function will vary somewhat with depth be-
cause the fraction of total scattering contributed by
the water itself will vary as the particle concentration
varies and because the phase function of the sus-
pended particle population will generally vary with
depth. To ascertain the effect of a depth-dependent
phase function, we created pseudodata using the
model provided in Mobley et al.9 ~Problem 3! to relate
the particulate absorption and scattering coefficients
to the pigment concentration. The parameters of
the Mobley et al. model were h 5 4 mg m22, s 5 0.5
m, zmax 5 2.25 m, and C0 5 0.005 mg m23. The
wavelength was taken to be 500 nm at which the
water absorption and backscattering coefficients are
approximately 0.0257 and 0.00135 m21, respectively.
With these parameters the pigment concentration
C~z! ranged from ;0.005 to 3.2 mg m23, the absorp-
tion coefficient from ;0.027 to 0.106 m21, and the
backscattering coefficient from ;0.0021 to 0.036 m21.
The Rayleigh-scattering phase function was used for
the scattering by the pure water component, and a
depth-independent HG phase function with g 5 0.80
was used for the particle-scattering component.
Figure 5 shows the variation of the phase function
from the smallest C value ~dashed curve! to the larg-
est C value ~solid curve!. At any depth, the phase
function for the medium will fall between these two
curves. The asymmetry parameter for the medium
~combined Rayleigh and particle scattering! ranged
from 0.648 to 0.797, and the total backscattering

probability 0.0526 , bb̃~ z! , 0.1365, with the parti-
cle backscattering probability 5 0.0507. Thus, over

the depth profile, bb̃~ z! varied by a factor of ;3 and g
varied by ;25%. The pseudodata were created for
the Sun at u0 5 0 in a dark sky.

We retrieved a~z! and bb~z! from the pseudodata
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described above assuming depth-independent HG
phase functions with g 5 0.80, 0.85, 0.90, and 0.95.
These HG phase functions are provided as the dotted
curves in Figure 5 ~lower curves beyond Q 5 10°
correspond to larger values of g!. Note that over the
angular range 30° , Q , 180°, all the retrieval phase
functions fall below the range of the true phase func-
tion. Also, at low C values, the HG with g 5 0.90 is
almost an order of magnitude smaller than the true
phase function for Q * 150°. The resulting retriev-
als for g 5 0.80 and 0.90 are presented in Fig. 6, in
which the correct values are indicated by filled cir-
cles, the values retrieved by use of g 5 0.80 by solid
curves, and the values retrieved by use of g 5 0.90 by
dashed curves. Although the error is larger than
that in Fig. 3, where the profile is much less extreme
and the phase function is independent of depth, it is
not excessive. The noisy appearance of the error in
Fig. 6~c! suggests that the principal source in a~z! is
in the computation of Kv~z!, not in the assumption of
a depth-independent phase function. Figure 6~d!
shows understandable trends in the error in bb~z!.
In the region of high scattering the retrieval of bb~z!
is excellent when g 5 0.80 is assumed, as this value
of g is nearly correct there; however, below the scat-
tering maximum, where the contribution that is due
to Rayleigh scattering becomes significant ~g ; 0.65!,
the assumed g is too large, leading to an even smaller
bb~z!. With an assumed g 5 0.90, bb~z! is typically
smaller than with g 5 0.80. These trends in regard
to bb~z! are similar to those in Fig. 3. It is remark-
able that, when a phase function as radically differ-
ent from the true phase function as the HG with g 5
0.90 ~Fig. 5! is assumed in the retrievals, errors of the
order of only 620% in the retrieved values of bb~z! are
obtained ~Fig. 6!.

Table 5 provides a summary of the mean absolute
error for a and bb for the profiles used in this section.
Note the almost complete independence of ^Da& on the
value of g used in the retrievals. When Ed~z! and
Eu~z! are reconstructed with the retrieved IOP’s, er-

Fig. 5. Variation of the true phase function for the medium in
Section 5 from the smallest ~dashed curve! to the largest ~solid
curve! value of C. The dotted curves correspond to the HG phase
functions for g 5 0.80, 0.85, 0.90, and 0.95 that were assumed in
the retrievals. P~Q! at large Q is smaller for larger values of g.
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ror in Ed~z! is always ,0.5%, and the error in Eu~z! is
,1%, except for a single depth ~when g 5 0.95!.
Thus the quality of the fit of the reconstructed profiles
to the input data does not provide information re-
garding the appropriateness of the assumed phase
function.

We note that for the profile we use here the varia-
tion in the phase function with depth is significantly
more extreme that what would be expected in natural
waters. Therefore from this test we conclude that
~1! use of a constant and incorrect phase function in
the retrieval of a~z! does not lead to excessive error in
the absorption coefficient, and ~2! the error in bb~z!
appears to be directly related to the error in the as-
sumed phase function, but again is not excessive.

6. Concluding Remarks

In this paper we have described an algorithm for
estimation of profiles of the absorption and backscat-
tering coefficients from profiles of the upwelling and
downwelling irradiance or upwelling ~nadir! radiance
and downwelling irradiance. The key to extending
the homogeneous water body algorithm1 to a strati-
fied water body is the presence of the dR~z!ydz term
in Eq. ~5!. Several tests of the algorithm in which we
used simulated ~pseudo! data were presented. They
demonstrate that the algorithm can correctly deter-
mine the vertical structure of a stratified water body
and usually provide a~z! with an error &2% and bb~z!
with an error &10% ~Fig. 1–3, Tables 1–4!, as long as
the spacing between pseudodata samples is suffi-
ciently small that the necessary derivatives @Kv~z!
and dR~z!ydz# can be computed accurately. The re-
sults are better the closer the phase function used in
the retrievals is to the true phase function, although
excellent retrievals of a~z! can still be obtained with
a very inaccurate phase function ~Fig. 3, Table 4!.
This implies that the algorithm provides accurate
estimates of the average cosine of the in-water radi-
ance distribution m# ~z!. The algorithm is able to pro-
vide realistic values of bb~z!, even with an incorrect
phase function, by adjusting b~z! to provide a nearly
correct bb~z!; however, the resulting values of b~z! are
meaningless unless the correct phase function is used
in the retrieval.1,13

A test of the algorithm was devised to examine its
performance in the presence of thin absorbing layers
that cannot be completely resolved in Kv~z!, given the
density of the pseudodata. As expected, the results
showed very large error in a~z! and bb~z! in the vi-
cinity of the layer, but not elsewhere. Furthermore,
the reconstructed Ed~z! and R~z! showed exception-
ally large errors that could easily be ascribed to
missed absorption @Figs. 4~c! and 4~d!#.

Another test examined the quality of retrievals
when the scattering phase function of the water body
varies with depth. Using an unrealistically large
variation in P~Q! in the pseudodata, we showed that
reasonably good retrievals were obtained ~Table 5!
with the largest error at depths where the phase
function error was largest ~Fig. 6!.

The algorithm fails when Eq. ~5! provides a nega-



Fig. 6. Retrievals of a~z! and bb~z! for a situation in which the scattering phase
function of the medium varies strongly with depth. Filled circles are the exact
values, solid curves are retrievals by use of g 5 0.80, and dashed curves are retrievals
by use of g 5 0.90: ~a! absorption coefficient, ~b! backscattering coefficient, ~c!
percent error in the absorption coefficient, ~d! percent error in the backscattering
coefficient.
tive value of X~z! at some depth; although by default-
ing to X~z! 5 3R~z! where this happens, reasonable
retrievals were obtained. It is also sensitive to noise
in the irradiances mainly through error in the com-
putation of Kv~z!; however, as most applications of
in-water irradiance measurements involve computa-
tion of such attenuation coefficients ~see, e.g., Ref. 2!,
this is not considered to be a blemish.

Table 5. Depth-Averaged Absolute Error @Eq. ~6!# in Percent Obtained
for a~z! and bb~z!a

g ^Da& ^Dbb&

0.80 4.29 8.86
0.85 4.39 10.55
0.90 4.35 14.43
0.95 4.58 14.32

aCalculated as a function of the value of g used in the retrieval
for the depth-dependent P~Q! test in Section 5.
Although we have provided only tests of the algo-
rithm for the Sun in a dark sky, i.e., in the absence of
the atmosphere, our radiative transfer code, that
serves as a subroutine in the algorithm, contains a
50-layer atmosphere that can include aerosol as well
as Rayleigh scattering. In any cloud-free applica-
tion of the algorithm, the atmosphere ~at least the
molecular-scattering component, and an aerosol com-
ponent if possible! should be included. However, as
we are using irradiances, precise definition of the
aerosol part is not necessary. In case of a completely
overcast sky, the atmosphere should be replaced by
either a uniform or a cardioidal2 incident radiance
distribution on the sea surface. A sky with patchy
clouds presents a difficult problem. The best solu-
tion would be to measure the radiance distribution
falling on the sea surface14 and use it in the radiative
transfer computation. A less accurate approxima-
tion would be to measure the individual contributions
to the incident irradiance from the Sun and sky and
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then model the sky contribution as a uniform ~or
some other! radiance distribution.15

In its present form the algorithm should be applied
only to data acquired down to depths above which
dR~z!ydz 5 0, as was assumed in Eq. ~5!. As with all
radiative transfer applications that ignore the possi-
bility of inelastic scattering, this algorithm can be
used only in spectral regions and at depths where
inelastic scattering can be considered negligible.
When this is not the case, it can be applied only when
the inelastic component is estimated, e.g., by exami-
nation of solar Fraunhofer lines.16

Finally, we have tried here to provide the reader
with samples of retrievals and with a short assess-
ment of the accuracy of, and difficulties with, the
algorithm. As such, there is no way our analysis can
be exhaustive. Anyone using this algorithm should
carry out a sensitivity study that is specific to the
characteristics of their measurements and the condi-
tions under which they were obtained.

The authors are grateful to the U.S. Office of Naval
Research for support under grant N00014-97-I-0069.
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