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Maximizing Land Cover Classification
Accuracies Produced by Decision
Trees at Continental to Global Scales

Mark A. Friedl, Carla E. Brodley, and Alan H. Strahléember, IEEE

Abstract—Classification of land cover from remotely sensed the Moderate Resolution Imaging Spectroradiometer (MODIS)
data at continental to global scales requires sophisticated al- [27].
gorithms and feature sellectlon techniques to optimize cllafssﬁller The specific objectives of this work are to evaluate two
performance. We examine methods to maximize classification . - . .
accuracies using decision trees to map land cover from multi- Strateg'es d§S|gned to max'r_n'ze Iand'(.:ove.r Class'f_'cat'on ac-
tempora| AVHRR imagery at continental and g|0ba| scales. As curacles del’lved from SUperV|Sed C|aSSIflcatI0n algo”thms. The
part of our analysis we test the utility of “boosting,” a new tech- first strategy is a new technique known as “boosting” that has
nique developed to increase classification accuracy by forcing the recently been developed in the field of machine learning [5].
learning (classification) algorithm to concentrate on those training The second strategy is to supplement time series normalized

observations that are most difficult to classify. Our results show dif tation ind NDV] ts with oth
that boosting consistently reduces misclassification rates by ifference vegetation index ( ) measurements with other

20-50% depending on the data set in question, and that most of input features including geographic position and phenological
the benefit gained by boosting is achieved after seven boostingmetrics designed to capture dynamics in vegetation.
iterations. We also assess the utility of including phenological  To assess the utility of these methods, we performed a set of
metrics and geographic position as additional features to the 5n4\yses using decision trees to classify two data sets of com-
classification algorithm. We find that using derived phenological ited NDVI data. O Its show that boosting is effecti
metrics produces little improvement in classification accuracy posite ara. ,l_” rgsu S Show that boosting IS € ec.|ve
relative to using an annual time series of NDVI data, but that for land cover classification problems, but that phenological
geographic position provides substantial power for predicting metrics do not significantly improve classification accuracies
land cover types at continental and global scales. However, in relative to classifications based upon a complete twelve month
order to avoid generating spurious classification accuracies using cycle of NDVI measurements. Further we find that while geo-
geographic position, training data must be distributed evenly in . . . ) .
geographic space. graphic position provides a useful predictor that complements
remotely sensed input features, representative training data
must be included from each region to be classified in order
to avoid spurious results from cross validated estimates of
|. INTRODUCTION classification accuracy derived from random splits of training

EMOTE sensing studies of the Earth’s terrestrial ecosy%[]d testing data.

tems have witnessed a significant expansion of analysis
scale over the past fifteen years [2], [7], [14], [24]. This II.  SUPERVISED CLASSIFICATION AT
shift reflects the increased level of interest in global change CONTINENTAL TO GLOBAL SCALES
processes and has prompted new questions and technical issugBtually all remote sensing studies of land cover and land
associated with processing coarse resolution multitempocalver change at continental to global scales have used data
data. With the imminent launch of the AM platform offrom the advanced very high resolution radiometer (AVHRR)
the Earth Observing System (EOS), the need for improvet board the NOAA series of meteorological satellites. This
algorithms to process global scale data sets is even marstrument provides measurements at sufficiently coarse spatial
pressing. In this paper, we examine issues associated wikolution (1.1 km at nadir) to allow processing and analysis at
supervised classification of coarse spatial resolution data fmmntinental scales. At the same time, relative to higher spectral
land cover mapping applications. The motivation for thigesolution sensors such as the Landsat Thematic Mapper,
work is driven by the requirements of global land covethe spectral information content provided by the AVHRR is
mapping algorithms being developed for use with data frosubstantially less useful for land cover classification problems.
To compensate for the lower spectral resolution of AVHRR
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N TABLE |
NDVI 1 km NoRTH AMERICA LAND COVER CLASSES
1% (N = NUMBER OF SAMPLES IN EACH CLASS)
18 4 5 Class Name N
) 10. 88 1 | Evergreen needleleaf forest 958
g 12 2 | Evergreen broadleaf forest 91
- 115 o 3 | Deciduous needleleaf forest 0
Q- 4 | Deciduous broadleaf forest 265
o 5 | Mixed forest 709
B - 6 | Closed shrublands 213
o ‘ | 7 | Open shrublands 539
o 5 . 5 o 5 4 8 | Woody savannas 311
. 9 | Savannas 12
10 | Grasslands 425
Fig. 1. IGBP class means for the first two principal components estimated 11 | Permanent wetlands 87
from 12 months of 1 km NDVI data over North Americg 1 standard 12 | Cropland 469
deviation. The numbers on the plot refer to IGBP class values (see Table 1). 13 | Urban and built-up 17
14 | Cropland/Natural vegetation mosaic | 341
. . . 15 | Snow and ice 597
continental scales can be extracted from time series of AVHRR 16 | Barren or sparsely vegetated 511
NDVI measurements [11], [12], [15], [29]. 17 | Water bodies 0

Despite substantial success in extracting information related
to vegetation phenology from multitemporal AVHRR data,
efforts to map land cover using automated classification algeation algorithms planned as part of EOS using MODIS data.
rithms have proven to be more difficult [3]. In particular, th&Vithin this framework, improved classification algorithms that
use of supervised classification algorithms in association witine robust with respect to noise in training data, improved
multitemporal AVHRR data is fraught with problems relatedinderstanding of the best features available to discriminate
to the separability of classes in spectral-temporal spaceamtong land cover classes, and the development of methods
continental scales, and the lack of generality in spectral classesminimize problems caused by confusion among spectral
derived from training data extracted from a limited number aflasses will maximize the quality of land cover maps produced
training sites distributed over continental scales. from MODIS data using supervised classification algorithms.
To illustrate, Fig. 1 plots class means one standard In the sections below, we consider these questions using two
deviation computed from the first two principal componentdVHRR data sets:
(representing about 91% of the total variance) of a twelve 1) 1 km spatial resolution for North America;
month time series of 1 km NDVI data from AVHRR over 2) 1° spatial resolution that includes all land masses on the
North America. Each number in the figure corresponds to  Earth’s surface.
the mean value in each principal component for one of the

seventeen classes in the global land cover classification system; pecision TREES AND BOOSTING—BASIC THEORY

defined by the International Geosphere-Biosphere Program . i
(IGBP) [14] (see Table | for the class name corresponding Recent work has demonstrated that decision trees provide an

to each number). This plot illustrates that substantial overi@gcurate and efficient methodology for land cover classification
exists in the spectral-temporal space of the different IGEPOPIEMS in remote sensing [6], [9], [28]. At global scales,
classes (e.g., classes 1, 10, 12-14). Given this overlap, a ceflRiiISIOn trees have recently been used to map land cover
issue confronting land cover mapping activities planned und&§n9 the 8 km AVHRR pathfinder data set with encouraging
EOS is how to optimize supervised classification algorithnfs/CC€sS [3]. Among the advantages of decision trees that are
such that these classes can be accurately discriminated Bﬂfﬂcularly useful for remote sensing problems are their ability
mapped in an efficient and repeatable fashion at continerfal gndle noisy and missing _data [22_]’ _[25]_' Further, they
and global scales. require no ass_umptlo_ns r_e_gardmg t_h_e d|_str|but|on of input data
It is important to note that the strategy being developé”dqd also provide an intuitive classification structure.
to map land cover using EOS data employs a supervised = . . .
classification model [27]. The choice of a supervised approath Estimating Decision Trees from Training Data
is based on the need for automated and repeatable algorithmiSor this work, we use C5.0, a univariate decision tree algo-
in order to produce quarterly land cover maps in a timely fashithm that is the commercial successor of C4.5, a widely used
ion. While previous studies using AVHRR data in associaticemd tested classification algorithm. A complete description of
with supervised classification techniques have proven to tigs algorithm is beyond the scope of this paper, and the reader
moderately successful in this regard, the improved spectislreferred to [22] for complete details. Here we summarize
resolution and radiometric quality of MODIS will providethe key components of this algorithm as described in [22],
superior spectral information to complement the temporfdcusing particular attention to those aspects that pertain to
information currently being exploited in AVHRR data. Atestimation of splitting rules and feature selection.
the same time, problems associated with signature extensioifhe most important element of a decision tree estimation
may substantially complicate the use of supervised class#igorithm is the method used to estimate splits at each internal
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node of the tree. To do this, C5.0 uses a metric call&®l Boosting
the information gain ratio which measures the reduction in  pq part of our analysis using decision trees, we test a new

entropy in the data produced by a split. Using this metric, thg.pnique known as boosting that has recently been developed
test at each node within a tree is selected using the subdivisiQNihe ‘machine learning research community. The goal of
of the data that maximizes the reduction in entropy of tg,,qting is to improve the classification accuracy of a given
descendant nodes. Given a training datai3etomposed of | ca or “weak” learning algorithm (i.e., one that provides

observations belonging to onewfclasseqC1,Cs,---,CUm},  |ess than acceptable classification accuracies) [26]. To do
we desire a tesI’ that partitionsD into » mutually exclusive s poosting algorithms estimate multiple classifications in
subsets{ Sy, S, - --,.5, }. If we define f(C;, D) to be equal gy jterative fashion using the base classification algorithm
to the number of cases iP? belonging to class’;, and D[ (i this case C5.0). At each iteration, a weight is assigned
to be equal to the total number of observationsIin then 1, each training observation. Those observations that were
the amount of information required to identify the class for ag,isciassified in the previous iteration are assigned a heavier
observation inD may be quantified as weight in the next iteration, thereby forcing the classification
. algorithm to concentrate on those observations that are more
info(D) = — 3 f(Cy, D) « log, f(ngD)' ) difficult to classify. Each iteration therefore produces a new
| D] | D] classification tree, with the intent of correcting misclassifica-
tion errors committed in the previous iteration.
The boosting algorithm implemented in C5.0 is based upon
daBoost.M1 [23], [5]. Following [23]u!, is defined to be
he weight assigned to observatian at trial ¢. For ¢ =
1, wl = 1/N for all z, where N is the total number of
X observations in the training set. At each iteration, a classifier
infor(D) = Z ||11))Z|| % info(D;). @) Ct is constructed using the assumption that for eachy?,
=1

=1

Given a test, 7, that partitions D into k& outcomes
{D1,Ds,---,Dy}, a similar measure may be define
that quantifies the total information content after applyifg

reflects the probability of occurrence for An error term, ¢t

is calculated as the sum of the weights of the misclassified ob-
Using this approach, we can measure the information gaindgf[vations at each iteration. The system terminate$0.5
by splitting D using 7" as orif ¢ =0 (i.e., if > 50% of the observations are misclassified
or if C* classifies all instances correctly). At each iteration, for
. . . each observation that® correctly classifies a new weight is
gain(T’) = info(D) — infor (D). 3 estimated as
The so-called “gain criteria” selects the test for which ¢&in witt = wl x /(1= ¢). (6)
is maximum. Unfortunately, gafff”) tends to favor tests with
large numbers of splits. To compensate for this effect, (&in
is normalized by

Conversely, if the observation was not correctly classified,

is unchanged. Note that at each iteratian, is normalized

such that® w, = 1.

" The result of this procedure is that a new tree with different

split info(T) = — Z |Di| x log, <@) (4) errors is e_stimated at ea_\ch step. The final, boosted (_:Iassifier
—~ |D| |D| is then estimated by voting, where the vote for classifiér

is worth log (1//") units, whereg" = ¢'/(1 — ¢'). Studies

obtaining the splitting metric conducted by machine learning researchers using a variety of
nonremote sensing data sets have shown that boosting tends to
gain ratio(1") = gain(7") /split info(T’). (5) reduce misclassification error rates by about 25% on average,

and that the improvement in classification accuracy tends to

. . . . . ._stabilize by about ten iterations [23].
Using this frameworkD is recursively split such that the gain y (23]

ratio is maximized at each node of the tree. This procedure
continues until each leaf node contains only observations from
a single class or no gain in information is yielded by further )
splitting. A. Analysis
The result from this procedure is often a very large and The analyses performed for this work examine questions
complex tree that may be overfit to noise in the training data.rélated to feature selection and the utility of boosting for
the training data contain errors, then overfitting the tree to tkend cover classification from remotely sensed data. Previous
data in this manner can lead to poor performance on unseesearch has explored the utility of phenological metrics by
cases. To minimize this problem, the original tree must xamining the separability of classes in feature space using
pruned to reduce classification errors when data outside of tflebal data at 4 spatial resolution in association with maxi-
training set are to be classified. To address this problem CB@im likelihood classification techniques [2]. More recently,
uses error-based pruning. For details, the reader is referregpbenological metrics have been tested in association with
[18], [21], [22]. decision trees using the 8 km AVHRR pathfinder data set [3].

IV. METHODS
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Here we consider similar questions using C5.0. We perform TABLE I
this analysis using the same data as that used in [2], and also NDVI-1 DEGREE GLOBAL LAND COVER CLASSES

. . . . (N = NUMBER OF SAMPLES IN EACH CLASS)
using data at 1 km spatial resolution over North America.
Phenological metrics considered include the annual minimum, Class Name N
maximum, amplitude, and mean of monthly NDVI values. For | | broadleaf evergreen forest 628
he  d hi .. . ded i di 2 | coniferous forest & woodland 320
the - ata, geeraF_’ IC position IS encoded in coor .|nates 3 | high latitude deciduous forest & woodland | 112
of latitude (0-180, with the South Pole as 0) and longitude 4 | tundra 735
(0-360). For the 1 km data, geographic position is encoded 5 | deciduous-evergreen forest & woodland 57
using row and sample coordinates from images geo-rectified 6 | wooded grassland 212
to a Lambert Azimuthal equal area projection. The inclusion 7| grassland 348

. L . 8 | bare ground 291

of geographic position is based on the hypothesis that because o | cultivated 537
large §ca]e c;Iim_ate patterns exert strong control on the geo- 10 | broadleaf deciduous forest & woodland 15
graphic distribution of vegetation biomes, geographic position 11 | shrubs and bare ground 153

serves as a good predictor of land cover and vegetation class at

continental to global scales. As part of this analysis we assess

the utility of boosting by comparing cross validated classf 9lobal dataset compiled as part of the International Land
fication results derived from a single (unboosted) decisicpHface Climatology Project (ISLSCP) Initiative | CDROM

tree to those produced by boosted decision tree classificatibhgl: and include one maximum value NDVI composite value
estimated from the same training data. for each month of 1987. For details, the reader is referred to

[13]. The specific training data and associated class labels were

compiled by DeFries and Townshend [4]. These observations
B. Data and labels include 3398 1x 1° locations where three widely
Psed maps of land cover and vegetation [16], [20], [31] are in
greement. The classification scheme used to label these data

scales has precluded previous detailed studies of this natﬁpéj their associated class frequency distribution is presented

and remains a limiting consideration. For this work, we hav8 Table II.

used two data sets. First, we used the North America cep't is important to note that both sets of NDVI data include

classification map and associated twelve month time seriesf'gfte levels of noise associated with the process used to

AVHRR NDVI data produced by EROS Data Center (EDcciomposite the Qata at mor]thly time steps [10]. A varigty of
[14]. These data provide IGBP land cover labels at 1 kmork has examined these issues [8], [13], [30]. In particular,

spatial resolution for the entire North American Continen{\./Iyneni [19] provides a systematic analy;is of the combined
g;:zcts of the atmosphere and surface bidirectional reflectance

The paucity of high quality training data available fo
training and testing of classification algorithms at continentd

It is important to note that although finite levels of labelin NDVI I qf li Furth
error are present, the map does represent the best of its measurements collected from satellites. Further,

for North America. It was generated by manual procedur&¥ud contamination, large solar zenith angles, bias in view
involving unsupervised clustering of maximum value NDVFen'th angles, and registration errors in the monthly AVHRR

observations composited over North America at monthly tinﬁgmposite data all contribute noise to these data [32]. For the
steps for the period from April of 1992 to March of 1993Purposes of classification using decision trees, the key issue
Land cover labels were assigned to each 1 km pixel Ll)§, whether or not the noise is systematic and of sufficient

manual splitting and labeling of NDVI clusters using eXtensiv|(jgrclgnltude to cause confusion between classes. For this work

ancillary data related to soils, climate, topography and oth&f assume that this is not the case based on the success of

relevant information previous work in classifying land cover from monthly com-
Ideally, we would prefer to use training and test datBOSites of AVHRR data (e.g., [4]). Complete details regarding

derived fromin-situ observations, aerial photography, or eveH1e processing techmqu_es us_ed to generate each of the data
manually classified Landsat data. Indeed, efforts are curren?fﬁ"/ts used here are provided in [4], [13], [32], [14].
underway to compile a global database of site data that will be
used to produce and assess the land cover maps produced from
MODIS data. Unfortunately, these data are not yet available.The questions examined in this paper are addressed by
We have therefore relied on the IGBP map produced at Em@mparing classification accuracies achieved using different
under the assumption that it represents the best availafdature sets and boosted versus unboosted decision trees. To
source of this type of data. Using the EDC IGBP databagaovide the most realistic and robust estimates of classifier
a random sample of 5545 joint observations of NDVI dataerformance, we performed a ten-fold cross validation for each
and associated IGBP class values were extracted and uskedsification case considered. To do this, the data were ran-
for the analyses presented here. The IGBP classification afainly partitioned into ten equal sized subsets, ensuring that the
the frequency distribution of IGBP classes within the randowriass distribution of the entire dataset was maintained in each.
sample is presented in Table I. For each run, one subset was held out, using the nine remaining
The second data set we examine is composed of a tisugsets for training and pruning. The reserved subset was then
series of AVHRR NDVI measurements collected at monthlysed to estimate the predicted classification accuracy of the
time intervals during 1987. These data were extracted framecision tree for unseen data, thereby ensuring that our training

V. RESULTS
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Fig. 2. Cross validated classification accuracies for decision trees estimated using different input features®f@ldbal Hata set. Results for unboosted
and boosted trees are plotted in light and dark shades, respectil¥elys NDVI alone; P= phenological metrics alone; N P = NDVI and phenologic
metrics; N+ G = NDVI and geographic position; B G = phenologic metrics and geographic position; AELall input features used.)

and testing data sets were independent for each run. Six input TABLE Il

feature data sets were generated using different combination@MMARY OF RESULTS FROMBOOSTED AND UNBOOSTED DECISION TREES
NoTE: No VALUES (*) ARE PROVIDED FOR THE NUMBER OF NODES FOR

of input feature_S: NDVI _Only’ phenologic metrics O_nly’ NI_D_VI B0oOSTED CLASSIFICATION BECAUSE THESE CLASSIFICATIONS ARE ESTIMATED
and phenological metrics, NDVI and geographic position, rrom MuLTipLE DECISION TREES WITH DIFFERING NUMBERS OF NODES

phenologic metrics and geographical position, and NDVI and

. . . .. ... .. _Input Features Accuracy (%) | # of Nodes
phenological metrics and geographic position. Classification ryes o NpvT oniy 787 3515
trees were generated with and without boosting using C5.0; pegree: NDVI Only, boosted 82.4 %
Values for classification accuracies presented below representDegree: Phenology Only 76.1 134.7
average values across the ten cross validation runs. Resultdlegree: Phenology Only, boosted 74.9 *
from each of our classification exercises are summarized ir] 2¢gree: NDVI+Phenology 779 226.5

I Degree: NDVI+Phenology, boosted 81.3 *
Table III. | Degree: NDVI+Position 92.6 112.4
1 Degree: NDVI+Position, boosted 96.3 *
. 1 Degree: Phenology + Position 94.9 103.0
A. Boosting 1 Degree: Phenology + Position, boosted 96.6 *
Classification accuracies for decision trees estimated fron Bﬁﬁiﬁzf A boosted s H1Ls
the 1°_g|oba| dgta are shown in Flg. 2, and for Fhe 1 km North km: NDVI Only 7 a 5453
America data in Fig. 3. Cross validated classification accuraq xm: NDVI Only, Boosted 76.3 *
cies from unboosted trees are plotted in the lighter shaded km: Phenology Only 56.7 461.0
bars and accuracies produced by boosted trees are plottddm: Phenology Only, boosted 54.9
in the darker shaded bars. These results show that boostingkm: NDVI+Phenology 67.0 569.9
improves classification accuracies for most of the cases tested <™ NDVI*Phenology, boosted 754
R i . m: NDVI+Position 72.4 3252
Three exceptions to this pattern are noted. Specifically, for i, Npyi+position, boosted 79.5 *
the feature set composed of phenologic metrics alone (both 1xm: Phenology + Position 62.8 568.0
km and T data) and the feature set composed of all possiblel km: Phenology + Position, boosted 66.2 *
features (1 km data only), boosting resulted in slightly lower I km: All 771.8 345.9
accuracies. 1 km: All, boosted 76.2 *

It is interesting to note that the improvement yielded by
boosting is not consistent between thfeahd 1 km data sets. for anywhere from~ 20-50% of the misclassified samples
For the 1 km data, improvements were generally on the ordee., ~ 20-50% of misclassified training observations from
of 7-9% (excluding the case composed of all features). Fanboosted decision trees are correctly classified by the boosted
the I* data, on the other hand, boosting tended to improweees). Further, the overall improvement gained from using
classification accuracy by about 4%. However, it is importattte best feature set in association with boosting improved
to note these improvements in classification accuracy accouatassification accuracies from 78.7-96.6% (tata) and from
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Fig. 3. Same as Fig. 2, but for the 1 km data for North America.

67.4-79.5% (1 km data) relative to unboosted classifications 1 Degree Global Data 1 km North America Data
estimated from NDVI data alone. Stated another way, the use

of all available input features in association with boosting re-
duced misclassification rates by 84 and 37% for the global and
North America data sets, respectively, relative to unboosted
trees estimated from NDVI data only.

The boosted decision tree classifications were estimatec g &
using ten iterations of the decision tree algorithm. We choose #
to use ten iterations because previous studies using nonremot
sensing data sets suggest that this number of iterations provide
maximum improvement in classification accuracy and that
little is gained by performing additional boosting runs [5]. To
test this guideline, we estimated boosted classification trees Number of lterations: 1-15 Number of lterations: 1-15
using the full feature space for both data sets and Va”ﬁﬁ. 4. Cross validated classification accuracies for boosted decision trees
the number of boosting iterations from two to 15. Resultsr varying numbers of boosting iterations.
from this analysis are presented in Fig. 4 (Note the use of
different scales on th&-axes). These results confirm that th
accuracy improvement achieved through boosting approacﬁ‘gﬁ : ) e o
an asymptotic value after a relatively few number of iteration¥'® ded no improvement in classification accuracy.

Indeed, the results presented here suggest that relatively Iittlé:Or the 1 km data,_ dlffere_nces in_classification results
accuracy is gained beyond about seven iterations. produced among the different input features are more subtle.

In contrast to the 1 global data, classification trees estimated
_ from phenological metrics produced accuracies that were
B. Feature Selection lower than those estimated from the full twelve month time
Patterns in classification accuracy among the different fezeries. Further, the use of geographic position provided less
ture sets were generally consistent between unboosted @mgrovement relative to those achieved in tifeglobal data.
boosted trees, but clear differences are observed betwee@verall, the highest classification accuracies were produced
boosted and unboosted results for each feature set. Fof theuding a combination of phenology and position for tife 1
global data set, decision trees estimated using different codlata, and a combination of the original twelve month NDVI
binations of input features not including geographic positiotiata set and geographic position for the 1 km data set.
produced comparable accuracies. In comparison, classificatidre fact that phenology provides quite poor results for the
trees estimated from feature sets that include geograpliickm data suggests that subtle information in the twelve
location show considerably=~( 14-18%) higher accuracies.month data is not present in the phenological metrics and
Classifications estimated using only phenological metrics pris- required to provide the highest accuracy. Also, note that
duced comparable accuracies to those estimated from the &lby-product of improved classification accuracy produced

uracy
93 g 95 96
% Accuracy
76 78 80 82

74

91
72

month time series, but combining these two feature sets
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Legend

Il Broadleaf Evergreen Forest I Deciduous-Evergreen Forest [ Cultivated

I Coniferous Forest [ Wooded Grassland [ Broadleaf Deciduous Forest
B High Latitude Deciduous Forest [__] Grassland [ Shrubs & Bare Ground
[ Tundra =1 Bare Ground

Fig. 5. Map of global vegetation produced from the decision tree estimated using all input featufespattial resolution.

by including geographic position as an input feature is thahd dramatic in some. We therefore conclude that boosting is
tree complexity tends to decrease with classification accura@yseful technique and should be used for land cover classifi-
(Table II1). Indeed, the number of nodes in a tree is a goagtion problems using remotely sensed data at continental to
indicator of the predictive power of the input features provideglobal scales.
to a decision tree estimation algorithm. Therefore, in addition Second, adding features related to vegetation phenology
to being more accurate, decision trees estimated using featysgsduced little improvement to classification accuracy. This
with high discrimination among the classes are more compagbult is somewhat at odds with the conclusions of DeFries
and accurate than trees estimated from features with legsal [2] who found that phenological metrics provide useful
predictive power. information to classifications performed using data compiled
at global scales. DeFriest al. [2] used maximum likelihood
VI]. CONCLUSION techniques, however, which are better suited for use with

The general objective of the work described here is to assgsgnmarizing variables _SUCh as pheno_log|cal metrics (which
two strategies designed to maximize land cover classificat:f‘rd to t?e more Gua53|a_n and less noisy than the NDVI data
accuracies derived from supervised classification algorithif@M Which they are derived). More recent work using the
being developed for use with MODIS data. The specifﬂec's'on tree classification algorithm in Splus (bas_ed upon _the
objectives are to improve our understanding of how supervis&d*RT model [1]) also supports the use of phenological metrics
classification algorithms interact with training data, and whigl- The likely explanation for the apparent contradiction
the impact of these interactions is on the final map producBgtween the results cited in [2], [3] and those presented
by classification of coarse spatial resolution remote sensifi§® is that developments in decision tree algorithms since
data. Because MODIS will provide data that are superior foART have produced algorithms that are superior in terms
AVHRR in terms of radiometric quality, geometric integrity,Of their ability to handle noise and perform feature selection.
and spectral resolution, we expect accuracies derived frdngieed, the fact that the decision tree classification accuracies
classifications based on MODIS data to improve accordingresented in this work show no improvement with the addition
However, improved understanding of the utility of currentlf phenological metrics suggests that the useful information
available input features as well as careful accounting ferovided in the phenological metrics is being extracted by the
artifacts introduced by training site selection are required teees from the original NDVI data.
provide the best product possible. Third, for the data sets examined here, the use of geographic

The results presented in this paper suggest several mp@sition provides substantial predictive power to the decision
conclusions. First, boosting improved the classification accuiee classification algorithms. As we indicated in Section IV-
racy for nine of the twelve input feature data set combinatiods this result can be largely explained in terms of climate
examined. The improvement was substantial in many casesntrol on the large scale distribution of global vegetation.
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Fig. 6. Map of training sites used to produce the decision tree®asphtial resolution.

Stated another way, it is not surprising that geographic positian input feature. Stated another way, because the training data
has relatively high predictive power when classifying fairhare not distributed evenly within the geographic space of each
coarse classes of vegetation at continental and global scafdass, a classification based partly on geographic coordinates
This effect is particularly evident in the®1data for which proves to be very effective for classifying the training data.
geographic position increases classification accuracies by morgfortunately, these accuracies do not reflect the true accuracy
than 13%. of the final map produced from the decision trees estimated
Despite this encouraging result, a word of caution is ifiom these data.
order. To illustrate, Fig. 5 presents a map of global vegetationin contrast, the geographic distribution of sample points
generated using the decision tree estimated from all availablethe 1 km North America data is random (i.e., evenly
features using the®ldata set. The cross validated classificatiodistributed geographically) and the improvement in classifica-
accuracy for the training data for this input feature set wa®n accuracies yielded by inclusion of geographic position is
96.1%. However, visual inspection of this map shows distinstibstantially smaller relative to that produced for tReybbal
latitudinal banding in eastern North America and Eurasia data set. Therefore, the improvement in classification accuracy
roughly 50 north that is clearly a by-product of interactionachieved by inclusion of geographic features in this data set
between the geographic location of the training data ail probably more representative of the true predictive utility
the classification procedure. In North America, evergreai these features. An important conclusion from these results
coniferous forests are almost completely absent in the westérrtherefore that geographic position should only be used as
mountain regions of the United States (replaced by grasslamdecondary input feature used to discriminate between land
and agriculture classes), and deciduous and conifer forestser classes that are spectrally similar, but geographically
of the southern and eastern United States have been labalistinct.
as cultivated. Further inspection reveals a variety of otherFrom a more general perspective, it is clear that the classi-
problems. fication results produced by supervised algorithms are heavily
These observations clearly show that the cross validatediant on the quality and representativeness of the training
estimate of classification accuracy for these data is spuriodata used. Thus, care must be used in interpreting estimated
In particular, this result seems to be produced by interactiofassification accuracies from remote sensing derived maps
between the decision tree estimation algorithm and the distat- continental to global scales, and that by extension, geo-
bution of the training data sites (Fig. 6). Because the decisigraphically and spectrally representative training data are a
tree attempts to optimize classification accuracy with respd@y requirement to the success of supervised classification
to the training data provided, over- or underrepresentatiaigorithms planned for use with MODIS data. Indeed, probably
of specific classes within geographic subregions introducge most important factor influencing the quality of land cover
substantial bias to classifications using geographic positionraaps produced from MODIS data will be the quality of the
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training data used. To this end, the compilation of extensiyeo] J. S. Olsen, J. Watts, and L. Allison, “Carbon in live vegetation of major
and high quality training data are a current focus of our efforts.
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