�

MODIS

SCIENCE DATA SUPPORT TEAM

PRESENTATION

August 5, 1994

AGENDA	Page

� TOC �	1	ACTION ITEMS	1

�

� TOC �	2	Algorithm Transfer	2

�

� TOC �	3	MODIS Level 2 Shell Development	8

�

� TOC �	4	Configuration Management	9

�

� TOC �	5	MODIS Geolocation Status Report	10

�

� TOC �	6	MODIS SDST Documentation Schedule	11

�

� TOC �	7	Calendars	12

�	

�
MODIS

SCIENCE DATA SUPPORT TEAM

PRESENTATION

August 5, 1994

ACTION ITEMS

	 	Due Date

No.	 	Old Due Date		Item

1		7/08/94		Fleig] Outline a plan for the delivery of synthetic data.

					STATUS: Open. (Assigned 6/17/94.)

2		7/08/94		[Hucek] Determine MODIS science algorithm dependencies 					on other EOS instrument data.

					STATUS: Open. (Assigned 6/17/94.)

3		7/29/94		[Kaltenbaugh] Develop a plan for

		6/30/94		testing the SDST Functions and Tools software using a 					"golden orbit" concept such as Pathfider's.

					STATUS: Open. (Assigned 6/10/94.)

�

MODIS Geolocation Prototype

Ruiming Chen

•	I finished the subroutines for the terrain intersection algorithm and I am currently testing it with the interface to Jim Storey's previous programs. The subroutines are following MODIS Software Development Standards and Guidelines.

•	I discussed the programming style with Robert Wolfe to make sure that the programs are appropriately documented and understandable to him.

•	I plan to implement the instrument model into programs after I finish testing the terrain model.

•	I will eventually be prepared for the October delivery of the entire geolocation software before it is due. Work towards this goal includes finishing the instrument model implementation, using the PGS toolkit functions wherever is necessary (e.g. error handling functions, etc.), finishing the test and installation of the SDST toolkit functions for the Level 1A data interface. Finally, I will test the software efficiency using different implementations of the algorithm and convert all the FORTRAN programs to C if time is allowed.

�

MODIS Level 2 Software Integration

Jon Robinson

Robert Wolfe and I discussed the types of functions that would be useful to MODIS scientists. I developed a prototype file and Robert proposed a different approach. We exchanged questions and proposals on how to approach the system by email and by telephone. We concluded that we needed to include a wider range of perspectives in our discussion and have a tentative meeting scheduled for Tuesday at 10:00 with one or more of the programmers associated with Kaufman or Justice.

My approach was to try and imagine a complete set of functions that would allow scientists easy access to the MODIS data in a variety of ways. I did not consider ease of implementation or computational requirements. Robert looked at taking a minimal subset of what I proposed because of concerns about implementation problems and computational requirements. His approach would leave more of the basic aspects of getting the required data elements to the science team members.

At some level it is a political as well as a technical decision as to which approach SDST should take.

I also worked on a functional diagram of the pathfinder processing for Robert Wolfe.

MODIS SDST Utility Library

Thomas Goff

The SDST utility library revision 1.0 is available as promised. Contact Virginia Kalb or Tom Goff for details and documentation.

�
IO Speed: PGS Toolkit vs. C

Kai Yang

When the PGS Toolkit was first delivered sometime ago, I set it up on both `modis1' and `modis-xl', and tested many of the sample programs that came with the Toolkit. These programs all ran successfully. I also tested the PGS IO tools and compared them with those of the standard C library. The following is what I learned about the Toolkit.

1. A proper environment must be set up in order to use the PGS Toolkit. The procedure for setting up may not be transparent to many users. For instance, on a unix platform one needs to modify his/her shell file (example: .cshrc if you are using C shell).

2. To use the PGS IO tools, one also needs to tell the PGS Toolkit where the input, output, or intermediate files reside using shell commands, and include a file called `pctinfo.fil' to direct the input and output.

3. I have done the following to test the PGS IO efficiency.

Using both the PGS and the standard C IO routines and repeating five times, I wrote a 400 Mbyte file, then read it, and used the shell command `time' to produce a system resource usage during the execution. Here is the summary.

�

PGS-IO (modis-xl)

1�
2�
3�
4�
5�
6�
7�
�
user cpu

(sec)�
system cpu

(sec)�
elapsed time

(min/sec)�
cpu/elapsed

ratio�
memory

text+data

(Kb)�
IO activity

(blocks)�
page faults

&

swapouts�
�
1.2u�
47.0s�
 3:50�
 20%�
 0+0k�
13404+1946io�
 0pf+0w�
�
1.2u�
47.3s�
 3:51�
 20%�
 0+0k�
13423+1956io�
 0pf+0w�
�
1.2u�
47.1s�
 3:50�
 20%�
 0+0k�
13411+1964io�
 0pf+0w�
�
1.2u�
47.4s�
 4:00�
 20%�
 0+0k�
13603+2167io�
 0pf+0w�
�
1.2u �
47.4s �
 4:05 �
 19% �
 0+0k �
 3510+2055io �
0pf+0w�
�

C-IO (modis-xl)

1�
2�
3�
4�
5�
6�
7�
�
user cpu

(sec)�
system cpu

(sec)�
elapsed time

(min/sec)�
cpu/elapsed

ratio�
memory

text+data

(Kb)�
IO activity

(blocks)�
page faults

&

swapouts�
�
1.2u�
47.7s�
 3:54�
 20%�
 0+0k�
13414+2088io�
 0pf+0w�
�
1.2u�
47.5s�
 4:02�
 20%�
 0+0k�
13336+1769io�
 0pf+0w�
�
1.2u�
47.4s�
 3:56�
 20%�
 0+0k�
13346+1908io�
 0pf+0w�
�
1.2u�
47.6s�
 4:03�
 20%�
 0+0k�
13339+1927io�
 0pf+0w�
�
1.2u�
48.0s�
 4:07�
 19%�
 0+0k�
13530+2053io�
 0pf+0w�
�

The seven fields in the above summary are:

1) user CPU time (second),

2) system CPU time (second)

3) elapsed time (minutes:seconds),

4) ratio of CPU time/elapsed time,

5) memory usage for text area and data area (kilobytes),

6) input and output activity (blocks),

7)page faults and swap outs.

Conclusions: In general, the PGS IO tools run just as fast as the standard C ones. Having examined the PGS source code, I have found that the PGS simply uses the standard C IO routines, with added error reporting features and a different file pointing scheme. There is no wonder that the PGS IO ran just as fast as the standard C IO.

�
MODIS Level 1B Library FORTRAN Bindings

Stephen Berrick

I began to investigate the level of effort required to provide the TMs with FORTRAN bindings to the C Level-1B library functions which will be made available for Beta 2 algorithm deliveries. The goal is to provide FORTRAN algorithm developers the same or similar access to MODIS-like scan cube data as the C algorithm developers. A further desire is that the library functions will not have to be rewritten. It is also desired that the design philosophy of the library not be violated, at least to the extent possible bearing in mind the limitations of FORTRAN.

I have had some success in constructing ANSI C functions which are callable from ANSI FORTRAN 77 programs on the HP (modis1) and the SGI (modis-xl). For simple functions, essentially the same object module can be linked to both a C and a FORTRAN program. For more complicated functions, that is, those which use or pass non-FORTRAN data types, a wrapper is necessary to convert these data types to the simpler FORTRAN forms. For C pointers to arrays of structures, a wrapper is needed to pick apart the structure, copy the parts to FORTRANish arrays, and pass these arrays to the FORTRAN caller.

From these early prototyping efforts, several important points can be made:

	1. FORTRAN bindings will necessarily depend upon the SCF (Science Computing Facility) platform including both the architecture and operating system. I've already discovered that the HP handles bindings differently than the SGI. I have had no success, so far, on Suns. Thus, as architecture and operating systems change, the FORTRAN bindings may need changed as well.

	2. FORTRAN bindings to some of the library functions will depend on the MODIS product being produced. This is because how a binding picks apart a data structure will depend on that data structure. In C, this can be generalized; in FORTRAN 77, this cannot. Thus, bindings will have to be customized to the algorithm using them and upgraded if and when a product's structure changes.

	3. FORTRAN bindings may need to be upgraded if and when the Level-1B library is updated.

	4. FORTRAN 77 cannot allocate memory dynamically as can C. Therefore, library functions which return a pointer to data (sitting in library-allocated space) and the size of the space allocated will be particularly difficult to handle. FORTRAN developers will need to allocate memory themselves in the caller. This means that they will have to hardwire a size for the storage.

	5. There is no guarantee that FORTRAN bindings can be done at all on some platforms. If such is the case for some SCF, it would mean a rewrite of the library function(s) in FORTRAN 77.

In summary, FORTRAN bindings can probably be provided to the TMs with the caveat that they will need to be customized to the individual SCFs and to the individual algorithms. Further, the bindings will need to be upgraded with SCF upgrades as well as library upgrades. Development of FORTRAN bindings will be an ongoing process since it will depend on continuous interaction with the TMs and an understanding of their SCFs.

�
MODIS Level 2 Shell Design

J. J. Pan

1. PGS Toolkit Usage

Angela, Steve, Kai, and I held a preliminary review, discussion, and test of the PGS toolkit usage. We found it was not easy to understand the PGS motivation using the Status Message File (SMF) and Process Control File (PCF) to manage and control the code execution. No scenario is available in the PGS Toolkit Users' Guide. Angela and Carol scheduled next Monday to meet a PGS staff to discuss the concept of using SMF and PCF.

Basically, the Level 2 Shell should be able to meet the following requirements:

(1) No redundant I/O -- We have proven that using shared memory is one way to achieve this goal. The SDST get_product and put_product routines will wrap PGS memory management tools, when they are available, to control data input/output.

(2) Algorithm Dependency -- The Shell should be able to manage the science code execution, based upon the algorithm dependency, on a single computer. It is also possible to run the Shell on networked computers. Kai Yang introduced a software system, Parallel Virtual Machine (PVM), to me. PVM permits a network of heterogeneous UNIX computers to be used as a single large parallel computer. Thus large computational problems can be solved by using the aggregate power of many computers. I am trying to know more about the concept of the PVM. PVM was developed at Oak Ridge National Laboratory and can be accessed via "ftp netlib.att.com".

(3) Metadata File Access -- An exercise on this part will start when the SDST library is available.

(4) Error/Status Messages Handling -- This is the major task in the Shell development. At this moment, it is not easy to follow the PGS concept to send/receive error/status messages. We have discussed the possibilities using socket or/and signal approaches to pass messages among the science code, Shell, and PGS. This issue will be discussed next week with PGS staff.

(5) Reprocessing -- This will be the next task in the Shell development. A possible way to handle reprocessing is via PVM.

�
Algorithm Transfer

Richard Hucek

•	Algorithm Status

	Luke Flynn delivered the Beta 1 volcano code in July; it tested successfully on modis-xl.

	Paul Menzel and his group at the University of Wisconsin (UW) installed and conducted a training session at the TLCF on the use of their "UW Toolkit" (McIDAS). Steve Berrick and I traveled to UW for further toolkit training and to become familiar with the support staff there. I have since run the cloud phase algorithm to completion on modis-xl, but discrepancies in the output data appear.

•	MODIS Product Dependencies on Other EOS Instrument Data

	Most MODIS product dependencies on other EOS instrument data are planned for the postlaunch era. The major exception is the BRDF (MOD 09) product which will utilize MISR radiances for the generation of at-launch products. The MODIS algorithm developers will also use other EOS instrument data during validation and quality control. These dependencies are not included in the list below.

	Atmospheres

		SAGE III data - removal of stratospheric aerosol when present (MOD 04)

		AIRS/AMSU - computation of cloud top pressure and effective cloud amount (MOD 				 06); first guess temperature and moisture profiles (MOD 30)

	Land

		MISR - computation of BRDF (MOD 09); snow (MOD 10) and sea ice max extent 		 			(MOD 29)

		MIMR - computation of snow (MOD 10) and sea ice max extent (MOD 29)

		AIRS - possibility of simultaneous retrieval of temperature and moisture profiles, and 	 surface temperature and emissivity (MOD 11)

	Ocean

		None identified.

�
�

�

MODIS SDST Documentation Schedule

Document

�

Status�

Scheduled

Completion�

Estimated Completion�

Responsible Individuals�
�
ATBD meta-documentation

�
completed�
�
�
Al�
�
Level 1A Baseline Requirements

9/01/93�
completed�
�
�
Lloyd, Tom, Carl�
�
MAS Level 1B Data User's Guide

3/30/94�
completed�
�
�
Paul Hubanks�
�
Science Computing Facility Plan

9/07/93�
completed�
�
�
Ed Masuoka�
�
Software and Data Management Plan

8/01/93�
completed�
�
�
Carl, Ed, Al, Lloyd�
�
�
�
�
�
�
�

Documents in Progress

Level 1A Preliminary Design Report

�
draft�
March 31�
March 31�
Tom, Robert, John �
�
�
�
�
�
�
�

Documents on Hold

Configuration Management Plan

�
draft�
�
�
Sue�
�
Level 2 Shell Requirements Report

�
draft�
�
�
J.J., John C.�
�
An Analysis of MODIS Earth Location Error , 9/01/93�
revision�
�
�
Al, Paul�
�
MAS Level 1B Data Processing Guide

�
draft�
�
�
Paul Hubanks�
�
PGS DP Operations Concept

9/13/93�
revision�
�
�
Ed Masuoka�
�

�
��
�

�

