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ABSTRACT 
 
The insights gained from present land cover classification activities suggest integration of multi-

angle data into classification attempts for future progress. Land cover types that exhibit distinct 

signatures in the space of remote sensing data facilitate unambiguous identification of cover types. 

In this first part, we develop a theme for consistency between cover type definitions, uniqueness of 

their signatures and physics of the remote sensing data. The idea of angular signatures in spectral 

space is proposed to provide a cogent synthesis of information from spectral and angular domains. 

Three new metrics, angular signature slope, length and intercept indices, are introduced to 

characterize biome signatures. The statistical analyses with these indices confirm the idea that 

incorporation of the directional variable should improve biome classification result. The 

consistency principle is tested with the Multi-angle Imaging SpectroRadiometer (MISR) leaf area 

index algorithm by examining retrievals when both unique and non-unique signatures are input 

together with a land cover map. It is shown that this requirement guarantees valid retrievals. Part 

two provides a theoretical basis for these concepts (Zhang et al., 2001). 

 

INTRODUCTION 
 

The identification and classification of global vegetation into cover types and biomes is valuable 

for at least two reasons. First, land cover and land use changes inferred from vegetation maps is not 

only a direct evidence of the human and climate impact on the land but is also a key piece of 

information required for the study of global biogeochemical cycles (Vitousek et al., 1997). Second, 

most climate and biogeochemical models, and algorithms that estimate surface biophysical 

variables from remote sensing data utilize vegetation maps to assign certain key parameters to 
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reduce the number of problem unknowns (e.g., Bonan, 1998; Potter et al., 1993; Knyazikhin et al., 

1998a,b). In short, a fundamental description of global vegetation is simply characterizing the cover 

type at a certain location and a given time. 

Remote sensing data, especially satellite-measured reflected radiation magnitudes at broad 

wavelength bands in the solar spectrum, have been used to segregate global vegetation into a finite 

set of spectrally similar classes using cluster analysis, decision trees, neural networks, etc. (DeFries 

and Townshend, 1994; Moody and Strahler, 1994; Running et al., 1995; Friedl and Brodley, 1997; 

Gopal et al., 1999, Carpenter et al., 1999; Hansen et al., 2000). The accuracy of the produced 

vegetation maps varies widely depending on the training data, input remote sensing data and the 

classification method. The insights gained from these activities suggest integration of multi-angle 

data into land cover classification attempts for future progress in this area. 

The theme of this two-part series is the following. Land cover types that exhibit distinct 

signatures in the space of the remote sensing data facilitate unambiguous identification of the cover 

types. This implies: (a) cover definitions consistent with physics of the data, (b) number of classes 

dependent on the number of distinct signatures and, (c) spatial resolution of remote sensing data 

consistent with cover type definitions to minimize the problem of mixtures. The discussion in these 

papers is limited to spectral and angular dimensions of the optical remote sensing data. 

The consistency mentioned above is the following. The physics of processes operative in the 

generation of optical remote sensing data, namely, radiative transfer, admits certain variables which 

characterize the transport and interaction of photons with the host medium (Myneni et al., 1995). 

These variables are determined by the structure and optics of vegetated land surfaces. Land cover 

definitions, if given in terms of these surface properties, provide consistency with the signal 
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generating processes of the measurement. Possibly, such a consistency principle constitutes a 

theoretical basis for land cover identification.  

This two-part series is organized as follows. The relationship between cover type definitions, 

spatial resolution of the data and cover mixtures is addressed first. The spectral and angular 

signatures of different cover types as recorded in the Polarization and Directionality of the Earth's 

Reflectances (POLDER) data are presented next. Information from spectral and angular domains is 

synthesized as angular signatures in spectral space. Two new metrics, angular signature slope and 

length indices, are then introduced and evaluated. The consistency requirement is tested with the 

Multi-angle Imaging SpectroRadiometer (MISR) leaf area index algorithm by examining retrievals 

when both unique and non-unique signatures are input together with a land cover map. It is shown 

that the consistency requirement guarantees valid retrievals. The second part of this series provides 

a theoretical basis for these concepts (Zhang et al., 2001). 

 

LAND COVER DEFINITIONS AND SPATIAL RESOLUTION OF THE DATA 
 

Land cover or biome classification is typically based on identifying the spectral signature (and its 

temporal evolution) of a cover type and utilizing this signature to classify a large region. A 

common problem with land cover and biome maps is one of misclassification; that is, a pixel is 

wrongly designated as a certain cover type. However, even when a pixel is designated as the correct 

cover type, there is still the possibility that the designated cover type is just the dominant cover 

type, and other cover types can potentially exist at that location. This problem of land cover 

mixtures generally arises when the chosen set of land cover classes and spatial resolution of the 

data or the classification map are incompatible. In some instances, however, mixtures occur 

naturally even at high spatial resolutions, as for example, needle leaf and broadleaf forest mixtures, 
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in which case the mixture should be treated as a separate cover or biome type. Since land cover 

information is routinely used in retrievals of leaf area index (LAI), fraction of incident 

photosynthetically active radiation absorbed by vegetation (FPAR) and albedo (Knyazikhin et al., 

1998b; Lucht et al., 2000), and in global climate and biogeochemistry models (e.g., Bonan, 1998; 

Potter et al., 1993), it is important to characterize the degree of land cover heterogeneity. This is 

facilitated here by the availability of a higher resolution biome map (1 km) compared to the 

resolution of the POLDER data (6.17 km).  

 

POLDER Data  

 

The POLDER instrument is a wide field of view imaging radiometer designed to measure the 

directionality and polarization of the sunlight scattered by the Earth/atmosphere system 

(Deschamps et al., 1994). The instrument acquired eight months of data globally from November 

1996 to June 1997 at 6.17 km resolution and 8 wavelengths (443, 490, 565, 670, 763, 765, 865, and 

910 nm). Polarization of the incident light is measured at three channels, 443, 670 and 865 nm. The 

Level 2 POLDER multi-angle surface reflectance products are geocoded, calibrated, cloud screened 

and partially atmosphere-corrected data (Leroy et al., 1997). For operational reasons, the surface 

reflectances were not corrected for the tropospheric aerosol effects (Hautecœur and Leroy, 1998). 

The data thus contain some residual noise, possibly from sub-pixel clouds and aerosol effects, 

which can be gauged from the reflectance at 443nm channel (Bicheron and Leroy, 1999). The 

POLDER multi-angle surface reflectances (BRDF – the bidirectional reflectance distribution 

function) at red (670nm) and near-infrared (NIR) (865nm) wavelengths over North America for the 

period June 1, 1997 to June 30, 1997 were used in this study. The maximum view angle is 
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approximately 60º and there are up to 14 looks for each multi-angle measurement, but the typical 

number is 12.  

The accuracy of surface reflectances after removal of atmospheric effects essentially 

determines the accuracy of surface parameter retrievals (Martonchik, 1994). Uncertainties of a 

multi-angle measurement can be evaluated from several records of directional reflectances of the 

same pixel (as in Fig. 1). The average shape of BRDF and its directional spatial variation, namely 

BRVF (Bidirectional Reflectance Variance Function), can be used to study the typical signatures 

among different land cover types (Ni et al., 1999; 2000). The mean BRDF, its variance BRVF for 

an individual pixel or a group of pixels, are calculated as follows: 
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where BRDF  denotes mean BRDF, BRVF is the variance, and N is number of available records 

over direction ),( vv ϕθ . Specifically, we evaluate the mean BRDF and BRVF, and relative 

uncertainty  for each pattern of POLDER configuration by substituting ),( vv ϕθ  with )( iµ  for the 

above formulas (the definition of � is explained later; cf. Fig.5). Therefore, the BRDF(i) and 

BRVF( i) denote the average of BRDF and BRVF values over the interval [i-1 i) (see Table 1). 

The relative uncertainty �can be calculated as follows: 
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Table 1 shows variation in )(µε  derived from all available observations of a selected needle 

leaf forest pixel and for each of the three patterns of observation configuration (these are explained 

later; cf. Fig. 5). The uncertainities of the multi-angle records are about 31% at red and 11% at 
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near-infrared, irrespective of the observation geometry. The higher uncertainty at red is due to a 

stronger atmospheric effect and smaller vegetation signal (Kaufman and Sendra, 1988). Variations 

in BRDF corresponding to oblique view angles exhibit similar behavior, i.e., they are maximal at 

off-nadir directions and minimal at near-nadir looks. Again, this is due to a larger atmospheric 

effect at off-nadir directions compared to near-nadir views.  

 

Biome Classification Map 

 

A decision tree classification algorithm was used to generate a six biome North American land 

cover map from AVHRR normalized difference vegetation index (NDVI) and ancillary data 

sources at 1 km resolution (Lotsch et al., 2000). The biome classification scheme segregates global 

vegetation into six major biome types depending on the vegetation structure, optical properties and 

backgrounds (Myneni et al., 1997). These biome types are: grasses and cereal crops, shrubs, 

broadleaf crops, savannas, broadleaf forests and needle leaf forests. The site-based accuracy of this 

map is 73%. When compared with maps generated from the same data but classified using the 

International Geosphere Biosphere Program (IGBP) classification scheme (e.g., the EDC map 

(Loveland et al., 1995) and the UMD map (Hansen et al., 2000)), the six biomes were mapped with 

approximately 5% higher overall accuracies (Lotsch et al., 2000). This improvement is possibly due 

to fewer biome classes than IGBP classes. 

 

Land Cover Mixtures 

Each 6.17 km POLDER pixel encompasses about 36 pixels from the 1 km biome map. Let 

HF(biome) be the fractional coverage of the various biomes or the homogeneity factor. We assign 
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the predominant biome to the larger POLDER pixel. Thus, the 6 km map provides information on 

the large scale biome distribution and also on the degree of cover heterogeneity within each pixel. 

The fractional coverage of the dominant type varies considerably and can be less than 50% in the 

case of severely mixed pixels. If one insists on highly homogeneous pixels, say HF = 90% or 

100%, then only 27%-10% of the 6 km pixels satisfy this requirement (Table 2). About 20% of the 

pixels cannot be assigned a biome type because the homogeneity factor is less than 50% at 6 km 

resolution.  

We shall assume the homogeneity factor to be an approximate index of biome patch size. For 

pixels with HF=100%, the patch size is 36 km2. Likewise, the patch size is 18 km2 for HF=50%. 

Strictly speaking, this definition of patch size is not valid when HF is less than 100%, as the smaller 

1 km2 pixels of a particular cover type are not necessarily spatially contiguous within the patch, 

although the degree of contiguity should be higher for large values of the homogeneity factor. For 

this reason, this analysis is restricted to homogeneity factors greater than 50%. The relative 

proportion amongst the six biomes of patches greater than a certain size is shown in Fig. 2. This 

proportion in the case of broadleaf and needle leaf forests is independent of the patch size, and is 

approximately 10% and 30%, respectively. In the case of shrubs, there is a skewness towards larger 

patches, while the opposite is seen in the case of grasses. This is further illustrated with a plot of the 

patch size distribution in Fig. 3a. Grasses, crops and savannas show smaller patches with increasing 

frequency, possibly indicating their prevalence everywhere. Shrubs on the other hand show just the 

opposite. The shrubs are generally found in arid regions where it is hot and dry, and the location of 

such regions is usually spatially not fragmented. Hence, not all patch sizes of shrubs are to be 

found. In the case of forests, the frequency of very large patches is high, and the frequency for 

patches of all other sizes is constant. The merit of this discussion is not in its rigor, but as an 
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approximate guide for taking the first steps towards addressing the issues of scale and mixtures in 

this context. 

To minimize land cover mixtures, and thus restrict most errors to misclassification only, 

patches of all sizes must be uniquely assigned a land cover or biome type. While this demands very 

high-resolution data, one can aim for minimizing the problem of mixtures in, say 60%, of the 

patches. The critical resolution of the remote sensing data required is now defined by the patch size 

at which the cumulative size distribution crosses this threshold when cumulated along decreasing 

patch size (Fig. 3b). For shrubs, which show a high frequency of larger patches, the critical 

resolution is lower, about 5.5 km. On the other hand, grasses, crops and savannas, which show 

smaller patches with increasing frequency, the critical resolution is about 5 km. Thus, the critical 

resolution is biome dependent. Again, we emphasize the lack of rigor in these arguments. The 

results are provided for illustrative purposes only. 

SPECTRAL SIGNATURES 
 

The location of reflectance data in the spectral space is the basic source of information about the 

vegetation canopy conveyed by single-angle multi-spectral satellite data. This information is 

typically used for biome identification. The movement of data in this space characterizes changes 

in canopy properties (Shabanov et al., 2000). This is exploited in the design of vegetation indices 

(Huete, 1988). The biome spectral signatures, defined as the location of canopy bidirectional 

reflectance distribution functions in the spectral space, are shown in Fig. 4 which depicts the 

POLDER BRDF densities in the red-NIR (near-infrared) and red-blue spectral spaces as a function 

of biome type and homogeneity factors. Each contour in Fig. 4 separates an area in the spectral 

space of high data density containing 50% of the pixels from a given biome. Thus, the density 

contour shows the most probable location of the biomes in the spectral space. This location depends 
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on canopy structure, optical properties of the leaves and ground, sun-view geometry, and spatial 

resolution of the data.  

The locations of biome data in the spectral space, that is, their spectral signatures, are more 

distinct for the case of homogeneous patches (HF=100%) as expected. This is especially true in the 

red-NIR space than in the red-blue space for the following reason. The canopy-leaving radiation is 

a function of canopy structure, which is wavelength independent, and optical properties of the 

leaves and the canopy background. The optical properties of the foliage are similar at blue and red 

wavelengths. Therefore, the spectral properties of a sufficiently dense canopy are comparable in 

magnitude at these wavelengths.  

The signatures of broadleaf forests, needle leaf forests, shrubs and to some extent grasses are 

distinct in the red-NIR space (Fig. 4a). The other two biomes, savannas and broadleaf crops, tend to 

overlap with broadleaf forests, grasses and shrubs. Such confusion will lead to misclassification, if 

only information on location in the red-NIR space is used. Therefore, additional information, 

preferably angular as it characterizes canopy structure, is needed for biome identification and 

parameter retrieval. 

 

ANGULAR SIGNATURES  
 
A vegetated surface scatters shortwave radiation into an angular reflectance pattern, known as the 

Bidirectional Reflectance Distribution Function (BRDF), the magnitude and shape of which is 

governed by the composition, density, optical properties and geometric structure of the vegetation 

canopy. The BRDF is defined as the directional radiance emanating from a target divided by the 

irradiance (incident flux density) illuminating the target along a single incident angle (Nicodemus 

et al., 1977). Its shape is informative of canopy structure and ground beneath the canopy. 
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The angular signatures of vegetation canopies are often demonstrated as variations in 

reflectance with respect to view polar angle in the principal plane (Brèon et al., 1997). These 

signatures typically show a sharp peak about the retro-solar direction, the so-called hot spot effect 

(Kuusk, 1983), because of the absence of shadows. Strong backscattering is another characteristic 

feature of vegetation angular signatures. Deriving such signatures from single-look instruments 

requires compositing many days of data, which introduces considerable uncertainities due to 

changing atmospheric and surface conditions. However, with instruments such as POLDER and 

MISR, near-simultaneous looks of the same target are possible and this facilitates the study of 

angular signatures. 

The angular variation of the BRDFs of a homogeneous patch of needle leaf forest as measured 

by POLDER is shown in Fig. 1. The BRDFs were assembled from 30 different POLDER views of 

the same pixel during June of 1997, which then were averaged over the records. The corresponding 

sun-view geometries are also shown in Fig. 1. The variation about the mean reflectance values can 

be largely attributed to changing measurement geometry and atmospheric conditions because the 

needle leaf forest can be assumed to be a reasonably stable target during this month. Such 

variations are indicative of the degree of uncertainty in the measurements, which is a valuable 

source of information for inverse problems (Wang et al., 2000). The geometrical variables required 

to express the angular signatures are developed in the next section. 

The general shape of the BRDFs for different biomes and the corresponding directional 

spatial variance information (BRVF) can be reconstructed from a group of multi-angle 

measurements by (1) and (2). The average BRDF and BRVF shapes are demonstrated in Fig. 5 

from homogeneous pixel data of the six biomes. These BRDF shapes for the six biomes show 

certain differences and in general, the hot-spot can be clearly observed. BRVF shapes appear to be 
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similar to the corresponding BRDFs, which indicates that a variation peak exists in hot-spot area 

and minimum value at forward scattering. This shape is similar to the BRVF measurements and 

models (Ni et al., 1999). The vegetation cover is an important determinant of spatial variance, 

especially when the background is brighter than the vegetation canopy. The contrast between sunlit 

and shaded tree crowns in the case of forests also contributes to the spatial variance (Ni and Jupp, 

2000). Therefore, we can expect the BRVF to also peak in hot-spot direction. The reason that the 

BRVFs of POLDER data do not show an apparent peak value about the nadir direction, compared 

to measurements, is probably because of the coarse resolution of the data. For fine resolution data, 

the nadir view has more probability to capture the bare soil or dense vegetation. The BRVFs exhibit 

higher value at the edge and lower values in the middle. The high value of BRVF indicates either 

the directions have more information or the uncertainties of the measurements are high.  

 

GEOMETRY OF ANGULAR SIGNATURES 
 

POLDER view directions define a curve on the reference horizontal plane in cylindrical 

coordinates (Fig. 1a). All curves corresponding to the various multi-angle records have similar 

orientation as determined by the POLDER observation configuration. One of these curves is a near 

straight line passing through the pole and represents a multi-angle record with an almost constant 

view azimuth. Let this be denoted as the reference curve or line. The other curves are nearly 

symmetric with respect to the reference line. The angle between the reference line and the 

horizontal OX axis, measured counter-clockwise, is used to parameterize the reference line (Fig. 6). 

This angle is denoted as the slope of the reference line. The slope angle (ϕs) can change with 

latitude of the pixel. Its value varies between 30° and 60° for North America. Each direction 
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Ωv � v,ϕv) of a multi-angle record can be projected onto the reference line and parameterized in 

terms of the distance  between the pole O and its projection (Fig. 6), and assigned a “+” sign if 

!��and sign “−” , otherwise. 

Let  Ωd∼(d,ϕd) be the direction from a multi-angle record closest to the nadir (Fig. 6). Here 

sin−1d and ϕd are the corresponding polar angle and azimuth, respectively. A negative value is 

assigned to d if the curve is located below the reference line, i.e., the distances d and −d correspond 

to Ωd ∼ (d, ϕd) and Ω−d ∼ (d, 180° + ϕd), respectively. In this manner, the multi-angle record is 

characterized in terms of the slope, ϕs, the distance, d, and its view directions expressed in terms of 

the distance . The horizontal axis in Fig. 1b shows variation in . Based on the foregoing, "typical 

patterns" of sun-view configurations can be identified by holding ϕs and d constant. For example, 

we split the set of multi-angle records into three patterns. Two of these contain off-nadir directions 

(corresponding to +d and −d) and the BRDF variation is mostly due to changes in the view 

azimuth. The third represents records close to the reference line and captures variations in the 

BRDF due to changes in view polar angle. 

The above parameterization depends on the slope ϕs distance d and the solar zenith angle 

(SZA). The probable illumination conditions are summarized in Table 3 (upper part). For a given 

biome type, probable SZA range and ϕd are selected to include majority of available data (shown as 

“Data Used” in Table 3). Then three patterns can be defined depending on the value of d; for 

example, d = [0.5,1] ("pattern 1, +d"), d = [0.34,0.5] ("pattern 2, 0d"), and d = [1,0.34] ("pattern 3, -

d"). The intervals are chosen such that they have an approximately equal probability of occurrence 

(Table 3). The variation of d within each class is ignored and represented by its mean value. The 

directional variation is expressed in terms of the distance . In the case of patterns 1 and 3, view 

polar angles are approximated by the corresponding mean value of sin–1d. Variations in , 
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therefore, are due to changing of azimuth. In the case of pattern 2, d = 0 and thus variations in  are 

due to changing view polar angle. The three patterns cover more than 70-80% of the available data. 

Table 3 also shows the mean and standard deviation of d and ϕs for all the patterns. The range of 

slope angles is, in general, less than 30°. The angular signatures can now be represented as BRDF 

variations of patterns 1, 2 and 3. 

The biome-specific BRDF averaged over pixels with homogeneity factors greater than 90% is 

shown in Fig. 7 for the three angular geometry patterns. Two features of the angular signature can 

be used to specify the angular variation of the reflected radiation: the magnitude of the BRDF and 

its shape. Typically, the reflectance of a vegetation canopy tends to vary between 0 and 0.2 at the 

red band and, 0.1 and 0.4 at the near-infrared band. Broadleaf and needle leaf forests have the 

lowest red reflectances, while their near-infrared reflectance varies about the minimum (needle leaf 

forests) and maximum (broadleaf forests) values of canopy reflectances. This feature permits 

identification of these biomes using the magnitude feature. Shrubs can be regarded as the brightest 

biome, exhibiting almost the highest reflectances at both red and near-infrared. On the other hand 

savannas, which are mixtures of grasses and woody vegetation, tend to exhibit the lowest 

reflectances at these bands. The remaining biomes, grasses and crops, have intermediate reflectance 

magnitudes, that is, between shrubs and savannas. 

As for the shape of the BRDF, shrubs have a distinct shape with a sharp jump at about the 

upper and lower bounds of µ (pattern 1 of POLDER observation configuration). This corresponds 

to low sun (µ0 ≈ sin(50o)) and view (µ ≈ sin(40o)~sin(60o)) polar angles. The view of the forward 

scattering direction as determined by the distance µ ≈ sin(−50o) (corresponding to azimuth ≈180o) 

lies on the principal plane, and thus, the BRDF takes on its local maximum. The distance µ ≈ 

sin(50o) (azimuth ≈70o) specifies a back scattering direction close to the hot spot direction. The 
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values of the BRDF vary about its global maximum in this case. These two extreme situations are 

responsible for the observed jumps in the canopy angular signature. In the case of grasses and 

crops, the angular signatures are nearly identical, thus their identification is difficult. In the case of 

pattern 2, the backscattering directions lie in the planes close to the principal plane (cf. Table 3), 

and thus, the hot spot, although not well discerned, is recorded in the POLDER data. It appears that 

there are biome specific features in both the magnitude and shape of the BRDF but there is also 

considerable variation within a biome type from changing geometry of view and illumination. 

 

ANGULAR SIGNATURES IN SPECTRAL SPACE 
 

The angular signatures at different spectral bands are not independent. To demonstrate their 

correlation, we treat a multi-angular record, which contains the angular variation of BRDF as a 

function of view directions, as a curve on the red-NIR (near-infrared) spectral plane. Such curves 

are shown in Fig. 8 for the six biomes from the three geometry patterns introduced earlier. These 

signatures show four features which can be used to distinguish the biomes: (1) location in the 

spectral space, (2) inclination, (3) length, (4) intercept. With the exception of grasses and crops 

which tend to have identical angular signatures in the red-NIR space, the signatures are unique in 

terms of the above three metrics. The angular signatures are nearly linear in the spectral space. In 

fact, statistical analysis indicates a significant linear relation between the red and near-infrared 

reflectances (Table 4).  

Canopy reflectances having the same normalized difference vegetation index (NDVI) value lie 

on a single line passing through the origin of the red-NIR plane. The NDVI of all biomes, with the 

exception of shrubs, is insensitive to the view directions. That is, the intercept values from the 

regression are identical to zero. This is further evidence for the insensitivity of NDVI to view, and 
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from reciprocity arguments, sun angle changes in the case of dense vegetation canopies. The fact 

that shrubs tend to have a non-zero intercept indicates NDVI sensitivity to view and sun angle 

variations. This is because the surface reflectances are nonlinear combinations of vegetation (shrub) 

and ground reflectances. Theoretical arguments further elucidating these concepts are presented in 

the second part of this series (Zhang et al., 2001; also see Kaufmann et al., 2000). The view 

direction averaged NDVI values of the different biomes, shown in Table 4, indicate the unique 

inclination of the angular signatures in the spectral space, with the exception of grasses and crops. 

The location of the biome data in the spectral space is also distinct as it can be ascertained from the 

mean red and near-infrared reflectance values shown in Table 4. A methodology for quantifying the 

three metrics characterizing the angular signatures in spectral space is given in the next section.  

The six biome types proposed by Myneni et al. (1997) were defined in terms of vegetation 

structural, optical and background attributes that define variables admitted by the radiative transfer. 

They argued that this linkage was needed to establish a theoretical basis for the biome identification 

with remote sensing data. This is similar to the consistency theme mentioned previously. We note 

from Fig. 7 that the grasses and cereal crops have a signature similar to broadleaf crops. Therefore, 

potentially five biomes can be identified with multi-spectral multi-angle reflectance data. It is, 

however, possible that with additional information, say in the form of temporal variation of remote 

sensing data, this confusion can be resolved, possibly by seasonality and ground cover differences. 

This is not to argue that global vegetation can be classified into five biomes only with optical 

remote sensing data. It is possible that other unique signatures exist in the data space which we 

have not identified. Therefore, we examine below the angular signatures in spectral space of 

vegetation cover types from a more detailed classification (Hansen et al., 2000). 
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A 1 km land cover map (Hansen et al., 2000) was used to derive land cover specific angular 

signatures from the POLDER data. This classification includes ten vegetation cover types: 

Evergreen Needle leaf Forest (ENF), Evergreen Broadleaf Forest (EBF), Deciduous Broadleaf 

Forest (DBF), Mixed Forest (MF), Woodland (WL), Wooded Grassland (WG), Closed Shrubland 

(CS), Open Shrubland (OS), Cropland (CL) and Grassland (GL). Deciduous needle leaf forest is 

not predominant in North America; so we exclude this cover type. Thus, the major forest covers are 

ENF, EBF and DBF. The EBF is located mainly in Central America. The OS represents vegetation 

in the high latitude areas. The other land covers are generally distributed in the middle of the 

continent. The 1 km map was aggregated to 6 km resolution as per homogeneity considerations 

discussed earlier. 

The angular signatures of the ten land covers are shown in Fig. 9 in the red-NIR space. The 

first panel (Fig. 9a) depicts the signatures of the forests. The second panel (Fig. 9b) shows the 

angular signatures of the shrublands, grasslands and crops. In both panels, the signatures of 

woodlands and wooded grasslands are included for better visualization of forest signatures vs. the 

herbaceous vegetation covers. The signatures of deciduous and evergreen broadleaf forests have 

similar location and slope in the spectral space. In the six-biome classification, these land covers 

are aggregated into one biome type, broadleaf forests. And, the biome and land cover signatures are 

identical; for instance, compare the broadleaf forest biome signature in Fig. 8 to the signature of 

EBF and DBF in Fig. 9a. Like wise, the signature of the needle leaf forest biome is comparable to 

the signature of the ENF. The mixed forests are located in between the broadleaf and needle leaf 

biomes. The location depends on the proportion of the two biome types in the mixture. If that were 

the case, the signature of the mixed forest may be treated as a superimposition of the signatures of 

the two forest biomes, but this needs further investigation. 
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The savanna biome is represented by woodland and wooded grassland in the Hansen et al. 

(2000) classification. These cover types have identical signatures and are comparable to the 

signature of the savanna biome, shown in Fig. 7. The signatures of grassland, closed shrubland and 

crop cover types are indistinguishable and this compares to an identical situation with respect to the 

signatures of grasses and crops in the biome classification scheme. The signature of the open 

shrubland cover type is comparable to the signature of the shrubs biome. Thus, with the exception 

of the mixed forest cover type, the other nine cover types have five distinct angular signatures in 

the spectral space, and these map to the five biome types proposed by Myneni et al. (1997). This 

also implies that there would be even fewer unique spectral signatures. It is, however, possible that 

the cover types have distinct signatures in the spectral-temporal space, as suggested by Hansen et 

al. (2000), but this needs to be investigated. 

 

SLOPE AND LENGTH INDICES 
 

As mentioned previously, the biome specific angular signatures in the red-NIR spectral space can 

be characterized by three metrics: (a) their location in the spectral space, which is mainly 

determined by the biome type (Fig. 4); (b) inclination (slope and intercept) of the signature, which 

is determined by leaf and soil optical properties, and the structure of the canopy; and (c) the length 

of the signature, which describes spectral variation in the shape of the BRDF. A rigorous derivation 

of these interpretations using radiation transport theory is given in the second part of this series.  

The slope of the angular signature in spectral space is quantified by the Angular Signature 

Slope Index (ASSI), defined as 

 



 18

∑

∫

−

=

+

+

+

=

−
−

•
−
−

≈

∂
∂

−
=

1

1 1

1

1

1

minmax

)()(

)()(

)(

)(1 max

min

N

v N

vv

vredvred

vNIRvNIR

red

NIR

BRDFBRDF

BRDFBRDF

d
BRDF

BRDF
ASSI

µµ
µµ

µµ
µµ

µ
µ
µ

µµ

µ

µµ

     (4)  

 

where  is the distance defined in Fig. 6. This index was evaluated for all pixels with homogeneity 

factors of 100%. The mean and standard deviations for the six biomes are shown in Table 5. Small 

variations in the red band and large variations in the near-infrared band result in large values of 

ASSI. Therefore, the forest biomes have larger ASSI values compared to the other biomes although 

there is considerable variability within a biome type. The ASSI can also be taken as the slope of the 

mean angular signature in the spectral space, if it is a linear or near-linear function. For the pixel-

mean signatures shown in Fig. 8, the slope and intercept values are given in Table 4. The forest 

biomes show a larger slope, consistent with detailed pixel level calculations presented in Table 5. 

Shrubs show the largest intercept, which as mentioned previously, is indicative of the sensitivity of 

NDVI to view angle changes.  

The length of the angular signature in spectral space can be characterized by the Angular 

Signature Length Index (ASLI), defined as 
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where  is the distance defined in Fig. 6. This index measures the degree of anisotropy in the 

reflected radiation field which is dependent on the heterogeneity of the medium. For the case of a 

homogeneous medium, defined as an isotropic reflector, the ASSL is zero because the angular 

signature in spectral space is a point. Vegetation canopies exhibit structural features such as 

preferred orientation of foliage elements, mutual shadowing, vertical layering and spatial 

discontinuities, which contribute to the anisotropy of the scattered radiation field.  

POLDER measurement configuration patterns 1 and 3 characterize BRDF variations with 

respect to view azimuth, and similarly pattern 2 with respect to view polar angle (Fig. 7). 

Correspondingly, the length indices evaluated from BRDF variations due to view azimuth and polar 

angle changes capture lateral and vertical heterogeneity of the medium. The mean length indices 

for the three measurement configuration patterns are shown in Table 6 for the six biomes. These 

were evaluated from BRDF data of all pixels with homogeneity factors of 100%. Shrubs have the 

highest length index values, relative to other biomes, in all three measurement configurations, thus 

indicating a high degree of both lateral and vertical heterogeneity. The forest and savanna biomes 

exhibit larger pattern 2 length index magnitudes compared to grasses and crops. This indicates a 

higher degree of vertical heterogeneity in the case of the former. 

 

STATISTICAL ANALYSIS OF THE INFORMATION CONTENT OF POLDER DATA 
 
Central to the idea of using directional data from POLDER is the information content of the various 

directional variables. To assess the value and dimensionality of the directional variables, a number 

of statistical analyses were conducted. In particular, we were curious to know if the directional 

signal of the six biomes of interest could be captured by a simpler subset of the directional 

variables.  
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The multi-angle measurements from each POLDER pixel can be represented as the spectral 

mean BRDF values and three patterns of angular signatures, each of which are represented by 3 

angular signature characteristics – slope (S), length (L) and intercept (I). Therefore, there are a total 

of 11 variables measuring the spectral and angular signature of a pixel. Multivariate analysis of 

variance (MANOVA) tests the null hypothesis that the means of the six biomes are the same. Each 

variable is tested individually and then all variables are tested together. The results shown in Table 

7 indicate a high significance level for all variables (F value). This result allows rejection of the 

highly conservative null hypothesis that the means of the six biomes are the same. Table 7 shows 

that the two spectral bands and the three intercepts have higher F values than the other variables, 

and thus are likely to be the most useful in separating these biomes. The slope for pattern 1 (S1) has 

the lowest F value and may not prove as useful as the other variables. Given highly significant 

results for each variable, the question of the dimensionality of the directional data and possible 

redundancy between the nine directional variables arises. 

To determine if strong correlation exists among the variables, a correlation matrix was 

calculated (Table 8). In general, it indicates that the correlation between the variables is not very 

high. This result indicates little redundancy among the directional variables. One possible exception 

is that all three intercept indices are correlated, indicating that it may not be necessary to use all 

three in image classification efforts. Examination of the correlation matrix for the individual 

biomes indicates that for shrubs (not shown here), there are higher correlations among almost all 

variables, which indicate that the dimensionality in data for shrubs is less than other biomes. The 

result of little correlation between variables was also confirmed by a principal component analysis 

(PCA) conducted for each biome, individually and for all the biomes combined. This zero-

correlation rotational transformation is frequently used to remove correlation among variables and 
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reduce the number of variables used in analyses. Figure 10 shows the variance distribution among 

all the 11 principal components for the different biomes and the aggregated PCA for all biomes. 

The pattern of eigenvalues for the six biomes indicates that there is considerable dimensionality in 

the data. The fifth components still contain as much as 10% of the total variance in the dataset, a 

much larger fraction that would occur in a dataset with 11 variables if extensive correlation existed 

between variables. While all 9 directional variables may not be necessary to characterize the BRDF 

for improving image classification, it does imply that BRDF shapes are quite complex and may 

require several variables. Further examination of the pattern of eigenvectors for all six biomes in 

Table 9 indicates several interesting patterns. The first component, and by definition the component 

which explains the most variance, is dominated by the intercept variables and the NIR band. This 

result is not surprising as the MANOVA showed these four bands to have the highest F values, and 

the correlation matrix indicates they are correlated. The implication is that there is considerable 

information content in the intercept values, but all three may not be necessary. The second most 

striking pattern is that components 3, 4 and 5 are virtually devoid of contribution from the spectral 

data and hence are essentially directional variables. Each of these components is dominated by 

different combination of kinds of directional data (e.g. slope, length and intercept) and the three 

patterns. 

One overall interpretation of these results is that the shapes of BRDFs are complex and it 

takes many variables to effectively parameterize them, and capture their information content. The 

idea of using three variables (slope, length and intercept) as well as multiple chords crossing the 

BRDF is supported by the high dimensionality of the data as indicated in the PCA results and the 

significance of each of the variables in the MANOVA. In summary, the statistical analyses indicate 

that both spectral and angular variables are significantly different among six biomes and they all 
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convey information valuable for identifying biomes. Overall, these results strongly confirm the idea 

that incorporation of the directional variable should improve biome classification.  

TEST FOR THE CONSISTENCY ARGUMENT 
 

The estimation of leaf area index (LAI) from reflectance measurements requires accomplishing a 

solution of the radiation transport problem in the inverse mode, which is a well-known ill-posed 

problem (Kimes et al., 2000). It is essential to reduce the dimensionality of this problem, that is, to 

reduce the number of unknowns. This is done by assuming knowledge of some parameters. These 

can be either conservative parameters (e.g., leaf optical properties) or those that are difficult to 

measure (e.g., leaf normal orientation). These parameters are assumed to vary by biome type only 

and a global distribution of biome types is used as a surrogate for the global distribution of these 

parameters. Hence, the use of biome maps in retrieval algorithms (Knyazikhin et al., 1998a,b), and 

also in many global models of land surface processes (Bonan, 1998; Sellers et al., 1996) and 

biogeochemical cycles (Potter et al., 1993).  

The problem of retrieving LAI from vegetated surface reflectances (BRDF) can be formulated 

as follows (Knyazikhin et al., 1998a): evaluate LAI from information on measurement geometry, 

multi-spectral multi-angle reflectances and their uncertainities. The algorithm compares observed 

and modeled canopy reflectances for a suite of canopy structures and soil patterns that represent a 

range of expected natural conditions. All canopy/soil patterns for which the modeled and observed 

BRDFs differ by an amount equivalent to or less than the corresponding uncertainty are considered 

as acceptable solutions. This is called the solution distribution function. The mean values of LAI 

obtained from averaging over all acceptable solutions and their dispersions are taken as the final 

solution and retrieval uncertainty (Knyazikhin et al., 1998b; Zhang et al., 2000; Wang et al., 2000). 

Vegetation structural attributes are parameterized in terms of variables that transport theory admits, 
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i.e., this algorithm is compatible with the biome definitions. The model reflectances are evaluated 

from solution of the three-dimensional radiative transfer equation and expressed as a function of 

sun-view geometry, canopy/soil pattern and biome type. 

The angular signatures shown in Fig. 8b represent BRDF variations as a function of view polar 

angle in the red-NIR POLDER band space. The biome-specific signatures were obtained by 

averaging over all pixels with homogeneity factors of 100%. We note that the signatures of grasses 

and crops are indistinguishable. The signatures of the other biomes can be treated as distinct (cf. 

statistical analysis above). The following question tests the consistency required between biome 

definitions with the physics of remote sensing problem. Can distinct (needle leaf and broadleaf 

forests) and similar (grasses/cereal crops and broadleaf crops) biome signatures result from 

canopies with identical LAI values? 

The biome signatures shown in Fig. 8b were input to the MISR LAI algorithm. Band and angle 

averaged uncertainties in POLDER BRDFs were assumed to be equal to 20%; this corresponds to 

the mean uncertainty (Table 1; pattern 2). The resulting LAI and soil pattern distributions for each 

of the six retrievals are shown in Fig. 11. The mean model reflectance signatures of these solutions 

are shown in Fig. 12 as angular signature in spectral space for comparability. The LAI values and 

soil patterns constituting the solution distribution of the two forest biomes are comparable although 

their reflectance signatures were distinct. This indicates that the information provided by the biome 

map (biome definitions) and that embedded in the model calculations (physics of the problem) was 

critical to associating these identical solutions with distinct reflectance patterns. The solution 

distribution function of grasses/cereal crops and broadleaf crops indicates similar LAI values but 

different soil patterns, in spite of the fact the reflectance signatures input to the algorithm in this 

instance were non-distinguishable. The broadleaf crops are associated with darker soils and the 
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grasses with brighter soils. Again, we conclude that the information provided by the biome map 

and that embedded in the model calculations was critical to associate these different solutions with 

similar reflectance patterns. These results argue for the consistency required between biome 

definitions and their signatures with the physics of the spectral-angular reflectance data, for were it 

not for this consistency, the retrievals would be inaccurate.  

 

CONCLUDING REMARKS 
 

The insights gained from present land cover classification activities suggest integration of 

multi-angle data into classification attempts for future progress. Land cover types that exhibit 

distinct signatures in the space of remote sensing data facilitate unambiguous identification of 

cover types. In this first part, we develop a theme for consistency between cover type definitions, 

uniqueness of their signatures and physics of the remote sensing data. Angular signatures in 

spectral space (Fig. 8) provide a cogent synthesis of information from spectral and angular domains 

(Figs. 3 and 7). These signatures can be characterized in terms of their (a) location in the spectral 

space, which is mainly determined by the biome type (Fig. 4); (b) inclination (slope and intercept), 

which is determined by leaf and soil optical properties, and the structure of the canopy; (c) length, 

which describes spectral variation in the shape of the BRDF. The statistical analyses indicate that 

both spectral and angular variables are significantly different among six biomes and they all convey 

information valuable for identifying biomes. The consistency requirement guarantees valid 

biophysical retrievals because the information provided by the biome map is consistent with the 

physics of the problem and data (Figs. 11 and 12). Part two provides a theoretical basis for this 

consistency requirement (Zhang et al., 2001). 
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FIGURE CAPTIONS 
 
Figure 1. Angular variation of the BRDFs of a homogeneous patch of needle leaf forest as 
measured by POLDER in June 1997 (55.36ºN, 92.20ºW) and the corresponding sun-view 
geometries. The symbols ◊ and Æ denote view and sun directions. The horizontal axis in panel (b) 
is expressed in terms sin-1µ , where parameter µ is defined in Fig. 6. 
 
Figure 2. Relative proportion amongst the six biomes of patches greater than a certain size.  
 
Figure 3. Biome patch size distributions (panel a) and the corresponding cumulative distribution 
functions (panel b).  
 
Figure 4. Contour plot of POLDER BRDF density distribution for different values of the 
homogeneity factor. Each contour separates an area in the spectral space of high data density 
containing 50% of the pixels from a given biome.  
 
Figure 5. POLDER data mean BRDFs and BRVFs for six biomes in red and near-infrared spectral 
bands. 
 
Figure 6. Parameterization of POLDER observation configurations on a horizontal plane in 
cylindrical coordinates. A multi-angular record through the pole O is taken as a reference line and 
parameterized in terms of the angle sϕ  between this line and OX axis; d is the shortest distance 

between the multi-angle record and the pole O; dϕ  is the azimuth of the direction Ωd = ( d1sin − , ϕd) 

closest to the nadir. Each view direction Ωv = (θv, ϕv) from the multi-angle record is projected onto 
the reference line and expressed by the distance µ = sin θv•cos(ϕv−ϕs) between the projection and 
the pole O. Thus, the POLDER record is parameterized in terms of sϕ , d and µ . 

 
Figure 7. Biome-specific BRDF signatures obtained from averaging over pixels with HF>90% for 

the three angular geometry patterns show in Fig.6.  

 
Figure 8. Angular signatures in the red-NIR (near-infrared) spectral space for the three angular 
geometry patterns. The symbol Æ depict the point corresponding to µ1sin −  = −45º.  
 
Figure 9. Angular signatures in the red-NIR (near-infrared) spectral space of the ten land covers  
from Hansen et al. (2000) 1 km land cover map of North America.  
 
Figure 10. The variance distribution among principal components for different biomes. 
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Figure 11. Leaf area index and soil patterns constituting the solution distribution function of the 
MISR LAI algorithm. 
 
Figure 12. Modeled angular signatures in the red-NIR (near-infrared) spectral space from the MISR 
LAI algorithm. 
 
 
 

TABLE CAPTIONS 
 

Table 1. Mean Uncertainties in POLDER BRDFs 

 

Table 2. Distribution of Biomes Based on Homogeneity Factors 

 

Table 3. Geometrical Characterization of POLDER Data 

 

Table 4. Characteristics of Angular Signatures in Spectral Space 

 

Table 5. Angular Signature Slope Index of Biomes 

 

Table 6. Angular Signature Length Index of Biomes 

 

Table 7. Multivariate analysis of variance for six biomes 

 

Table 8. Correlation matrix for six biomes  

 

Table 9. Eigenvectors of principal component analysis 
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Figure 2. Relative proportion amongst the six biomes of patches greater than a certain 
size.  
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Figure 6. Parameterization of POLDER observation configurations on a horizontal plane 
in cylindrical coordinates. A multi-angular record through the pole O is taken as a 
reference line and parameterized in terms of the angle ϕd between this line and OX axis; 
d is the shortest distance between the multi-angle record and the pole O; ϕd is the azimuth 
of the direction Ωd = ( d1sin − , ϕd) closest to the nadir. Each view direction Ωv = (θv, ϕv) 
from the multi-angle record is projected onto the reference line and expressed by the 
distance µ = sin θv•cos(ϕv−ϕs) between the projection and the pole O. Thus, the POLDER 
record is parameterized in terms of ϕd, d and µ . 
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Figure 10. The variance distribution among principal components for different biomes. 
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Figure 11. Leaf area index and soil patterns constituting the solution distribution function 
of the MISR LAI algorithm. 
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Table 1. Mean Uncertainties )(µε  in POLDER BRDFs 
 

 (%) Pattern 1 Pattern 2 Pattern 3 
µ1sin − (°) Red NIR Red NIR Red NIR 

-45.0 25.5 9.03 32.4 10.4 9.67 9.01 
-37.5 30.9 6.51 46.4 8.77 56.0 19.6 
-30.0 30.5 10.1 20.3 9.78 53.8 14.0 
-22.5 45.1 7.99 17.9 10.4 43.1 10.9 
-15.0 34.3 8.25 22.3 4.38 33.6 9.77 
-7.5 31.9 8.70 16.7 9.11 16.5 11.5 
0.0 39.6 7.08 14.9 5.07 27.3 10.3 
7.5 32.1 8.27 14.2 2.33 22.0 11.2 

15.0 42.8 7.61 18.8 5.62 15.6 7.04 
22.5 29.0 5.25 19.9 10.9 25.0 10.7 
30.0 37.8 8.51 17.9 8.10 12.7 7.82 
37.5 23.3 10.3 23.1 12.8 16.5 8.84 
45.0 33.2 3.65 13.5 10.3 14.9 8.57 

 
* Parameter  is defined in Fig. 6.  
 
 
 
Table 2. Distribution of Biomes Based on Homogeneity Factors 
 
Homogeneity 

Factor 
Biome Type  

(%) 
 

Grasses   
and Cereal 

Crops 
Shrubs 

Broadleaf 
Crops 

Savannas 
Broadleaf 

Forests 

Needle 
Leaf 

Forests 
Total 

100% 0.50 4.39 0.35 0.18 1.34 2.88 9.64 
90% 2.55 9.95 0.98 0.88 3.24 9.00 26.60 
50% 15.09 19.12 4.21 5.93 8.57 26.75 79.67 

All data 20.61 21.55 6.56 8.74 10.68 31.86 100 
 
 

 



 
 
 
Table 3. Geometrical Characterization of POLDER Data 
 

 
All Data 

Grasses   
and Cereal 

Crops 
Shrubs 

Broadleaf 
Crops 

Savannas 
Broadleaf 

Forests 
Needle Leaf 

Forests 

range 17~32° 38~53° 17~32° 23~42° 17~32° 23~38° 
mean 23.7(5.9) 46.2(3.2) 24.4(3.3) 33.0(6.5) 23.9(4.0) 30.3(7.0) 

Sun 
Angle 

percent 86.9% 69.7% 99.8% 89.9% 95.5% 84.9% 
range 25~65° 5~45° 25~65° 5~45° 20~60° 10~50° Slope 

Angle percent 78.0% 71.8% 92.5% 80.2% 79.2% 80.7% 

Data Used 70.5% 68.0% 85.2% 74.1% 74.6% 79.3% 
sin-1 d  (°) 42.6(10.8) 45.3(11.2) 38.0(9.0) 45.1(10.0) 42.6(10.4) 45.7(11.4) 
slope (°) 39.9(9.6) 23.1(10.2) 35.4(5.4) 22.0(6.2) 34.0(7.1) 24.8(8.1) 

Pattern 
1(+d) 

percent 30.0% 28.2% 32.8% 26.4% 30.5% 25.6% 
sin-1 d  (°) -2.9(13.5) -1.6(14.5) -6.2(13.8) 2.0(13.6) -2.5(15.0) -1.6(14.8) 
slope (°) 52.5(9.1) 26.9(4.6) 50.9(5.2) 34.1(6.0) 50.7(6.3) 37.2(7.2) 

Pattern 
2(0d) 

percent 38.2% 32.3% 46.7% 26.9% 31.8% 28.2% 
sin-1 d (°) -42.6(8.4) -43.2(8.4) -43.3(8.6) -45.3(8.0) -41.8(7.7) -43.3(8.3) 
slope (°) 56.7(7.8) 33.5(3.5) 60.1(4.0) 42.4(3.5) 59.2(4.0) 44.4(5.2) 

Pattern 
3(-d) 

percent 31.8% 39.5% 20.5% 46.7% 37.7% 46.2% 
 
 



 
 
Table 4. Characteristics of Angular Signatures in Spectral Space 
 

 
Pattern 

Grasses   
and Cereal 

Crops 
Shrubs 

Broadleaf 
Crops 

Savannas 
Broadleaf 

Forests 

Needle 
Leaf 

Forests 
1 2.287 0.782 2.590 2.648 1.448 3.291 
2 1.395 2.456 1.870 2.390 6.391 3.582 Slope 

3 2.074 1.489 2.596 1.969 7.343 3.186 
1 0.065 0.115 0.036 -0.001 0.252 0.032 
2 0.113 -0.322 0.078 0.028 0.017 0.015 Intercept 

3 0.089 -0.059 0.025 0.047 -0.006 0.029 
1 0.938 0.893 0.952 0.885 0.525 0.883 
2 0.906 0.964 0.949 0.902 0.962 0.969 

Correlation 
Coefficient 

3 0.953 0.747 0.923 0.889 0.747 0.971 
1 0.082 0.186 0.081 0.058 0.050 0.042 
2 0.104 0.253 0.097 0.065 0.053 0.050 

Mean Red 
Reflectance 

3 0.094 0.256 0.096 0.069 0.051 0.050 
1 0.253 0.260 0.245 0.153 0.324 0.171 
2 0.258 0.303 0.260 0.184 0.355 0.193 

Mean NIR 
Reflectance 

3 0.285 0.321 0.273 0.183 0.368 0.190 
1 0.510 0.168 0.505 0.449 0.733 0.605 
2 0.426 0.088 0.455 0.476 0.741 0.591 Mean NDVI 

3 0.503 0.113 0.481 0.453 0.757 0.581 
1 0.007 0.034 0.005 0.012 0.018 0.011 
2 0.024 0.022 0.018 0.020 0.005 0.012 Std Dev 

3 0.013 0.024 0.011 0.027 0.011 0.012 
 
 
 



 
Table 5. Angular Signature Slope Index of Biomes 
 

  Grasses   
and Cereal 

Crops 
Shrubs 

Broadleaf 
Crops 

Savannas 
Broadleaf 

Forests 

Needle 
Leaf 

Forests 
Mean 2.111 1.996 2.163 2.024 2.569 2.484 Pattern 1 

(+ d) Std dev 1.097 1.086 1.080 0.953 1.626 1.363 
Mean 1.682 1.957 2.046 2.398 4.480 3.161 Pattern 2 

(0 d) Std dev 0.896 1.023 0.839 1.313 2.590 1.703 
Mean 1.963 2.113 2.323 2.463 4.100 2.990 Pattern 3 

(- d) Std dev 1.080 1.201 1.056 1.368 2.749 1.317 
 

  
 
Table 6. Angular Signature Length Index of Biomes 
 

  Grasses   
and Cereal 

Crops 
Shrubs 

Broadleaf 
Crops 

Savannas 
Broadleaf 

Forests 

Needle 
Leaf 

Forests 
Mean 0.119 0.226 0.109 0.106 0.134 0.121 Pattern 1 

(+ d) Std dev 0.055 0.119 0.047 0.063 0.068 0.068 
Mean 0.162 0.281 0.170 0.208 0.209 0.201 Pattern 2 

(0 d) Std dev 0.070 0.146 0.063 0.153 0.095 0.115 
Mean 0.137 0.271 0.146 0.140 0.187 0.151 Pattern 3 

(- d) Std dev 0.048 0.145 0.047 0.066 0.072 0.055 

 
  



 
Table 7. Multivariate analysis of variance for six biomes 
 

 Red NIR S1 L1 I1 S2 L2 I2 S3 L3 I3 

F5
17031 1289 2937 5.74 982 4723 589 562 2759 377 229 2821 

F21
56497 2505  F value at level α = 0.001 F5

17031 = 4.2 F21
56497 = 2.2 

 
 
 
 
Table 8. Correlation matrix for six biomes  
 

 Red NIR S1 L1 I1 S2 L2 I2 S3 L3 
NIR .57          
S1 -.06 -.011         
L1 .59 .30 -.06        
I1 -.16 .54 .005 -.06       
S2 -.30 .02 .09 -.18 .22      
L2 .47 .31 -.02 .54 -.03 -.21     
I2 -.02 .56 .02 -.05 .71 .07 .04    
S3 -.28 -.05 .04 -.15 .15 .20 -.09 .10   
L3 .26 .16 -.01 .27 -.04 -.04 .25 -.01 .26  
I3 .14 .70 .004 .05 .70 .16 .13 .65 .01 .06 

 
 
 
 
Table 9. Eigenvectors of principal component analysis 
 
Component C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

Red .27 -.47   .11 .36 .38 .17 .15  .60 
NIR .52     .25 .28 .18  .28 -.69 
S1   .11 -.96 -.23       
L1 .21 -.44 .11  .22 -.30 .13 -.73  -.20 -.13 
I1 .40 .36    -.17 -.13 -.29 -.22 .65 .34 
S2  .32 .25 -.17 .86    .21   
L2 .23 -.38 .12   -.66 -.27 .51    
I2 .41 .28   -.26    .75 -.30  
S3  .22 .68 .15 -.22 -.20 .60     
L3 .13 -.20 .65  -.11 .45 -.55     
I3 .47 .20     -.11 .13 -.56 -.60 .13 

Proportion of 
Variance 

.28 .23 .12 .09 .07 .06 .05 .04 .03 .02 .01 

Cumulative .28 .51 .63 .72 .79 .85 .90 .94 .97 .99 1.00 


	fig01: Figure 1. Angular variation of the BRDFs of a homogeneous patch of needle leaf forest as measured by POLDER in June 1997 (55.36ºN, 92.20ºW) and the corresponding sun-view geometries. The symbols o and * denote view and sun directions. 
	Fig3: Figure 3. Biome patch size distributions (panel a) and the corresponding cumulative distribution functions (panel b). 
	fig04: Figure 4. Contour plot of POLDER BRDF density distribution for different values of the homogeneity factor. Each contour separates an area in the spectral space of high data density containing 50% of the pixels from a given biome. 
	Fig5: Figure 5. POLDER data mean BRDFs and BRVFs for six biomes in red and near-infrared
	fig06: Figure 7. Biome-specific BRDF signatures obtained from averaging over pixels with HF>90% for the three angular geometry patterns show in Fig.6. 
	fig07: Figure 8. Angular signatures in the red-NIR (near-infrared) spectral space for the three angular geometry patterns. The symbol * depict the point corresponding to  u = -45º. 
	fig08: Figure 9. Angular signatures in the red-NIR (near-infrared) spectral space of the ten land covers  from Hansen et al. (2000) 1 km land cover map of North America. 
	fig10: Figure 12. Modeled angular signatures in the red-NIR (near-infrared) spectral space from the MISR LAI algorithm. 


