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ABSTRACT 

A Neural Network (NN) approach is studied in deriving information of bathymetry for 
optically shallow waters. In this study, more than 7000 remote-sensing reflectance (ratio of water- 
leaving radiance to downwelling irradiance above the surface) spectra for shallow waters were 
created with a semi-analytical model. This synthetic data base covered chlorophyll-a concentrations 
from 0.2 to 6 mg/m*3, water depths from 0.5 to 20 meters, and dark to bright-sand bottom albedos. 
The multi-layer NN is trained with the synthetic data using a back-propagation algorithm, and 
tested with both synthetic and field data. One advantage of using NN approach is that it reduces the 
calculation time greatly compared to an early optimization method. 

INTRODUCTION 

Recently, an optimization method has been developed to retrieve bottom depth and in-water 
properties from measured remote-sensing reflectance’. The method is proved accurate and 
successful, however, it is too slow for image processing using current computers. A quick and 
reliable method for bathymetry is desired. Over the past several years, more attention have been 
paid for artificial neural networks (NN) for remote sensing applications2‘7. For example, Key* used 
the Advanced Very High Resolution Radiometer (AVHRR) data in conjunction with the Scanning 
Multichannel Microwave Radiometer (SMMR) for the classification of four land surface and eight 
cloud classes in the Arctic. However, most applications of NN were toward the qualitative 
classifications of remotely sensed images, few researches were focused on the quantitative 
derivation of properties of interest. In this study, we investigate the application of using neural 
networks to derive bottom depth. To design a neural network, large data base is required to well 
train the neural network, which is not available yet from field measurement, however. Computer 
models’.” are proved that they can generate shallow water spectra, but it is very time consuming. 
We generate our data base of shallow-water remote sensing reflectance by a semi-analytical 
model”, which is simple and easy with high accuracy. We used this synthetic data base to train a 
neural network, and used both synthetic and field data to test it. 
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NEURAL NETWORK 

A neural network derives its computing power through its massively parallel distributed 
structure and its ability to learn and therefore to generalize. A neural network is composed of a 
number of neurons, which are arranged in different network layers and are connected by links. 
Each link has a numeric weight associated with it. Weights are the primary means of long-term 
storage in neural networks, and learning usually takes place by updating the weights12,13. By back- 
propagation algorithm14, each training data is fed to the neural network through input layer; the 
network output is compared with the desired results; if error is found, the network will iteratively 
update the weights to reduce the error to an acceptable level. 

However, the back-propagation learning algorithm is very slow for many applications, and 
it scales up poorly as tasks become larger and more complex. Fahlman” made several 
modifications on the original back-propagation algorithm and introduced “quickprop” back- 
propagation algorithm. The “quickprop” training algorithm is used in this work to train or neural 
network. 

Data Base 

As no large filed data available, we used a semi-analytical model (SA-model) to create the 
training data. The SA-model is,” 

KS = 
0.518 r, 

l-1.562r, ’ 
(1) 

where r,, (the sub-surface remote-sensing reflectance, ratio of the upwelling radiance to 
downwelling irradiance evaluated just below the surface) is, 

and rdp, (remote-sensing reflectance for optically deep water) is, 

r dp = (0.070 + o.155U”~75z)U. (3) 

The path-elongation fac;brs for scattered photons from the water column (Dcu) and bottom 

(D 
B 
J are 

DC, = 1.2(1+2.0~)‘.~, and DB, x 1.1(1+4.9~)‘.~, (4) 
with, 

u = bd(a+bb) and K= a+bb. (5) 
Where 

bb = bbw + bbp, (6) 
and 

a = a, + a++ ag. (7) 
Note that it is the combination of Eqs.l-5 to provide the expression for Ii,. In Eq.1, 0.518 is 

the water-to-air divergence factor, and (l-l.562 rrs) accounts for the internal reflection from water 
to air, which is important for very shallow and/or very turbid waters. 

To generate an R, spectrum from the semi-analytical model, spectra of a,(h), a&h), a,(h), 

bb,(h), bb,(h), p(h) and value of H are required after knowing the solar zenith angle. Values of 
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a,(h), the absorption coefficients of pure water, were taken from Pope and Fry16. Values for bb&) 
were from Morel17. The other variables were modeled as follows: 

a+(h) = [a&) + al(h) ln(a+(440))] ab(440) (Ref. 11); 

a,(h) = a,(440) e-0.015@-440) (Ref. 18); 

b,,(R) = bbp (550) F 
( 1 

Y 

; 

p(h) = B * p*‘=(h); 
where pmea(h) is a measured bottom albedo spectrum, with ~~~(550) = 0.2. 

(8) 

(9) 

(10) 

(11) 

Based on the above expressions, we only need to know the values of a&440), a,(440), 
bb,(550), B and Y to create an R, spectrum. To make the simulated data base more consistent with 
the variation of natural environment, values of a,&440), a,(440), bb,(550), B and Y were determined 
the following way, 

a+(440) = 0.06 Co.65 (Ref. 19), 

a,(440) = f * a+(440), 

bb,(550) = 0.02 * 0.3 * g * C 062 , 

with ranges for C, f, g, B and Y are provided in Table 1. 

(12) 

(13) 

(14) 

With the above considerations, a set of more than 7000 shallow-water R, spectra 
(wavelength from 400 to 700nm every 10nm) were constructed. Part of this data (95%) were used 
to train a neural network, the rest (5%) were used to test the trained network. 
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Network Selection and Training 

We used a fully connected, feedforward neural network with a multilayer perceptron 
structure, and trained it by the “quickprop” back-propagation algorithm15. 

The input layer of the network consists of 30 input nodes. The output of the network 
represents the water depth and is scaled into 0.0 to 1.0 by dividing the maximum value of bottom 
depth for the training. Other parameters used in the training are left as defaults as those in the 
“quickprop” algorithm15. In the network training phase, inputs from the training data are fed 
forward through the network. The outputs of the network are compared with target water depth 
(normalized). The sum square errors (SSE) between the network outputs and the desired outputs are 
computed and further back-propagated through the network. Weights are adjusted, accordingly, to 
reduce the SSE. Networks with different configuration (number of hidden neurons and one or two 
hidden layers) were trained over 7000 shallow-water R Ts spectra for 10000 epochs. Each epoch 
consists of 10 iterations. Through the training, for each network configuration, the weights of the 
network with the minimum SSE are saved. We started with a one-layer network with 20 hidden 
neurons and increased the number of neurons and the number of hidden layers. 

It was found that a network with one hidden layer and 73 hidden neurons showed minimum 
sum squared error (SSE) and that this network was chosen as optimum network architecture for this 
study. Figure 1 shows the evolution of training accuracy in terms of SSE, plotted against the 
number of epochs. The network’s SSE first decreased rapidly with fluctuations through 500 epochs. 
It stayed stable through epoch 2200 and followed by another series of fluctuations. During the 
training from epoch 1000 to 2000, the weights of the network with minimum SSE were saved. The 
network with 73 neurons and the saved weights are regarded as properly trained network and used 
in the testing and further applications. 

120 

One Hidden Layer Network with 73 Neurons 
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Epoch (10 iterations per epoch) 

Figure 1. Taining pegomance of a one-layer network with 73 hidden neurons. 
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RESULTS AND DISCUSSION 

The ultimate task of network learning is to apply the knowledge to unseen inputs and to 
predict outputs of interest. Applying our trained neural network to a set of SA-model created 
shallow-water R, (378 points), the average error for depth was about 18% (R2 = 0.897, see Figure 
2). Apply this network to a field measured shallow-water R, data (15 points), the average error for 
depth was 17% (R2 = 0.833, see Figure 3). These results suggest that the neural network developed 
here works well in retrieving bottom depth of optically shallow waters, especially when it is desired 
for image processing. However, due to the limitation of neural network itself, a neural network may 
perform badly if the input is out of the training boundary. For better and wider applications, a 
neural network with wider boundary and finer gradient may be required. 
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Figure 2. Depth compatison between input and NN output values (synthetic data). 
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Figure 2. Depth comparison between input and NN output values (field data). 
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