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R.A. Barnes, A.W. Holmes, and W .E. Esaias

ABSTRACT

Some of the measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will not be useful as
ocean measurements. For the ocean data set, there are procedures in place to mask the SeaWiFS measure-
ments of clouds and ice. Land measurements will also be masked using a geographic technique based on each
measurement’s latitude and longitude. Each of these masks involves a source of light much brighter than the
ocean. Because of stray light in the SeaWiFS radiometer, light from these bright sources can contaminate ocean
measurements located a variable number of pixels away from a bright source. In this document, the sources
of stray light in the sensor are examined, and a method is developed for masking measurements near bright
targets for stray light effects. In addition, a procedure is proposed for reducing the effects of stray light in the
flight data from SeaWiFS. This correction can also reduce the number of pixels masked for stray light. Without
these corrections, local area scenes must be masked 10 pixels before and after bright targets in the along-scan
direction. The addition of these corrections reduces the along-scan masks to four pixels before and after bright
sources. In the along-track direction, the flight data are not corrected, and are masked two pixels before and
after. Laboratory measurements have shown that stray light within the instrument changes in a direct ratio to
the intensity of the bright source. The measurements have also shown that none of the bands show peculiarities
in their stray light response. In other words, the instrument’s response is uniform from band to band. The
along-scan correction is based on each band’s response to a 1 pixel wide bright source. Since these results are
based solely on preflight laboratory measurements, their successful implementation requires compliance with
two additional criteria. First, since SeaWiFS has a large data volume, the correction and masking procedures
must be such that they can be converted into computationally fast algorithms. Second, they must be shown to
operate properly on flight data. The laboratory results, and the corrections and masking procedures that derive

from them, should be considered as zeroeth order estimates of the effects that will be found on orbit.

1. INTRODUCTION

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS§)
is the successor instrument to the NIMBUS-7 Coastal
Zone Color Scanner (CZCS). The design requirements for
SeaWiFS have been based on the National Aeronautics
and Space Administration’s (NASA) experience with the
operation of CZCS. Among other characteristics, CZCS
often contained obvious anomalies in ocean measurements
that immediately followed measurements of clouds. For
CZCS measurements, and also for those from SeaWiFs§,
clouds are several times brighter than the ocean surface.
In the CZCS measurements, the output from each of the
six CZCS bands would overshoot the ocean surface levels
on their return from the brighter cloud levels. This would
give ocean measurements, on the down-scan side of clouds,
that were too low. The recovery from this overshoot would
take up to 100 pixels, that is, up to 100 measurements in
the CZCS scan line (Mueller 1988). This problem resulted
from a faulty design of the CZCS electronics. When CZCS
viewed clouds, the analog amplifiers for the CZCS bands
saturated. It is believed that these saturating amplifiers
pulled down the output from their power supplies. Af-
ter the instrument had scanned past the bright clouds, it
would require up to 100 pixels or more for the amplifiers
and their power supplies to stabilize again. The bright tar-
get recovery (BTR) performance specification for SeaWiF$
was prepared with this CZCS problem in mind.

For CZCS, the problems from cloud interference with
ocean measurements occurred only down scan of the cloud.
These problems are considered to have been electronic in
origin. CZCS experienced no problems from cloud inter-
ference up scan of the clouds, and for CZCS, there were no
apparent problems with light from clouds contaminating
measurements of adjacent ocean pixels; hence, there were
no apparent problems with stray light.

CZCS was designed with an 8-bit digital resolution.
The minimum value for its measurements was 1/256 of
full scale. SeaWiFS has been designed with 10-bit digi-
tal resolution. Since it has comparable full scale readings,
SeaWiFS is four times more sensitive than CZCS. It can
detect effects, both in the water-leaving radiances and in
the instrument itself, that could not have been noticed in
previous measurements.

In March 1993, during testing of the assembled Sea-
WiFS instrument, light from bright sources was found to
contaminate SeaWiFS measurements, both up scan and
down scan from these bright sources. The down-scan re-
sponse of SeaWiFS approached, but was not within, the
BTR specification for instrument performance. The effects
of stray light up scan of bright sources were of the same
magnitude of those down scan. At the SeaWiFS Preship
Review (SPR), an instrument performance appraisal held
at the Santa Barbara Research Center (SBRC) in April
1993, it was found that the radiometer did not meet the
BTR performance specification. At the same meeting, it
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was decided to investigate instrument changes that would
reduce the effects of stray light in the instrument.

In May 1993, SBRC, the SeaWiFS manufacturer, pre-
sented a set of recommendations for changes to ameliorate
stray light in the instrument—the SeaWiFS Stray Light
Signal Paths (SSLSP). In August 1993, the Ocean Color
Contract was changed to allow modification of the sen-
sor. After completion of the instrument modifications and
subsequent testing, a second appraisal of the radiometer’s
performance—the SeaWiF'S Post-Modification Preship Re-
view (SPMPR)—found the instrument to meet all specifi-
cations (Barnes et al. 1994a).

1.1 Local and Global Area Coverage

SeaWiF'S scans across the Earth’s surface from west
to east. Within the instrument, the scanner rotates in a
circle. Each scan of the Earth from the instrument con-
tains 1,285 contiguous pixels over a 116.6° scan centered at
nadir, and each pixel is nominally square with a side length
of 1.6 mrad (Barnes et al. 1994a). For nadir measurements
at the nominal spacecraft altitude of 705 km, the length of
the sides of the pixels on the Earth’s surface is 1.13km.
The scan lines are nominally perpendicular to the motion
of the spacecraft, which moves from north to south. The
spacecraft orbit and the spacecraft rotation rate have been
designed so that the pixels from adjacent scan lines lie next
to each other at nadir. Thus, at nadir the SeaWiFS§ instru-
ment produces measurements of the Earth’s surface in a
two-dimensional mosaic of square pixels.

When SeaWiFS samples away from nadir, the path-
length between the instrument and the Earth increases.
The pixel size at the Earth’s surface increases as the in-
strument’s measurement angle increases from nadir. Along
each scan line, the pixels remain contiguous, but they are
larger at the scan edges than at nadir. As a result, the areal
coverage of the Earth from each scan line resembles a bow
tie. As explained above, the orbit for SeaWiFS has been
designed so that, at nadir, pixels from adjacent scans lie
next to each other. Away from nadir, the increasing size of
the pixels causes them to overlap in the direction of space-
craft motion. Earth scenes in this format are provided from
the SeaStar satellite as local area coverage (LAC). These
LAC scenes are provided in two ways. First, as they are
obtained, the scenes are transmitted directly to the ground
as the instrument passes over local receiving stations. LAC
scenes from some of the ground stations will be forwarded
to the NASA Goddard Space Flight Center (GSFC) and
placed into the SeaWiFS archive. The forwarding process
is relatively slow, and the data will become available over
a period of weeks to months after transmission from the
satellite. Second, specific scenes will be recorded on board
the spacecraft for transmission to the ground along with
the global SeaWiFS data. These recorded LAC scenes will
be sent directly from the satellite to GSFC twice daily. A
summary of these two types of LAC data were provided in
the overview of the SeaWiF'S mission (Hooker et al. 1992).

In order to limit the required onboard data storage and
data transmission rate, the mission was designed by NASA
to give global area coverage (GAC) by recording every
fourth pixel from every fourth scan line for transmission to
the ground. These data are transmitted twice daily with
the recorded LAC. As a result, each GAC measurement is
four pixels removed from its nearest neighbor in both the
along-scan and along-track directions.

For stray light in SeaWiFS, LAC and GAC data are
distinctly different. SeaWiFS will measure dark ocean ra-
diances adjacent to very bright clouds. The brightness
and proximity of those clouds will affect the amount of
stray light within the radiometer. The two-dimensional
mosaic of LAC measurements will provide that informa-
tion. For GAC measurements, the 3 pixel gap between
measurements severely limits knowledge of the size and
brightness of adjacent clouds. This lack of information will
reduce the quality of any GAC stray light correction, rela-
tive to LAC. Proposed procedures for on-orbit stray light
corrections are presented in Sections 11 and 12. These pro-
cedures must be tested using actual flight measurements,
particularly for the GAC corrections. LAC scenes will be
used to test the GAC correction. These LAC scenes will
contain complete sets of information on the location and
brightness of clouds and other bright sources. They will be
subsampled to provide a GAC product. Downlinked GAC
data will also be available for any LAC scene. Fixed pixel
subsampling has been shown to produce the best statisti-
cal agreement between synthesized GAC products and the
LAC measurements from which they are obtained (Justice
et al. 1989 and McClain et al. 1992). Such equivalence is
a prerequisite for testing GAC stray light corrections with
LAC scenes.

1.2 Stray Light Modifications

The effects of stray light in SeaWiFS were discovered
after the construction of the instrument. The radiometer
was developed with an engineering design unit that did
not completely duplicate the flight instrument’s optical
characteristics. The SeaWiFS engineering unit was con-
structed to verify the instrument’s basic mechanical and
electrical design, particularly the telescope and half-angle
mirror combination, and detector combinations (discussed
in Section 2), in addition to providing a complete elec-
trical interface for testing the SeaStar spacecraft. The
fast-track, 22 month construction schedule for SeaWiF$
precluded the fabrication of a complete, flight-like engi-
neering unit; full-scale testing; and then the production
and testing of the flight instrument. For SeaWiFS, the en-
gineering and flight units were developed nearly in parallel
with each other. As a result, the effects of stray light in
SeaWiFS were discovered after the completion of the in-
strument. This development effort resulted in a radiometer
that met all of the prelaunch requirements (Barnes et al.
1994a) except for BTR, which was slightly outside of the
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Fig. 1. The SeaWiF8 scanner assembly. The scanner mounts to the payload shelf using the four mounting

points at the top of the figure.

specifications. Stray light effects were found both before
and after bright sources and are a part of BTR. As dis-
cussed in Section 5, there were electronic recovery tails in
the instrument’s bright target responses. The corrections
for the electronic tails were simple, and with those repairs,
the instrument met the BTR specification.

The instrument manufacturer provided to the SeaWiF'S
Project, a description of the radiometer’s stray light paths
and their associated corrections (in the SSLSP). These
paths are described in Section 6. Risk to the completed
flight instrument was the primary consideration in the de-
cision of whether or not to adopt instrument modifications.
In particular, modifications to the focal plane assemblies,
with their interference filters and detectors, were deemed
to be at high risk. The focal planes were difficult to ac-
cess, and the filters, once fixed in place with epoxy, were
too fragile to be removed and replaced. In addition, cor-
rections requiring major modifications to the instrument
were rejected because of cost and schedule restrictions.

1.3 Document Overview

This document illustrates the magnitude of residual
stray light (bright target response) in the completed Sea-
WIFS flight instrument. It provides procedures for reduc-
ing the effects of that stray light in the flight data, thereby

reducing the size of the stray light masks, and increas-
ing the amount of usable data from the instrument. In
Sections 2 and 3, a description of the instrument and a
summary of the specification for BTR are presented. In
Sections 4 and 5, two electronic modifications to the in-
strument to improve BTR response are discussed: the ad-
dition of bilinear gains to allow the detection of clouds,
and the very large reduction in the electronic portion of
the BTR tail. In Section 6, several stray light sources
within the radiometer, and the modifications to the instru-
ment that reduced their effects, are described. Section 7
provides a description of the post-modification stray light
measurements. Section 8 uses the along-scan and along-
track responses from Section 7 to create an informal stray
light budget. Section 9 describes the procedure for the
along-scan stray light correction based on laboratory mea-
surements. Section 10 applies this procedure to laboratory
scans of bright targets. And finally, in Sections 11 and 12,
proposed schemes are given for applying the corrections to
LAC and GAC scenes from SeaWiFS.

2. INSTRUMENT DESCRIPTION

The SeaWiFS§ instrument (Fig. 1) is designed to mea-
sure Earth-exiting radiances. The sensor’s instantaneous
field-of-view (IFOV) is 1.6 x1.6 mrad per pixel, with one
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Table 1. Constants used in the calculation of the BTR limit in counts. The Lgoud and Liypical
values come from the performance specifications (see Barnes et al. 1994a, Section 16). The slopes
(or sensitivities for each band) come from the radiometric calibration of the instrument (Barnes et al.

1994b).
Band Lcioud/ 0.5% Leypical
Number LcloudT LtypicalT Ltypical Slopei [counts]
1 60.0 9.10 6.59 0.0137 3.3
2 66.2 8.41 7.87 0.0134 3.1
3 68.2 6.56 104 0.0105 3.1
4 65.6 5.64 11.6 0.00920 3.1
5 65.2 4.57 14.3 0.00746 3.1
6 53.8 2.46 21.9 0.00425 2.9
7 43.0 1.61 26.7 0.00301 2.7
8 34.0 1.09 31.2 0.00215 2.5
t mWem™2sr™ ! yum™! ImWem™?sr™! pm™*count™*

cross-track scan covering +58.3° about nadir. The scanner
can be tilted to +20°, 0°, or —-20° relative to nadir to min-
imize the number of glint-contaminated measurements in
the data. Each pixel value is digitized to 10-bit resolution.

In the instrument, light first strikes the primary mirror,
an off-axis parabola, and is then reflected from a second
surface polarization scrambler and the half-angle mirror
before reaching the field stop. The half-angle mirror re-
moves the rotation of the image due to the rotation of
the telescope. This mirror rotates at exactly half the rate
of the telescope and polarization scrambler, and uses al-
ternating mirror sides on successive telescope scans. The
field stop, located at the entrance to the aft optics, is 50%
larger than the detectors and restricts stray light through
the system. After the field stop, the light is collimated by
another off-axis paraboloid and directed through the aft
optics. Dichroic beam splitters divert the light into four
focal plane assemblies, each containing two spectral bands
delineated by narrow band filters in close proximity to the
detector. The optical paths in the aft optics assembly are
shown in Fig. 2.

Attention was given in the SeaWiFS design to mini-
mizing the sensitivity of the instrument to polarized light.
This is the main reason for the rotating telescope, rather
than a rotating entrance mirror. There are other possible
instrument designs with less mechanical complexity, but
they require large incidence angles on one or more mir-
rors, producing unacceptable polarization variations along-
scan, particularly for the SeaWiFS wavelengths in the blue
{412 nm and 443 nm) spectrum. The SeaWiF$S design min-
imizes the angle of light incident on its mirrors. In addi-
tion, SeaWiFS uses a polarization scrambler (see Figs. 1
and 2) to further reduce these variations. The scrambler
eliminates the need for individual compensators to remove
residual polarization at each focal plane assembly. The
scrambler consists of two optical wedges that act as a vari-
able wave plate to convert incident polarized light into sev-
eral cycles of circular, horizontal, and vertical polarized

light across the scrambler’s aperture. The sensitivity of
the output of SeaWiFS$ to polarized light was measured in
the laboratory, using a source producing plane-polarized
light. The rotation of the polarized light through 360°
produced changes of 0.25% or less in the eight SeaWiF'S
bands (Barnes et al. 1994a).

Two instrument bands, each with four detectors aligned
in the scan direction, form a focal plane. The four de-
tectors in each group are added using a time delay and
integration (TDI) technique to improve signal-to-noise ra-
tios (SNRs). The signal from each detector is amplified,
processed through a selectable gain stage, and digitized
with a 12-bit analog-to-digital (A/D) converter. The four
digital words from a band are then appropriately delayed,
summed to obtain the signal-to-noise advantage, truncated
to 10 bits, and transmitted to SeaStar through the elec-
tronics module. A solar calibrator is mounted on the in-
strument, allowing the optical system to view a solar illu-
minated diffuser when passing over the South Pole. The
entire spacecraft can be rotated to allow the instrument
to view the nearly full moon, which is considered to be
a stable calibration source to monitor the long-term re-
peatability of the SeaWiFS measurements (Woodward et
al. 1993).

3. BRIGHT TARGET RECOVERY

The BTR specification has been described in the Sea-
WIiFS Prelaunch Acceptance Report (Barnes et al. 1994a).
Radiometric data should be relatively free of the effects
of overshoot and ringing when the IFOV scans across a
steep gradient in radiance, from a maximum of Lgouq to
a minimum of Liypica. For this radiance step change, the
output signal should settle to within 0.5% of its final value
(Ltypicat) within 10 pixels. This radiance limit, using val-
ues from the specifications, is given in counts in Table 1. It
is given to one-tenth of a count since the values are small,
relative to the quantization of the data.
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During the April 1993 SeaWiFS Preship Review, it was eight bands settle to within the specification limit within
determined that the instrument did not meet the BTR
10 pixels.
specification. At that time, it was decided that the instru-
ment manufacturer would rework SeaWiFS to improve its
stray light characteristics. The results in Table 2 come Table 2. SeaWiFS BTR characteristics. The table
from laboratory measurements, after the instrument mod- gives the number of plxelshafter the slit (Pait) for the
ificatio, using the output of the SBRC integrating sphere instrument to return to the residual counts allowed

) in the specification. In addition, the table gives
(Barnes et al. 1994a). The measurements were made in the number of pixels required for the instrument to
four sets, one for each focal plane, using a 3 pixel wide settle to a level of zero residual counts (Pyero). This
slit. Color glass filters were placed over the output from material is taken from Barnes et al. (1994a).

the sphere to give a spectral shape approximating that of

the sun over the wavelength range of the bands on each of Band |0.5% Liypical P siit | Zero Resid. P zero
the four focal planes. No. [counts]  [pixels] | [counts] [pixels]
The results in Table 2 give the distance in pixels re- 1 3.3 6 0 10
quired for the instrument to settle to less than 0.5% of 2 3.1 5 0 9
Liypical using the counts given in Table 1. For bands 1-5, 3 3.1 7 0 10
the results give the number of pixels required to settle to 3 4 31 5 0 15
counts above background. For bands 6-8, the results give S 3.1 9 0 15
the number of pixels required to settle to 2 counts. Table 2 6 2.9 7 0 9
also gives the number of pixels required for the instrument 7 2.7 9 0 11
to settle to zero counts after illumination by the slit. All 8 25 7 0 10
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4. BILINEAR GAINS

Tests of the instrument have revealed that SeaWiF§S
measurements will be contaminated by stray light from
clouds in adjacent pixels. These tests also showed the
stray light contamination to be essentially proportional to
the brightness of the adjacent cloud. In order to perform
post-launch corrections, the brightness of the clouds must
be measured; therefore, SBRC changed the sensor’s elec-
tronics to allow on-orbit measurements of cloud radiances.
These changes maintain the sensitivity of the SeaWiF'S
ocean measurements, as specified in the requirements for
the instrument.

The new electronic configuration uses the four detector
circuits in each SeaWiFS band to create bands with bi-
linear gains. The response for SeaWiFS band 1 (442nm)
is shown in Fig. 3. The channel’s high sensitivity, i.e., a few
mW cm~2sr~! um~'count ™!, extends over three-quarters
of the band’s dynamic range. Above this point, the chan-
nel’s sensitivity is reduced, allowing the measurement of
cloud radiances up to 60 mW cm~2sr~! um~! (see Fig. 3a).
For ocean measurements, the band will have the same re-
sponse as the original linear gains over a reduced number
of counts, i.e., over a reduced dynamic range (see Fig. 3b).

The operation of the four channels in a SeaWil'S band
can be illustrated using the radiance levels for band 1. The
values for this band are given in Table 3. In Tables 3-6,
the process of calculating the knee and endpoint locations
for the bilinear gains of SeaWiFS band 1 is shown. The
values are given for science gain 1-—the standard gain for
SeaWiF'S ocean measurements—and are given using the
output from the band’s four channels. This is the stan-
dard detector configuration for the instrument. The input
radiances, counts, and zero offsets (see Table 3) come from
radiometric tests of the instrument found in the SeaWiF§
Calibration and Acceptance Data Package (SCADP). The
SCADP was generated by SBRC in the course of the char-
acterization and calibration of the SeaWiFS instrument.
With the zero offsets removed, the net counts, along with
the sphere radiance, are used to calculate the sensitivity,
or slope, for each channel (Table 3). Channel 1, with low
sensitivity, allows measurement of the high radiances from
clouds. Channels 2, 3, and 4, with high sensitivities, allow
measurements of the low radiances from oceans. These
sensitivities (in mW of radiance per count) are fundamen-
tal to the calibration of SeaWiF'S. They convert the counts
from the instrument into radiances at the instrument’s op-
tical input.

The SeaWiFS channels are digitized at 10 bits, and
each channel’s output ranges from 0-1,023 counts. When
the zero offsets are removed, the saturation counts for the
four channels in SeaWiFS band 1 range from 1,000-1,005
counts (see Table 4). From these saturation counts and
the sensitivities for the channels, it is possible to calculate
the saturation radiances for each channel (Table 4). For
radiances greater than the saturation radiances, the output

from the SeaWiF$S channels will remain at their saturation
count levels.

The saturation radiances in Table 4 give the three knee
radiances and the maximum radiance for band 1 (gain 1).
The knee radiance is the point at which the high sensitiv-
ity channels saturate, and the saturation radiance is the
point at which the low sensitivity channel saturates. The
minimum radiance is zero for zero counts, i.e., for zero
counts after the removal of the offset. Using the satura-
tion radiance levels and the sensitivities, it is possible to
calculate the number of counts from each channel at the
three knees and the two endpoints of the bilinear gains
(Table 5). The counts from the four channels are summed
and divided by four in Table 5; this models the process
performed within SeaWiFS. On orbit, the output from the
channels (as selected by the instrument’s electronics, based
on commands from the ground) will be summed; the result
will be sent from SeaWiFS to the SeaStar spacecraft. This
digital output is sent, minus its two least significant bits;
in other words, it will be sent from the instrument to the
spacecraft after division by 4.

The radiances and counts at the three knees and the
two endpoints are given in Table 6. For these calculations
(and as is recommended for on-orbit operations) the zero
offsets are removed at the start of the calculations. This
initial step opens up a direct relationship between counts
and radiances for ocean measurements. Below the first
knee (in the radiance region for ocean measurements), Ta-
ble 5 gives the information for calculating the sensitivity
of band 1: 10.899/793.64, or 0.013773 mW /count. Above
the third knee (in the radiance region for cloud measure-
ments), the sensitivity is 0.240158 mW /count, calculated
as (60.159 — 11.049)/(1002.25 — 797.76). The ocean por-
tion of the bilinear gain is 17.5 times more sensitive than
the cloud portion. This difference in sensitivities becomes
greater in sequence for bands 2-8.

The effect of slightly different sensitivities in the three
high sensitivity channels is shown in Fig. 4. In this case,
the knee is not sharp, but it has two internal segments,
rather than just one segment before and one segment af-
ter. This results in a region of uncertainty in the transition
between the ocean and cloud sensitivity regimes. The re-
vised electronic configuration that gives SeaWiF§S the abil-
ity to detect clouds also defines the method in which the
knees for the bilinear gains are calculated (Tables 3-6). If
the detector configuration for a band is changed, then the
knees for the bilinear gains must be recalculated.

5. ELECTRONIC RECOVERY TAIL

Each SeaWiF$S band has an electronic offset of approx-
imately 20 counts. This zero offset is necessary to guar-
antee that the instrument can measure down to zero light.
A schematic drawing of the input circuitry for each A/D
converter is shown in Fig. 5. In this circuitry, the zero
offset (called the bipolar offset) and the input signal en-
ter the A/D converter on different pins. Within the A/D
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Table 3. The input values and calculated sensitivities for the four channels of band 1. The sensitivities are
calculated from the sphere radiances and net counts.

Channel Radiance Measurement Offset Net Sensitivity

Number [mW] [counts] [counts] Counts [mW /count]
1 9.246 175 21 154 0.060039
2 9.246 871 23 848 0.010903
3 9.246 859 18 841 0.010994
4 9.246 871 21 850 0.010878

Table 4. Saturation counts and saturation radiances for the four channels. The saturation radiances are
calculated from the saturation counts and the sensitivities. The offset has been removed from both the zero
and saturation counts.

Channel Zero Saturation Saturation Radiance
Number Counts [mW]

1 0 1,002 60.159

2 0 1,000 10.903

3 0 1,005 11.049

4 0 1,002 10.899

Table 5. Calculated instrument output at the saturation radiances for the four channels, in counts. The
counts at the knees are calculated from the knee radiances and the sensitivities. The total counts for each
channel cannot exceed the saturation counts.

Channel Number Zero Knee 1 Knee 2 Knee 3 Saturation
1 0.00 181.54 181.60 184.03 1,002.00
2 0.00 999.64 1,000.00 1,000.00 1,000.00
3 0.00 991.39 991.75 1,005.00 1,005.00
4 0.00 1,002.00 1,002.00 1,002.00 1,002.00
Sum 0.00 3,174.57 3,175.35 3,191.03 4,009.00
Sum/4 0.00 793.64 793.84 797.76 1,002.25
Radiance [mW)| 0.00 10.90 10.90 11.05 60.16

Table 6. Knees and endpoint locations for the bilinear gains. These are the values in the last two rows of
Table 5.

Location Radiance [mW] Counts
Zero 0.000 0.00
Knee 1 10.899 793.64
Knee 2 10.903 793.84
Knee 3 11.049 797.76
Saturation 60.159 1,002.25
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converter, however, the two voltages are summed at the
input to the converter’s sample and hold circuit. This
summation point couples the responses of the two circuits
with each other. In the original design for the SeaWiF§S
electronics, the zero offset was 5 counts, instead of the 20
counts in the final design. The size of the offset in the A/D
circuitry is determined by the size of resistor R115 (see
Fig. 5). The original design also had a capacitor (C40) in
parallel with resistor R115. This resistor-capacitor (RC)
pair comprises a standard type of electronic filter to reduce
high frequency noise. The circuit was designed with a ca-
pacitance for C40 of 1 uF. The residual stray capacitances
in the circuit are on the order of picofarads, smaller by 4-5
orders of magnitude than C40. For SeaWiFS, this circuit
was originally included to remove possible high-frequency
noise in the zero offset, even though the zener diode was
expected to produce a quiet voltage level.

This RC pair also has a time period for response to
sharp voltage changes. This time constant is determined
by the product of the resistance and the capacitance in
the RC circuit. The constant gives the time period for the
voltage in the RC circuit to adjust to [1 —e~}], or 63%, of
the voltage difference (Diefenderfer 1972). For SeaWiF'S,
such a voltage change occurs when the instrument scans

from a bright cloud to the dark surface of the ocean. Dur-
ing measurements of the bright cloud, the large voltage of
the input signal into the A/D converter is coupled to the
RC circuit through the A/D bipolar offset. The capacitor
charges to that voltage over several time constants. When
the input voltage drops as the instrument scans onto the
comparatively dark ocean, the capacitor then discharges
to the original level over several time constants. For the
original design, the resistor was set to give a voltage equiv-
alent to 5 counts. Along with C40, this gave a time con-
stant that is 0.25 of the measurement period for a SeaWiF$S
pixel. That measurement period is 42x10~%s (Barnes et
al. 1994a). After one measurement period, or four time
constants, the RC circuit in the original design would have
a voltage within 2% of the input voltage from the com-
paratively dark ocean. After two measurement periods, or
eight time constants, the voltage would settle to 0.03% of
the ocean value.

When the instrument was modified to give a 20 count
offset, the resistance of resistor R115 was increased by a
factor of four. During this modification, the capacitor was
unchanged; as a result, the RC time constant was multi-
plied by 4. Thus, during initial testing of the radiometer in
the SPR, there were very small, but noticeable, electronic
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tails from the RC circuits in the BTR test results. For
example, for SeaWiF$S band 8 the residual electronic tail
at 10 pixels from the bright source was approximately 1
count; in this case, the tail was about 40% of the allowed
BTR response. As part of the stray light modifications
in the SPMPR, capacitor C40 was clipped from all of the
zero offset circuits in the instrument. This change has
reduced the electronic portion of the instrument’s bright
target response to an insignificant level. Although other
capacitances remain in the circuit, the electronic recovery
tail has been reduced by more than two orders of magni-
tude. Measurements of the system noise in SeaWiFS have
not indicated any problems from the removal of the C40
capacitors; the SNRs for all bands significantly exceed the
specification requirements (Barnes et al. 1994a).

There is an additional interesting characteristic of the
zero offset circuits. There are 32 detectors in SeaWiFS,
but only 16 offset circuits; thus, each band has two off-
set circuits for four detectors. In each band, the endmost
detectors—detectors 1 and 4—share the same offset circuit
with the adjacent detectors, detectors 2 and 3, respectively.
This causes a coupling of pairs of detectors through the
offset circuit—an intraband electronic cross talk. The ef-
fect is short range, covering only 1-2 pixels, and is part
of the system level response to performance tests, such as
the line spread functions used to determine the modulation
transfer function (MTF) (Barnes et al. 1994a). Intraband
electronic cross talk is a component of the MTF and does
not play an independent role in the instrument’s BTR.

6. STRAY LIGHT SOURCES

In the SSLSP, SBRC presented a description of the
stray light paths within the SeaWiFS radiometer and a
set of recommended changes to reduce stray light in the
instrument. The SBRC analysis showed several stray light
paths located in the instrument’s along-scan direction. In
addition, there was one significant stray light path in the
direction perpendicular to the instrument’s scan, i.e., in
the along-track direction. This source (secondary reflec-
tions from the polarization scrambler) is discussed in Sec-
tion 6.2.

Individual sources of stray light are discussed here in
Section 6. The instrument’s stray light response, based on
the response to a 1 pixel wide bright source, is given in Sec-
tion 7. Those results are used as the basis for an informal
stray light budget (Section 8) that gives the ranges (in pix-
els) over which the principal stray light sources contribute
to the instrument’s response.

The response of the instrument, along with the stray
light sources in the along-scan direction, is shown in Fig. 6.
The figure shows the instrument response before modifica-
tions were made to ameliorate the bright target response
in the instrument; thus, this figure also shows the effect
of the electronic tail that was described in the preceding
section. Figure 6 shows the stray light signal paths for the
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four even bands in the instrument. As described earlier,
SeaWiFS$S has four focal planes, each focal plane contain-
ing two bands. With regard to the scan direction of the
instrument, the odd bands on each focal plane are located
before the even bands, i.e., light from a ground or ocean
target will strike the odd band on a focal plane before it
strikes the even band. This creates an asymmetry in the
stray light response for the even and odd bands on a focal
plane. The odd bands experience more stray light after,
i.e., down scan of, a cloud than they do before the cloud.
The additional stray light comes from interband (between
band) optical cross talk from the even band on the focal
plane. Conversely, the even bands experience more stray
light before, i.e., up scan of, a cloud than after; again, this
is due to optical cross talk. The effects of cross talk are
described in more detail in Section 6.5.

Figure 7 gives an example of the stray light paths for
one of the even SeaWiF$S bands. As discussed above, most
of the stray light paths in an even band contribute to the
response before a bright source. The use of an even band
has an advantage for the example in Fig. 6, since the ef-
fect of the premodification electronic tail is isolated after
the bright source, so it, and the stray light effects, can be
shown separately.

The data in Fig. 6 are the recorded values from the
instrument as it viewed a bright slit 6 pixels wide. These
data have not been taken from the digital output of the
sensor, as the resolution of the standard digital output
does not have the sensitivity to distinguish the very small
radiances that exist several pixels away from the source.
They lie below the quantization limit of the digital data.
For the test results in Fig. 6, the output from the band
was measured with a lock-in amplifier and a voltmeter.
Using several sensitivity ranges for the amplifier, it was
possible to obtain the dynamic range required to measure
the band’s output over five orders of magnitude.

Each of the stray light paths in Fig. 6 is discussed in
the sections that follow. In addition, one section includes
a discussion of the secondary reflections from the polar-
ization scrambler. The discussion sequence duplicates the
path of the radiance transmitted through the instrument,
from the primary mirror into the focal plane assemblies.

6.1 Primary Mirror Scatter

Primary mirror scatter is a minor contributor to stray
light over the range of pixels shown in Fig. 6. To the right
(down scan) of the bright source, the premodification elec-
tronic tail provides the major portion of the residual sig-
nal. With the removal of the electronic tail, the other stray
light sources still dominate over primary mirror scatter, as
they do to the left (up scan) of the bright source. For this
reason, it was decided to retain the original primary mir-
ror in the radiometer, rather than to install a mirror with
reduced scatter. Primary mirror scatter, however, remains
a contributor to the optical blur near the bright source in
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Fig. 6, and contributes to scatter from other stray light
sources farther out.

Additional measurements of stray light, not shown here,
were made at distances of up to 35 pixels from the bright
source. These so-called deep scans in the along-scan and
along-track directions show residual scattered light from
the primary mirror to be five orders of magnitude below
the bright source radiance. From these measurements, it
is possible to calculate the bidirectional reflectance distri-
bution function (BRDF) for the primary mirror:

Rp = 1.93¢781:5« (1)
where Rp is the BRDF, and «a is the off-axis angle, in
radians, as documented in the SSLSP.

For large area bright targets outside the instrument’s
field of view (FOV), the scattered light from the mirror
sums and can become a substantial stray light source.
There is an aperture at the instrument’s optical inlet (see
Fig. 2). This aperture attenuates radiance at the primary
mirror for angles equal to 60 SeaWiFS pixels and greater.
The effect of light, well outside the FOV from clouds,
should resemble the effect of light within the instrument’s
FOV that has been scattered from atmospheric aerosols.
In flight, these instrumental and atmospheric effects may
be very difficult to separate.

6.2 Polarization Scrambler Reflections

The polarization scrambler consists of two crystalline
magnesium fluoride (MgF2) wedges with a reflective coat-
ing on the lower surface. The scrambler acts as a second
surface mirror in the SeaWiFS optical train. The MgFs
wedges in the scrambler create several cycles of varying
polarization in the reflected light across its aperture. The
incorporation of this scrambler into a design based on a
rotating telescope has reduced the residual polarization in
SeaWiF$S to 0.25% or less for all eight bands (Barnes et al.
1994a).

The original design of the polarization scrambler, as
described in the SeaWiF$S Critical Design Review (SCDR)
held at SBRC, produced two secondary reflections that
straddle the image in the along-track direction. The sec-
ondary reflections from that design were located about 5
pixels from the center, and had an intensity about 0.5%
of that in the central pixel, as documented in the SSLSP.
These along-track secondary reflections are shown in Fig. 7.
Figure 7 also shows the response of the polarization scram-
bler plus the response of a mirror that was substituted for
the scrambler.

As part of the instrument modifications to remove stray
light, the original polarization scrambler was replaced with
a modified unit. The front surface of the modified polar-
ization scrambler was given a very slight wedge, relative to
the mirrored back surface of the scrambler. The geometry
of the new scrambler collapses the secondary reflections
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onto the image from the central pixel at the optical stop
in the optical inlet for the aft optics (Fig. 8). Although it
may not be immediately obvious from the figure, ray traces
predicted the effect in the improved geometry. In addition,
post-modification testing using a laser light source showed
the reflections to converge onto the central beam as a card-
board target was moved away from the scrambler. The
post-modification testing also showed no secondary reflec-
tions from the scrambler in the along-scan direction.

6.3 BG26 and BG39 Filter Reflections

There are two broadband glass color filters in the Sea-
WIiFS aft optics assembly (Fig. 2). These filters (Schott
catalog numbers BG26 and BG39) play an important role
in the laboratory calibration of the radiometer (Barnes et
al. 1994b). Reflections from these filters (referred to as
ghosts in Fig. 6) combine with both in-band optical cross
talk and the reflections from the final focusing lenses in
a region located 5-12 pixels from the edge of the bright
source. The reflections from the color filters are thought to
be far out of focus and very diffuse at the detectors—diffuse
to the point that they do not have the characteristics of an
image. Although referred to as ghosts, they are actually
more characteristic of stray light. Lens reflections and op-
tical cross talk are discussed in the following sections. The
sum of these three stray light sources gives a signal that
is about 0.2% the magnitude of the bright source. In the
laboratory testing of stray light in SeaWiFS, there was no
effort to separate the stray light from these sources.

The ghosts from the broadband filters are reflections
from their optical surfaces of the upwelling light from the
focal plane assemblies (see Fig. 2). The source of this up-
welling light is reflections off the interference filters on the
focal planes. These interference filters are all of dichroic
design without components that absorb light. They either
transmit or reflect the incoming radiation (Barnes et al.
1994b). Thus, the path for these ghosts is reflection from
the interference filters, reflection from the broadband fil-
ters, and transmission back through the interference filters.

As part of the instrument changes to ameliorate stray
light in the instrument, modifications were made to the
mounting rings for the two broadband absorptive filters.
The new mounting rings tilted the filters by about 5° from
the optical path, moving the reflections away from the fo-
cal planes. Since the responses of the filters are very broad
(Barnes et al. 1994b), this modification created no signifi-
cant effect in the spectral response of the radiometer.

6.4 Focusing Lens Reflections

A diagram of one SeaWiFS focal plane assembly is
shown in Fig. 9. This figure includes the focusing lenses
associated with each assembly. The path for ghosts from
these lenses is similar to that for the broadband filters,
with reflections off the interference filters, to the lenses,
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and back through the interference filters to the detectors.
The effect of reflections from the focusing lenses is poten-
tially much more severe than for the broadband filters; but
for SeaWiFS, the lens reflections are severely out of focus
at the detectors. Indeed, all of the stray light ghosts within
SeaWiFS are well out of focus and extremely diffuse.

This possibility was considered in the initial design of
the radiometer found in the SCDR from SBRC. For that
reason, the focusing lenses were given a general antireflec-
tion coating; however, these coatings were not optimized
for individual focal planes. As part of the testing of stray
light within the instrument, there was a spectral scan of
one of the lenses in the same lot as the flight parts. Over
the range of wavelengths measured by SeaWiFS, the re-
flectances of the lenses were less than 2%. It was decided
that the minor reduction in stray light, which might re-
sult from special tailoring of the antireflection coatings of
the lenses, was not worth the risk that would accompany
the removal and replacement of the lenses in the focal
plane assemblies. Changes to the focusing lenses, there-
fore, were not part of the modifications to ameliorate stray
light within the radiometer.

6.5 Optical Cross Talk Between Bands

The SeaWiFS instrument is designed with two bands
on each focal plane assembly. The bands are placed end-
to-end with a saw cut between the two detector arrays (see
Fig. 10). The two interference filters that cover each focal
plane are connected over the saw cut with black epoxy. In
the SeaWiFS focal plane assemblies, there are open spaces
between the black epoxy joints and the saw cuts. These
open spaces provide paths for optical cross talk between
bands. The SeaWiFS interference filters do not absorb
light—they either transmit or reflect it. The wires, bond
pads, and the light shield metallization around the detec-
tors in each band, are gold or aluminum and provide shiny
surfaces to reflect light. The active surfaces on the detec-
tor arrays are either a dull or glossy black. For the most
part, light that is reflected from the surface of a SeaWiFS
detector array will pass back through the interference filter
(Fig. 10). This is particularly true for wavelengths where
the transmission of the filter is nearly 100%. There are,
however, wavelengths where the transmission of the inter-
ference filters are a few percent or less. Any light that
is transmitted through the filter at these wavelengths can
reflect from the bottom of the filter. This reflected light
can bounce between the detector arrays and the filters in
an alternating fashion until it is absorbed by the array or
transmitted through the filter.

In this manner, a very small amount of light can pass
between the bands on a focal plane assembly. Since the two
interference filters on a focal plane transmit at different
wavelengths, light passing between bands can encounter a
near perfect reflecting surface from the filter of the other
band. It is estimated that 15 reflections are required for
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specular optical cross talk to occur. The light shield met-
allization around the detectors is somewhat rough, so the
primary source of optical cross talk is probably a single,
low angle reflection between bands.

Between-band cross talk can be removed by placing a
septum below the junction between the filters. Such a
septum would have been reasonably simple to fabricate
during the initial construction of the radiometer. In this
process, the filters would have been joined with an excess
of black epoxy hanging below the junction between the fil-
ters; whereupon the epoxy would have been trimmed so it
would reach from the filter junction to a point just above
the sawcut between the detector arrays (Fig. 10). This
septum would have blocked the optical path between the
two bands on each focal plane. The SeaWiFS interference
filters, however, have long since been epoxied into place.
Their removal is exceptionally difficult and risky. This fact
was demonstrated experimentally during the thermal vac-
uum testing of SeaWiF$§ in the spring of 1993. At that
time, the focal plane assembly for bands 5 and 6 failed be-
cause of an electrical problem (Barnes et al. 1994b). When
the band 5 interference filter was removed, i.e., dug out
from the focal plane assembly, it was chipped and had to
be replaced. Added cost, and the potential for delays in
fabrication and instrument delivery, as well as a subsequent
launch delay could have resulted from further operations
on the filters. Based on this evidence, it was decided to
leave the status quo. Septa were not added to the focal
plane assemblies.

Optical cross talk between bands on a focal plane as-
sembly is a function of the spectral shape of the measured
radiance, in addition to the stray light characteristics of
the instrument. The bright sources within the set of ocean
measurements are clouds and, in the near-infrared, land
and vegetation. For the purposes here, clouds are con-
sidered to be white, i.e., their reflective properties are al-
most spectrally flat over the wavelengths measured by Sea-
WiFS; thus, cloud radiances measured by SeaWiFS will
have a spectral shape that very closely approximates the
spectral shape of solar flux. This assumption is central
to the post-modification measurements of residual stray
light within the instrument. These measurements require
the use of a light source that has the spectral shape of
the sun. Since the tests are performed individually for
the two bands on each focal plane assembly, the spectral
shape must be maintained only over the wavelength range
for each pair of bands. Additional spectral source shapes,
such as those anticipated for land measurements, were not
included in the stray light measurements at SBRC.

The selection of the low-sensitivity cloud channel for
each SeaWiFS band was made with the effects of stray
light in mind. SeaWiF'S has been designed such that the
outer detectors have reduced gain for cloud sensing. Chan-
nel 1 of each odd band is illuminated by a bright source
first, and channel 4 of each even band is illuminated last.
These are the low sensitivity cloud channels in SeaWiF8.
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The optical cross talk described in this section dominates
the asymmetric response to bright targets by SeaWiF'S.
Other, smaller sources of asymmetry also exist within the
instrument. Successor instruments should be tested for
those secondary asymmetric stray light sources.

6.6 Summary of Proposed Modifications

In the SSLSP, SBRC proposed a set of eight possible
changes to ameliorate stray light in SeaWiF'S, along with
the risks to the instrument resulting from each. [These
were presented at the Stray Light Paths Review at GSFC
on 27 May 1993. The decision whether or not to imple-
ment these changes was made at the Performance Speci-
fication Modification Meeting at Orbital Sciences Corpo-
ration (OSC) 3 August 1993.] These possibilities and the
decisions on their implementations are listed in Table 7.

Table 7. Possible stray light modifications to the
SeaWiFS radiometer. Implemented modifications
are denoted with a checkmark (v ). Those mod-
ifications that were not implemented are denoted

with an x.

Mod. Possible Implemen-
No. Modification tation
1 Tilt BG26 and BG309 filters. v
2 | Add septa to focal planes. X

3 | Rotate filters (plus the addi-

tion of septa). X
4 | Add custom anti-reflection

coatings on the final

focusing lenses. x
5 | Add wedge to scrambler face. v
6 Replace primary mirror. X
7 | Eliminate electronic tail. v
8 | Add cloud sensors. v

Among the possibilities discussed, is exchanging the po-
sitions of some of the filters, since the stray light responses
of the even and the odd bands are different (Section 6.5).
One of the principal data products from SeaWiFS mea-
surements is the ratio of the response of band 2 (443 nm)
to band 5 (555nm). It would be possible for the filters
for bands 5 and 6 to be interchanged, so that bands 2 and
5 would be in the even position on their respective focal
planes. Then, both measurements in the band 2 to band
5 ratio would have similar stray light characteristics.

In a similar manner, the same effect could be obtained
by interchanging the filters in the focal plane for bands
1 and 2, placing band 2 in the odd position on its focal
plane. As discussed above, however, there is difficulty and
risk in digging out the interference filters from their epoxy
mountings; as with the proposal to add septa between the
interference filters, this potential modification was not im-
plemented.
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During the period prior to the SeaWilF'S Stray Light
Paths Review in May 1993, a large number of scenar-
ios were proposed to reduce the effects of stray light in
the instrument. Many of these scenarios were summarized
in an unpublished internal memorandum to the SeaWiFS
Project (included in this document as Appendix A}.

7. POST-MODIFICATION TESTS

Post-modification stray light measurements were per-
formed as part of the stray light modifications to SeaWiFS
(Barnes et al. 1994a). The measurements were made at
several slit widths (in the along-scan direction) and at sev-
eral slit heights (in the along-track direction). They were
made with two sets of radiances to examine the linearity
of the residual stray light with the intensity of the bright
radiant source (see the SCADP). The measurements used
the SBRC 100 cm spherical integrating sphere as the light
source. Schott optical glass filters, placed in front of the
exit port of the sphere, were used to obtain spectral shapes
for each of the measurements approximating that for so-
lar lux. The test apparatus is described in the following
section.

7.1 Measurement Apparatus

The measurement apparatus for residual stray light in
SeaWiFS is shown in Fig. 11. The apparatus consists of a
target aperture on the exit port of the SBRC integrating
sphere and a collimating lens. The 15.24 cm diameter of
the lens provides a collimated output from the source that
overfills the input aperture for SeaWiF§S. The target aper-
ture on the integrating sphere has been designed to hold
both a 5.08x5.08 cm piece of optical colored glass and a
target mask. The sphere is positioned a distance from
the instrument such that a 2.92 mm wide slit in the target
mask subtends an angle of 1.6 mrad, the angular width of
a SeaWiFS pixel.

The vertical dimension of the opening in the target
panel is equivalent to 10 SeaWiFS pixels. Target masks
1, 2, and 3 have widths equivalent to 1, 3, and 10 Sea-
WiFS pixels. Combined with the vertical dimension of the
opening in the target panel, these masks produce images
of 1x10, 3x10, and 10x10 pixels. Since SeaWiFS was
positioned to scan in the horizontal during these measure-
ments, the slit widths in the target masks determined the
along-scan sizes of the test images, and the slit heights
determined the along-track size.

Mask 4 was used for measurements of the along-track
response of SeaWiFS. This mask produced an image of
1x3 pixels, with the along-track portion of the image 3
pixels in size. For the along-track measurements, a series
of SeaWiFS scans were taken, with adjustments of the ver-
tical position of the integrating sphere made using a screw
crank. In the test procedure, the vertical position of the
sphere was continuously adjusted by a distance equal to
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lens collimates the flux from the integrating sphere.

one-sixth of a SeaWiFS pixel between sets of scans by the
sensor; thus, the along-track residual stray light measure-
ments were oversampled by a factor of six.

7.2 Intensities of the Bright Sources

The SeaWiFS performance specifications require each
SeaWiFS band to settle to a radiance value that is within
a specified radiance step above the background ocean radi-
ance. The size of that radiance step is 0.5% of the typical
radiance (Lyypical) for that band (Barnes et al. 1994a). Ac-
cording to the specifications, the output from the sensor
should meet that radiance level within 10 pixels of the edge
of a bright source. The SeaWiFS BTR specification uses a
percentage of the Liypical values, rather than an absolute
set of radiances expressed in units of mWem~2sr~! pm~1.
For that reason, the discussions of stray light in this doc-
ument will refer to the bright radiances from the sources,
and to the residual stray light radiances within the instru-
ment, in terms of their Liypical values.

The typical ocean radiances (Liypical) and the maxi-
mum cloud radiances (L¢jouq) expected for SeaWiFS mea-
surements on orbit are listed in Table 22 of Barnes et al.
(1994a). Those radiances are shown in Fig. 12a. As can
be seen in the figure, the maximum cloud radiances have a
peak value of about 68 mWcm™2sr~! um~! for SeaWiFS
band 3, and the Liypical radiances have a peak of about
9 mWem~2sr~! pm~! for band 1. The nature of the two

sets of radiances is such that the ratio Leioud/ Liypical in-
creases with SeaWiFS band number (Fig. 12b); thus, the
SeaWiFS cloud radiances vary from about 6.5 times the
value of Liypicar for band 1, to about 31 times the value of
Liypical for band 8 (see Table 22 of Barnes et al. 1994a).

The fluxes from the SBRC test apparatus were set, as
closely as possible, to provide the radiances equivalent to
Leioua and 0.5 L¢joud; however, the limited output from the
SBRC sphere in the shorter wavelengths severely limited
the quality of this equivalence (Fig. 13). The cloud radian-
ces from Fig. 12b are repeated in Fig. 13 for reference. The
radiances that are 3 and 10 pixels wide come from Sea-
WiFS measurements of the test images from the sphere.
For band 1 in Fig. 13b, the image from the SBRC test ap-
paratus has a radiance of about 0.5 Lyypical. For bands 7
and 8, in Fig. 13a, the radiances are 25 and 30 times the
value of Leypical, respectively.

7.3 Theoretical Band-to-Band Response

To allow for an analysis of the SeaWiFS bands over a
wide range of optical overdrives, the assumption was made
that the stray light responses of the eight bands are similar,
at least to a very good approximation. This assumption
allows the conclusion that the shorter wavelength bands,
tested at small optical overdrives, will behave in the same
manner as the longer wavelength bands when optical over-
drives are large. Conversely, it allows the conciusion that
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the longer wavelength bands, tested at large optical over-
drives, will behave like the shorter wavelength bands when
overdrives are small. It assumes that none of the bands
have peculiarities in their bright target responses.

The assumption of band-to-band uniformity works bet-
ter for the sets of four odd and four even SeaWiFS bands,
since there is evidence in the test results of odd-even band
differences due to optical cross talk. These odd-even differ-
ences are relatively slight, and their characteristics show up
in all of the pairs of odd-even bands. As discussed above,
this odd-even band difference in stray light response was
predicted before the post-modification tests. Indeed, the
character of the predicted odd-even differences was one of
the principal guides for the design of the post-modification
measurements.

Consistent and explanable effects, such as these, must
be demonstrated in the test results, if the assumption of
band-to-band uniformity in stray light response is to be
believed. The analysis presented below will refer to this
assumption; however, the proposed stray light corrections
are tailored individually to the eight SeaWiF§ bands. For
these corrections, very small differences in the responses of
the bands become significant. The stray light corrections
can be a few tenths of a percent or less of the radiance
from the bright source. At levels above this, it will remain
important to check the assumption that the stray light
response is consistent from band to band.

7.4 Source Brightness Response

With the effective removal of the electronic recovery
tail (Section 5.0), there has been no sign of any significant
electronic component to the instrument’s bright target re-
sponse at a distance of more than one or two pixels from
the edge of the bright source. There is a small electronic
overshoot in each band’s electronic response 1 pixel after
a bright source (see Fig. 1 of Barnes et al. 1994a). The
effect derives from the design of the Goldberg noise reduc-
tion circuit in each band’s intermediate electronics. That
response, in the along-scan direction, is present in the test
results, and it will be present in the measurements on or-
bit. That response will be located within 1-2 pixels from
the edge of bright sources. This overshoot will be discussed
in the analysis of the test results presented below.

Without an electronic effect, the remaining response
to a bright source is caused by scattered or reflected light
from the bright source. As the brightness of the source
varies, so does the amount of scattered or reflected light
within the radiometer and the amount of stray light in the
radiometer’s measurements. This is the assumption of a
stray light response linear with source brightness; again, it
will be important to check this assumption in the results.

7.5 Along-Scan Responses

The characterization of residual stray light in the in-
strument was performed using a 1 pixel wide image po-
sitioned at the nadir pixel for SeaWiFS, pixel 643. The
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SeaWIiFS response was measured with the standard detec-
tor configuration for the radiometer and with science gain
1. Each band’s response to that bright impulse was mea-
sured over a range of 20 pixels on either side of the nadir
pixel. Over these 41 pixels, the output for each band was
summed, and each summation was normalized to unity.
The calculations presented here assume that all energy
from the impulse is contained within the 41 pixels of the
instrument output.

The along-scan impulses and responses are listed in Ta-
ble 8. The results are given for the range from 13 pixels
before the impulse (pixel offset —13) to 15 pixels after the
impulse (pixel offset 15). The responses are given for the
standard detector configuration for SeaWiF'S, i.e., for mea-
surements using all four detectors in each band. Stray light
measurements, using the same impulses, have also been
made individually for each detector in each band. They
are part of the SeaWiFS bio-optical archive and storage
system (Westphal et al. 1994). If changes to the detector
configurations are required on orbit, these test data can be
used to construct additional responses.

Table 8 gives the averages and standard deviations for
the odd and even band responses. Each of the eight re-
sponses summarized in Table 8 was normalized to unity
before the calculation of the table’s results. The standard
deviations in Table 8 range from about one-third to about
one-half of the corresponding mean values. These small
standard deviations are a measure of the band-to-band
similarity in the instrument response; however, there is
still the need for individually tailored responses for each
band in the stray light correction procedure presented be-
low.

The impulse from the 1 pixel wide bright image is
shown in Fig. 14. The abscissa has been changed so that
the impulse is at pixel zero, rather than pixel 643. The
spread of this input into the odd band response is shown
in Fig. 15. This figure gives the average response for the
four odd SeaWiFS bands (bands 1, 3, 5, and 7). Figure 15a
shows that almost 99% of the response of the odd bands
can be found within two pixels of the source. Figure 15b
shows the remaining 1% of the odd band response, i.e., the
response that is three or more pixels from the source. In
these figures, the instrument scans left to right. Figure 15b
shows the effect of optical cross talk on the response of the
odd bands on the SeaWiFS focal planes. There is a signif-
icantly longer and larger response after the bright source.
For each odd band, this increased response results from
additional stray light from the even band (Section 6.5).
It is felt that the addition of a septum between the focal
planes would greatly reduce this additional stray light and
make the down-scan response in Fig. 15b nearly identical
to the up-scan response.

The spread of the impulse into the even SeaWiFS bands
is shown in Fig. 16. In the same manner as before, this fig-
ure gives the average response for the four even bands, and
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Table 8. Along-scan impulse and response. The impulse represents the illumination from a 1 pixel
wide slit. The responses come from the SCADP measurements performed at SBRC. The response
values give the means and standard deviations for the four odd and four even bands. All functions
have been normalized to give integrated values of unity.

Pixel Along-Scan Odd Band Response Even Band Response
Offset Impulse Mean o Mean c

~13 0.0 0.000000 0.000000 0.000000 0.000000

-12 0.0 0.000000 0.000000 0.000047 0.000011

-11 0.0 0.000000 0.000000 0.000150 0.000036

—10 0.0 0.000000 0.000000 0.000263 0.000066

-9 0.0 0.000000 0.000000 0.000435 0.000104

-8 0.0 0.000025 0.000016 0.000638 0.000147

=7 0.0 0.000069 0.000030 0.000773 0.000185

-6 0.0 0.000198 0.000079 0.000969 0.000238

-5 0.0 0.000573 0.000202 0.001136 0.000202

—4 0.0 0.001661 0.000553 0.001458 0.000187

-3 0.0 0.004368 0.001589 0.003672 0.001050

-2 0.0 0.012424 0.004133 (0.009061 0.002671

-1 0.0 0.149717 0.057032 0.124966 0.067547

0 1.0 0.703367 0.029070 0.765813 0.082545

1 0.0 0.097853 0.086333 0.061887 0.081895

2 0.0 0.016655 0.005364 0.014468 0.012949

3 0.0 0.005788 0.002888 0.008829 0.002597

4 0.0 0.002021 0.000866 0.003241 0.000861

5 0.0 0.001459 0.000944 0.001259 0.000442

6 9.0 0.001127 0.000708 0.000493 0.000252

7 0.0 0.000931 0.000636 0.000214 0.000157

8 0.0 0.000675 0.000438 0.000106 0.000106

9 0.0 0.000541 0.000332 0.000049 0.000064

10 0.0 0.000310 0.000117 0.000025 0.000043

11 0.0 0.000154 0.000025 0.000025 0.000043

12 0.0 0.000059 0.000036 0.000015 0.000026

13 0.0 0.000017 0.000030 0.000007 0.000013

14 0.0 0.000007 0.000013 0.000000 0.000000

15 0.0 0.000000 0.000000 0.000000 0.000000

Sum 1.0 1.0 1.0

as with the odd bands, almost 99% of the even band re-
sponse can be found within two pixels of the source. A
comparison of Figs. 15a and 16a shows a marked similar-
ity in the pattern of the response. For the even bands,
the response in the central pixel is about 6% greater than
for the odd bands. As a result, the even band responses
for pixels —1 and +1 are smaller. The overall assessment
is that the relationships illustrated in Figs. 15a and 16a
between these two pixels are similar.

A comparison of the lower level responses in the outer
pixels (Figs. 15b and 16b) shows more of a mirror image
with respect to the central pixel. The extended down-scan
tail in the response of the odd bands is mirrored by the
extended up-scan tail in the even bands. In both cases, the
extended tails for the bands are caused by cross talk from
the bands that share the focal planes with them. For both

the odd and even bands, the tails with cross talk extend
about 11-12 pixels. For the responses without cross talk,
the tails extend about 7-8 pixels.

7.6 Along-Track Responses

The impulse in the along-track direction comes from a
3 pixel wide bright source. The measured along-track re-
sponse is shown in Fig. 17. The vertical scales for Figs. 17a
and 17b duplicate those for the respective parts of Figs. 15
and 16, but the horizontal scales of Figs. 17a and 17b have
been expanded by a factor of three. The spacing of the
data points in Fig. 17 reflects the oversampling in the
measurements discussed in Section 7.1. Figure 17 shows
six along-track measurements per pixel. Again, for both
the along-scan and along-track stray light results presented

21



Stray Light in the SeaWiFS Radiometer

10 1 Impulse

Response (dimensionless)
o o o o o ©
N s O e N
L | | ! L

©
I

00 +——T 7T v 17 7T T T T T 7
-16 —14 -12 -10 -8 -6 -4 =2

T

|
0

l[\|r11|T—IIIT(’(
2 4 6 8 10 12 14 16

Pixel Number

Fig. 14. Impulse for the stray light responses. The impulse has been set to unity, since it represents all of

the input light to the instrument.

here, a pixel is defined as a square with a side length of As shown in Fig. 10, each SeaWiFS band is 4 pixels long
1.6 mrad, which will be 1.13km for nadir measurements (in the along-scan direction), but only 1 pixel wide.

made from an altitude of 705km (Barnes et al. 1994a).
The 2 pixel plateau at the top center of the response de-
rives directly from the width of the illuminated slit. The
half-power points for the response are 3 pixels apart.
Figure 18 shows the along-track response in a format
identical to the along-scan figures. This was obtained by
removing just over 1.5 pixels from the central plateau in
Fig. 17a to create a narrower response. The responses in
Figs. 18a and 18b have been prepared for qualitative pur-
poses only. They do show, however, that the side lobes
of the secondary reflections from the scrambler have been
moved from 5 pixels from the central image (see Fig. 7), to
1 pixel from the center. In addition, the along-track stray
light response exists for only 1 to 2 pixels from the central
image. This width is significantly less than that for either
the odd or even along-scan stray light results. The along-
track results are also presented in Table 9. This table does
not separate the results into odd and even bands, since
there are no significant odd-even band differences. The
standard deviations in Table 9 are also reasonably small
when compared with the mean values. The narrower stray
light response in the along-track direction in SeaWiF'S re-
sults from the basic design of the focal plane assemblies.
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Table 9. Along-track impulse and response. The
impulse represents the illumination from a 1 pixel
wide slit. The responses come from measurements
in the SCADP. The response values give the means
and standard deviations for the SeaWiFS bands.
All of the functions have been normalized to give
integrated values of unity.

Pixel Along-Track Response
Offset Impulse Mean o
—6 0.000000 0.000000  0.000000
-5 0.000000 0.000003 0.000009
—4 0.000000 0.000100 0.000120
-3 0.000000 0.000238 0.000217
-2 0.000000 0.002165 0.001704
-1 0.000000 0.176247  0.045494
0 1.000000 0.645052 0.013227
1 0.000000 0.175668 0.041982
2 0.000000 0.000511 0.000183
3 0.000000 0.000016 0.000018
4 0.000000 0.000000  0.000000
Sum 1.0 1.0
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The field stop at the inlet to the aft optics masks the
bands in the focal planes, leaving an open area that is
approximately 6 pixels long by 2 pixels wide per band.
The narrower the mask, the less stray light there is in
the measurement. Thus, the reduction of the along-scan
mask is one method for reducing stray light in that direc-
tion; such a suggestion was raised by W. Esaias (see Ap-
pendix A). For SeaWiF$S, reducing the along-scan masks
over the band areas would eliminate using some of the de-
tectors through vignetting and reduce the signal-to-noise
improvement from the use of those detectors. This sug-
gestion was not implemented. Remodeling the instrument
to separate the individual detectors and place them under
individual filters was also considered impractical.

8. STRAY LIGHT ASSESSMENT

There are three primary contributors to the BTR in
SeaWiFS—MTF /optical blur, optical cross talk under the
interference filters, and mirror BRDF. Mirror BRDF, or
primary mirror scatter, was discussed in Section 6.1, and
included a calculation of the angular dependence of the
BRDF. Primary mirror scatter remains a stray light source
after all other sources have been removed. The ranges over
which primary mirror scatter dominates SeaWiFS BTR are
given in Table 10. These ranges can be compared with re-
sults from the laboratory measurements in Fig. 15 (along-
scan odd band response), Fig. 16 (along-scan even band
response), and Fig. 18 (along-track response).

Optical cross talk has been described in Section 6.5.
It is the primary source of asymmetry in the along-track
BTR from SeaWiFS. For the stray light budget presented
here, optical cross talk covers all sources of reflections un-
der the interference filters. For the odd bands, intraband
optical cross talk, i.e., reflections under the interference
filter within a band, dominates from 3-5 pixels before a
bright source. The so-called excess stray light from inter-
band cross talk extends to 9 pixels after the bright source.
The same along-scan cross talk occurs in the even bands,
except that the excess interband cross talk comes before
the bright source.

The MTF has been discussed in terms of the line spread
function in Barnes et al. (1994a). The MTF is called op-
tical blur in Fig. 6. In optical terms, this effect creates a
blur circle that extends 1 or 2 pixels around each pixel.
Other effects, such as intraband electronic cross talk and
reflections from the focusing lenses, are present in BTR,;
however, they are considered to be secondary contributors
to stray light in SeaWiF'S.

9. ALONG-SCAN CORRECTION

The individual responses for the eight SeaWiFS bands
are listed in Table 11. These values have been taken from
the SCADP, which also gives a brief description of their
derivation. The application of responses to remove resid-
ual stray light from an individual pixel uses the response of

that pixel plus the responses of pixels near it. Each pixel
is treated, in turn, as the central pixel in the response.
The correction is applied in two parts. First, the so-called
missing signal from the central pixel is restored. For the
odd bands, approximately 30% of the original impulse is
removed from the central pixel in the response (Table 8).
For the even bands, about 24% of the central pixel is re-
moved and must be replaced. Second, the light added to
the central pixel must be removed from its neighbors.

The stray light correction illustrated in Table 12 in-
cludes only five pixels; the pixel to be corrected and the
two pixels on either side of it. This was done to produce
a simplified explanation. In practice, the SeaWiF'S along-
scan stray light correction will involve many more pixels,
and the correction is applied after the counts have been
converted into radiances. Using the notation from Ta-
ble 12, the stray light correction (Fgz) for an individual
pixel proceeds in the following sequence.

Step 1: Set the correction term to zero:

Fsp = 0. (2)
Step 2: Replace the missing signal from pixel Fy, as in
1-K
Fs; = Fgi +Ro[ I 0], 3)
0

where Ry designates the radiance of pixel Fp, and K
is the correction constant for pixel Fp.

Step 3: Remove the contributions from the adjacent
pixels. This example includes only two pixels up scan
and down scan. In practice, there will be many more.

(K ,o]

Fs; = Fs — R_
SL SL 2| Ry |’ (4)
K]
Fs;, = Fs;, — R_,|=2
SL SL 1 ok (5)
K]
Fs; = Fgp — Ry |—
SL SL T | (6)
and
(K]
Fgp = Fg;, — Ryqo|——]|.
SL SL +2 | (7)
Step 4: Apply the correction to the radiance:
Ry = Ry + Fsi. (8)

The correction in Step 2 is straightforward, since the radi-
ance and the correction constant come from the same pixel.
For Step 3, the location of the pixel under correction, rela-
tive to the source of radiance, determines the appropriate
correction constant.

In the tests summarized below, the stray light correc-
tions were accomplished using a commercial spreadsheet
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Fig. 15. The response for the odd bands on the SeaWiFS§ focal plane assemblies. This is the instrument
response in the along-scan direction. The total response from the two portions of this figure is equal to unity,
since it represents all of the response to the impulse in Fig. 14. The figure shows: a) the response of the
central pixel and its immediate neighbors when the ordinate is set to unity; and b) the response of the outer
pixels when the ordinate is set to 1% of full scale. The excess stray light in the higher number pixels, relative
to the pixels on the lower number side, is the result of optical cross talk from the even bands.
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Along—Scan Response — Even Bands
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Fig. 16. The response for the even bands on the SeaWiF$ focal plane assemblies. This is the instrument
response in the along-scan direction. The total response from the two portions of this figure is equal to unity,
since it represents all of the response to the impulse in Fig. 14. The figure shows: a) the response of the
central pixel and its immediate neighbors when the ordinate is set to unity; and b) the response of the outer
pixels when the ordinate is set to 1% of full scale. The excess stray light in the higher number pixels, relative
to the pixels on the lower number side, is the result of optical cross talk from the even bands.
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Fig. 17. Measurements of the response in the along-track direction. These measurements were made by
adjusting the height of the light source (Section 7.1). The measurements of the along-track response are
oversampled by a factor of 6.
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Fig. 18. The response in the along-track direction. This response represents all eight SeaWiFS bands. The
total response from the two portions of this figure is equal to unity, since it represents all of the response to
the impulse in Fig. 14. The figure shows: a) the response of the central pixel and its immediate neighbors

when the ordinate is set to unity; and b) the response of the outer pixels when the ordinate is set to 1% of
full scale.
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Table 10. Primary BTR components. This is a qualitative summary of the principal components in the
BTR/stray light response of SeaWiFS. The pixel ranges give estimates for the regions over which each com-
ponent dominates the BTR/stray light response. (The + sign indicates the pixel enumerated and beyond.)

Scan BTR Pixels Before Source Pixels After Source
Direction Component Odd Band  Even Band Odd Band  Even Band
Along-Scan MTF/Optical Blur 1-2 1-2 1-2 1-2
Optical Cross Talk 3-5 3-9 3-9 3-5
Mirror BRDF 6+ 10+ 10+ 6+
Along-Track MTF /Optical Blur 1-2 1-2 1-2 1-2
Mirror BRDF 3+ 3+ 3+ 3+

Table 11. Along-scan responses for SeaWiFS bands 1-8. These are the constants used in the correction

Band 2 Band 3
(443 nm) (490 nm)

Band 4 Band 5
(510nm) (555 nm)

Band 6 Band7 Band$8
(670nm) (765nm) (865nm)

procedure.

Pixel Band 1
Offset (412 nm)
-13 0.00000
-12 0.00000
-11 0.00000
-~10 0.00000
-9 0.00000
-8 0.00004
-7 0.00010
—6 0.00030
-5 0.00080
—4 0.00240
-3 0.00639
-2 0.01758
-1 0.13183
0 0.73314

1 0.06392

2 0.02000

3 0.01039

4 0.00350

5 0.00300

6 0.00230

7 0.00200

8 0.00140

9 0.00110

10 0.00050
11 0.00013
12 0.00000
13 0.00000
14 0.00000
15 0.00000

0.00000 0.00000
0.00005 0.00000
0.00015 0.00000
0.00030 0.00000
0.00050 0.00000
0.00074 0.00004
0.00090 0.00010
0.00110 0.00025
0.00130 0.00075
0.00148 0.00199
0.00519 0.00546
0.01335 0.01565
0.10236 0.21913
0.87317 0.74859
—0.00445 -0.00273
0.03400 0.02000
0.01335 0.00621
0.00440 0.00180
0.00148 0.00149
0.00055 0.00110
0.00020 0.00085
0.00007 0.00066
0.00002 0.00050
0.00000 0.00032
0.00000 0.00020
0.00000 0.00007
0.00000 0.00000
0.00000 0.00000
0.00000 0.00000

0.00000 0.00000
0.00006 0.00000
0.00020 0.00000
0.00034 0.00000
0.00052 0.00000
0.00070 0.00002
0.00078 0.00005
0.00090 0.00015
0.00104 0.00045
0.00156 0.00134
0.00442 0.00342
0.01040 0.00921
0.10948 0.06523
0.85724 0.66876
—0.00104 0.23318
—0.00416 0.00743
0.00910 0.00297
0.00300 0.00149
0.00080 0.00059
0.00026 0.00052
0.00008 0.00045
0.00003 0.00035
0.00000 0.00030
0.00000 0.00022
0.00000 0.00015
0.00000 0.00007
0.00000 0.00000
0.00000 0.00000
0.00000 0.00000

0.00000  0.00000  0.060000
0.00005 0.00000  0.00003
0.00016  0.00000  0.00010
0.00027  0.00000  0.00016
0.00049  0.00000  0.00026
0.00077  0.00000  0.00039
0.00099  0.00003  0.00048
0.00131  0.00010  0.00064
0.00142  0.00031  0.00087
0.00170  0.00097  0.00119
0.00296  0.00235  0.00241
0.00607  0.00769  0.00716
0.05654  0.19012  0.23871
0.71775  0.68751  0.66864
0.20043  0.09758  0.05559
0.01400  0.02000 0.01600
0.00558  0.00377  0.00803
0.00197  0.00135  0.00385
0.00082  0.00080  0.00193
0.00030  0.00062  0.00090
0.00011  0.00045  0.00048
0.00004 0.00031  0.00029
0.00002  0.00028  0.00016
0.00000  0.00021  0.00010
0.00000  0.00014  0.00010
0.00000  0.00010  0.00006
0.00000  0.00007  0.00003
0.00000  0.00003  0.00000
0.00000  0.00000  0.00000




R.A. Barnes, A.W. Holmes, and W.E. Esaias

Table 12. Application of the along-scan stray light correction. The correction in this table is demonstrated for
a reduced set of five pixels. The correction is shown for the central pixel, P, only.

Correction Pixel
Variable P_2 P_1 Po P+1 P+2
Radiance R_ 2 R_ 1 Ro R+ 1 R+2
Correction Constant K_, K_; Ky K K,»
Complete Correction Ry(1 - Ko) — R2K42 — R.1Kyy — RpnK1 — Ry2K o

program. In that program, all calculations were made with
radiances that were not corrected for stray light. This
spreadsheet technique gives results that are different from
calculations which correct pixels in series down a scan line.
In that type of calculation, called a moving window calcu-
lation, some of the radiances used in the stray light correc-
tion have been adjusted for stray light, and some have not.
The actual correction routine for flight data will not dupli-
cate the spreadsheet process that derived these corrections;
however, there are other algorithms that can provide es-
sentially identical results.

10. ALONG-SCAN TEST RESULTS

The 32 stray light tests presented here correspond to
the combination of radiances and slit widths in Figs. 13a
and 13b. There are two sets of radiances, called high and
midrange, and there are two slit widths—3 pixels and 10
pixels. A sample calculation from the test results is pre-
sented in Table 13.

10.1 Sample Calculations

The results in Table 13 are for SeaWiF'S band 7, with
high radiance, and a 10 pixel slit. For the calculations,
a subset of pixels ranging from pixels 601-680, is taken
from the 1,285 pixel scan line. The laboratory measure-
ments were made in a darkened room with an illuminated
slit (Section 7.1). From those measurements, the instru-
ment output (in counts) for pixels 601-620 was averaged
to provide the zero (or dark) count; this zero count was
subtracted from all of the pixels in the subset. The dark-
corrected counts have been converted into radiances using
the prelaunch calibration constants in Barnes et al. (1994b)
for bilinear gains (Section 4).

These measured radiances form the input for the stray
light correction. For band 7, with high radiance and a
10 pixel slit (Table 13), the input radiance shows a peak
value of about 41.8 mWem™2sr~! um~! at pixel 640. The
output radiance from the stray light correction for that
pixel is nearly the same. The radiance at pixel 640, in
normalized units, is very close to Lcoug and is about 26
times greater than Liypical-

The 10 pixel bright source extends from pixel 634 to
pixel 643. In all of the test set measurements, the right-
most edge of the bright source has been placed at pixel 643.
The zero values in this case (pixels 615620 and 657-660)

range from 0.001-0.004 mW cm~2sr~! um~1; i.e., from ap-
proximately 0.33—1.33 counts above the zero offset calcu-
lated from pixels 601-620. In other terms, the zero values
range from 0.06-0.25% of Leypicai- On the surface, this
is a small offset, but the SeaWiFS performance specifica-
tions call for the output of the band to fall within 0.5% of
Liypical Within 10 pixels of the bright source. In these re-
sults, where 2 or 3 counts are equivalent to 0.5% of Liypical,
these zero values can be significant.

The decision was made not to fine tune the zero values
in these calculations. In addition, the decision was made
not to fine tune the responses in these calculations. A
hypothetically improved set of response constants could
remove more of the residual stray light tails in Table 13.
Individual tailoring of these parts of the calculations could
produce improved results. Those improvements would be
of laboratory measurements of bright slits, and will not be
made on orbit. There can, and will be, multiple bright
sources in each scan of the Earth. Most of those bright
sources, clouds in particular, will not have the sharp edges
characteristic of laboratory slits.

Extrapolation of these controlled laboratory measure-
ments of stray light to the conditions to be found on orbit
is not completely straightforward. As a result, it was de-
cided to define the procedure for stray light reduction be-
fore analysis of the actual measurements and to use those
results without empirical fitting. The calculation of the
zero values and the constants in the along-scan responses
were not adjusted. Based on the test results presented
here, improving the laboratory results in this manner does
not necessarily lead to better results from orbit. In essence,
scatter, and possibly some bias, has been retained in these
test results.

10.2 Results

The laboratory stray light correction results are shown
in Figs. 19-50. The data from which these results were cal-
culated have been stored by the SeaWiFS Project (West-
phal et al. 1994), and are available to the interested user.
Each of these figures has four subpanels, a—d, respectively,
and the format for each part is the same from figure to fig-
ure. In all of the figures, the abscissa runs from pixel 615 to
pixel 665. Figure 19 will be used for illustrative purposes.
Subpanels 19a and 19b show the input (uncorrected) ra-
diances for the measurement, with 19a scaled to show the
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Table 13. Results from the stray light correction for band 7 with a 10 pixel slit, and high radiance output
from the source. This table gives the input values to, and the output values from, the stray light correction.
The radiance values have units of mWem=2sr~! um~!.

Pixel Radiance Units Laouda Normalized Lyypical Normalized
Number Input Output Input Output Input Output
615 0.00101 0.00101 0.00002 0.00002 0.00063 0.00063
616 0.00101 0.00101 0.00002 0.00002 0.00663 0.00063
617 0.00404 0.00404 0.00009 0.00009 0.00251 0.00251
618 0.00404 0.00404 0.00009 0.00009 0.00251 0.00251
619 0.00404 0.00404 0.00009 0.00009 0.00251 0.00251
620 0.00404 0.00404 0.00009 0.00009 0.00251 0.00251
621 0.00707 0.00707 0.00016 0.00016 0.00439 0.00439
622 0.00404 0.00404 0.00009 0.00009 0.00251 (.00251
623 0.00707 0.00707 0.00016 0.00016 0.00439 0.00439
624 0.01009 0.01009 0.00023 0.00023 0.00627 0.00627
625 0.01009 0.01009 0.00023 0.00023 0.00627 0.00627
626 0.01312 0.01283 0.00031 0.00030 0.00815 0.00797
627 0.01615 0.01402 0.00038 0.00033 0.01003 0.00871
628 0.01615 0.00811 0.00038 0.00019 0.01003 0.00504
629 0.03129 0.00485 0.00073 0.00011 0.01943 0.00301
630 0.07671 —0.00081 0.00178 —0.00002 0.04765 —0.00050
631 0.19177 —0.02908 0.00446 —0.00068 0.11911 —0.01806
632 0.57633 —1.68687 0.01340 —0.03923 0.35797 —1.04775
633 9.69040 5.06424 0.22536 0.11777 6.01888 3.14549
634 38.88820 42.32283 0.90438 0.98425 24.15416 26.28747
635 41.13418 42.22813 0.95661 0.98205 25.54918 26.22865
636 41.47972 41.82420 0.96464 0.97266 25.76380 25.97776
637 41.65248 41.82302 0.96866 0.97263 25.87111 25.97703
638 41.82525 41.97839 0.97268 0.97624 25.97842 26.07353
639 41.82525 41.94110 0.97268 0.97537 25.97842 26.05037
640 41.82525 41.95810 0.97268 0.97577 25.97842 26.06093
641 41.82525 42.06381 0.97268 0.97823 25.97842 26.12659
642 41.82525 43.51957 0.97268 1.01208 25.97842 27.03079
643 35.26007 40.46626 0.82000 0.94108 21.90066 25.13432
644 5.37120 2.56723 0.12491 0.05970 3.33615 1.59455
645 0.25536 —1.28311 0.00594 —0.02984 0.15861 —0.79696
646 0.38254 —0.03002 0.00890 —0.00070 0.23760 —0.01865
647 0.17663 —0.01295 0.00411 —0.00030 0.10971 —0.00804
648 0.12213 —0.00370 0.00284 —0.00009 0.07586 —0.00230
649 0.08579 —0.00546 0.00200 —0.00013 0.05329 —0.00339
650 0.06157 —0.00432 0.00143 —0.00010 0.03824 —0.00268
651 0.04643 —0.00095 0.00108 —0.00002 0.02884 —0.00059
652 0.03129 —0.00279 0.00073 —0.00006 0.01943 —0.00173
653 0.01918 —0.00366 0.00045 —0.00009 0.01191 —0.00227
654 0.01009 —0.00417 0.00023 —0.00010 0.00627 —0.00259
655 0.01009 0.00172 0.00023 0.00004 0.00627 0.00107
656 0.00707 0.00285 0.00016 0.00007 0.00439 0.00177
657 0.00404 0.00261 0.00009 0.00006 0.00251 0.00162
658 0.00404 0.00388 0.00009 0.00009 0.00251 0.00241
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Table 13 (cont.) Results from the stray light correction for band 7 with a 10 pixel slit, and high
radiance output from the source. This table gives the input values to, and the output values from, the
stray light correction. The radiance values have units of mWcm™=2sr~! pm~1.

Pixel Radiance Units Leouwd Normalized Lyypical Normalized
Number Input Output Input Output Input Output
659 0.00404 0.00404 0.00009 0.00009 0.00251 0.00251
660 0.00404 0.00404 0.00009 0.00009 0.00251 0.00251
661 0.00404 0.00404 0.00009 0.00009 0.00251 0.00251
662 0.00404 0.00404 0.00009 0.00009 0.00251 0.00251
663 0.00101 0.00101 0.00002 0.00002 0.00063 0.00063
664 0.00101 0.00101 0.00002 0.00002 0.00063 0.00063
665 0.00101 0.00101 0.00002 0.00002 0.00063 0.00063

full illumination from the bright source, and 19b scaled
to +0.03, i.e., £3% of Lyypicai. The horizontal scales for
19c and 19d are identical to those for 19a and 19b, respec-
tively; however, 19c and 19d give the output (corrected)
radiances from the stray light algorithm. For 19b and 19d,
horizontal lines are added at £0.005 (£0.5% ) of Lypical-
These limits are part of the stray light specification.

In all of the measurements, the down scan (rightmost)
part of the bright slit was placed at pixel 643. The edges of
the bright slits were set so that they divided the endmost
pixels. Thus, for a 10 pixel slit, the slit was adjusted to
give 9 full pixels in the center of the bright source, plus
0.5 pixel on each end. For a 3 pixel measurement, there
were two central pixels plus 0.5 pixel on each end. The slit
edge positions were repeatable to about £0.5 pixel from
measurement to measurement. Both the measurement set-
up and the presentation of Figs. 19-50 were designed to
provide results that are as uniform as possible. This is
particularly true for the design of subpanels b and d of the
figures, which show the details of the instrument’s response
to bright sources. This was done to allow quick visual
comparisons of the results from each band, radiance level,
and slit width.

Figure 25 shows the results for band 7, listed in Ta-
ble 13. Both the tabulated results for this measurement
and the figure (subpanel 25d) show the stray light correc-
tion to overshoot the zero level both before and after the
bright source. Figure 25 also shows that the algorithm un-
dercorrects for the stray light before the slit. The impulse
provides essentially no correction for pixel 627 and below.

There is a small electronic overshoot in each band’s
response one pixel after a bright source. This character-
istic lies ingrained within the instrument. As shown in
Fig. 1 of Barnes et al. (1994a), each SeaWiFS band has
a nearly identical one-time overshoot in its along-scan re-
sponse. This effect derives from the design of the Goldberg
noise reduction filter in each band’s intermediate electron-
ics. This design helps to ensure that the instrument meets
the MTF portion of the Ocean Color Data Mission perfor-
mance specifications in the along-scan direction (see Sec-
tion 14 of Barnes et al. 1994a).

Since the instrument’s radiometric calibration used an
extended source with nearly uniform radiance, the elec-
tronic effect has been, in effect, calibrated into ocean scenes
that have roughly constant radiances. For scenes with
sharp transitions in radiance, particularly in the down-scan
transitions from bright sources shown here, the electronic
overshoot is present one pixel from the radiant source.
There is no sign of the overshoot before bright targets.
The effect of the Goldberg filter can be seen in Figs. 19-
50: subpanels a and b. For bands 1-7 in these figures, the
overshoot is present down scan of the bright source. For
band 8 in these figures, the electronic overshoot cannot
be seen to the right of the slit. For this band, the stray
light down scan of the slit may be so great as to mask the
electronic effect.

It is obvious from the results in Figs. 19-50 that the
stray light algorithm overcompensates close to the bright
source. In nearly all of the test cases, the corrected results
run negative for the pixel before the bright source, return-
ing to zero as distance from the bright source increases.
For the down scan portion of the measurements, the cor-
rection algorithm also exaggerates the electronic overshoot
one pixel from the bright source. This overcorrection by
the stray light algorithm need not be considered a problem,
as it may form the foundation for a method for determining
the edges of clouds or other bright targets on orbit.

Clouds observed on orbit will not have the sharp edges
characteristic of brightly lit slits in the laboratory. There
is every possibility that the corrected instrument radiances
from orbit will show the laboratory pattern of overcorrec-
tions, however, before and after cloud pixels. Such effects
should have distinct fingerprints if the magnitude of the
change in radiance of a pixel from its predecessor, along
with the first- and second-derivatives of that change, is ex-
amined. Recognition of these patterns is not beyond the
capacity of current computer programs. The location of
the overshoot occurs one pixel from the edge of the source.
Figs. 35-36 also show the over-ranging to be present for
bright targets that are brighter, by 0.5-0.75 of Liypical,
than the ocean radiances.
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As noted above, the positions of the edges of the slits
were repeatable to about +0.5 pixel. On orbit, the loca-
tions of the bright sources will not be known a priori. It
will be interesting to see if this proposal for cloud edge lo-
cation can be implemented in the on-orbit data reduction
procedures. It is also important to note that these dis-
cussions of stray light corrections apply only to along-scan
measurements.

10.3 Post-Correction Stray Light Effects

The results from Figs. 19-26, for high input radiances
and 10 pixel slits, are summarized in Fig. 51a. This fig-
ure gives the average of the residual responses from the
eight bands, plus their standard deviations (1¢). The ab-
scissa and ordinate of Fig. 51a duplicate those found in
subpanel d in each of the figures for the individual bands.
In the same manner, Fig. 51b summarizes the results from
Figs. 27-34, with high input radiances and 3 pixel slits.
Both subpanels of the figure show the residual stray light
responses located 4-10 pixels from the slit edge; however,
this statement is not entirely correct. The edges of the
slits, as explained above, were set so that they divided the
endmost pixels in the bright sources. The positions of the
edges of the slits, also explained above, were repeatable
to about +0.5 pixel. Thus, the responses in Fig. 51 are
found from 3.5-9.5 pixels from the slit edges, give or take
one-half pixel. With respect to the locations of the points
where the correction algorithm overshoots, the responses
are located 2-8 pixels away. This observation demonstrates
an advantage of using the stray light algorithm results,
which contain the overcorrection. The overshoot occurs at
a pixel that can be determined with confidence, although
the edges of clouds are less well defined.

For all of the results in Fig. 51, except those closest
to the bright source, the 1o error bars lie at, or within,
the requirements of the instrument specifications (0.5% of
Liypical). For on-orbit measurements, radiances more than
four pixels from clouds (or more than three pixels from the
overshoot in the correction algorithm) should be usable in
the SeaWiFS data reduction.

Uniformity exists in the pattern to the residual stray
light responses in Fig. 51, which can be seen in the tabu-
lated values in Table 14. The mean values and standard
deviations from this table were used to create Fig. 51. The
similarity between the 3 and 10 pixel results reveal no sig-
nificant dependence on the width of the bright source. Ear-
lier examinations (unpublished) of the uncorrected stray
light in SeaWiF'S indicated a small but noticeable increase
in stray light with slit width, for slits up to 6 pixels wide.
Those preliminary results showed no such dependence for
slit widths greater than 6 pixels. Since the masks over
the detector arrays for the SeaWiFS bands are 6 pixels
long, this effect appears to have a basis in the instrument
design. This source-size dependence was the reason for in-
corporating the two different bright source widths in the
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measurements presented here. The post-correction results
in Fig. 51, however, show no significant differences between
the stray light residuals of 3 and 10 pixels. Since the cor-
rection algorithm is based on the instrument’s measured
response to a 1 pixel laboratory slit, it was concluded that
no significant dependence exists in the corrected results on
the width of the bright source, i.e., there is no cloud size
dependence.

The sizes of the standard deviations in Fig. 51 are also
uniform. For all of the residuals, except for those clos-
est to the bright source, the lo error bars are 0.5% or
less of Liypical- As explained above, the closest pixels will
be masked in the reduction of the data from orbit. The
brightness of the sources for the measurements ranged from
1-30 times the value of Liypical, but the scatter in the re-
sults has remained uniformly small. As a result, there is
no dependence on source brightness in the stray light cor-
rection algorithm. It can be applied to very bright clouds,
as well as the clouds producing less radiance.

The results from Figs. 35-50, i.e., with midrange input
radiances, are summarized in Figs. 52a and 52b. These
figures give the average of the residual responses from the
eight bands, plus their standard deviations (1o). The for-
mat for these figures duplicates that for Figs. 51a and 51b.
In fact, the results in Figs. 52a and 52b also duplicate the
corresponding results in Figs. 51a and 51b. At the 0.1-
0.2% level, there are differences between the high range
and midrange residuals. For measurements whose light in-
tensities vary by a factor of 2, however, the residuals are
essentially identical.

The results shown in Figs. 51 and 52 provide the valida-
tion for these along-scan stray light corrections. There are
no peculiarities in the results, so the band-to-band stray
light response in the instrument is uniform. There are no
differences in the results for radiances that vary by a factor
of 2, so the stray light response of the instrument is linear
with source brightness. These results, however, have been
shown only for laboratory measurements. Flight results
will provide the ultimate test of these corrections.

11. PROPOSED LAC CORRECTION

The following sections discuss the corrections for LAC
(1 km resolution) data in both the along-scan and along-
track directions.

11.1 Along-Scan LAC Correction

The calculation of the along-scan correction was de-
scribed in Section 9. In that technique, a second 1,285
pixel array is created to hold the corrected radiances. For
along-scan LAC data, the correction procedure in Section 9
will be applied to all scan lines.

There are significant stray light residuals, however, in
the corrected radiances near bright sources (Section 10.3).
Pixels with these large residuals lie within five pixels of
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Table 14. Residual along-scan stray light responses. These values are also shown in Figs. 51 and 52. The mean
values and the standard deviations are presented here as a percentage of Liypical-

Radiance Distance from Slit 10 Pixel Slit 3 Pixel Slit
Range [pixels] Mean c Mean o
High -10 0.177 0.214 —-0.013 0.085
-9 0.160 0.247 —0.070 0.180
-8 0.165 0.315 0.092 0.266
-7 0.126 0.389 —0.061 0.172
—6 0.075 0.376 —0.105 0.243
-5 —0.039 0.412 —-0.198 0.325
—4 —0.295 0.573 —-0.410 0.548
4 -0.519 0.717 —0.633 0.527
5 -0.011 0.358 —0.154 0.193
6 -0.014 0.230 —0.043 0.075
7 0.090 0.189 0.028 0.136
8 0.115 0.214 0.052 0.146
9 0.142 0.232 —0.006 0.138
10 0.105 0.166 0.027 0.143
Middle —-10 0.067 0.113 0.005 0.088
-9 0.069 0.109 —0.052 0.160
-8 0.036 0.179 0.113 0.221
-7 0.034 0.170 0.008 0.263
-6 0.002 0.185 -0.031 0.300
-3 —0.054 0.201 —0.108 0.316
-4 —-0.145 0.366 —0.272 0.631
4 —0.429 0.307 —-0.316 0.133
5 0.004 0.155 —0.018 0.074
6 —-0.034 0.129 -0.029 0.079
7 0.011 0.145 0.027 Q.101
8 0.003 0.078 0.032 0.121
9 0.068 0.148 —0.007 0.129
10 0.029 0.134 0.008 0.099

the edges of those bright targets. Thus, pixels located four
pixels, or closer, to the edge of a cloud or another bright
source must be masked. Such masking procedures exist
for clouds, sun glint, and land surfaces (McClain et al.
1995 and Arrigo and McClain 1995). Those masks will be
extended in size to account for stray light in the instru-
ment. In addition, those masks will be applied to the LAC
data after the stray light correction. The corrections and
the masking procedures developed here will also supersede
those masks for bright sources.

The masking procedure for bright targets presented
here is far from an accomplished fact. Indeed, there is
no guarantee that the actual computer code for flight data
will resemble this procedure at all, as a final (i.e., based on
observational data) masking procedure will be developed
post-launch. A proposed procedure for mask creation is
discussed here in terms of a single SeaWiFS band. The
masks for the flight data must be uniform for all bands,
so a mask for a pixel in any band requires a mask for that
pixel in all eight bands. Also, the correction and masking
procedures are presented here in terms of Liypical radian-

ces. This presentation puts the radiances and the radiance
changes, for the eight SeaWiFS bands, on equal footings.
Two methods of bright target detection (BTD) are pre-
sented here—detection based on differences from Rayleigh
scattering radiances, and detection based on changes in
radiance along the scan line.

11.1.1 Rayleigh Scattering Radiance BTD

It is possible to consider SeaWiFS as a sensor of atmos-
pheric radiances having small perturbations due to color
changes in the ocean. This result is shown in Fig. 3 of
McClain et al. (1992). It is also possible to calculate the
radiances viewed by the sensor from the scattering of solar
flux by air molecules, i.e., from Rayleigh scattering. Radi-
ances from the ocean surface increase those from molecular
scattering by only 5-10%, while radiances from clouds give
increases of an order of magnitude or more. In theory, the
use of Rayleigh scattering for BTD is reasonably simple.
A bright target contains a pixel (or pixels) with radian-
ces greater than, for exarple, 1.3 times the Rayleigh radi-
ance. This fractional difference, or bright target threshold,
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Fig. 51. The residual SeaWiFS along-scan stray light responses after correction. These results give the
means and standard deviations (1¢) for the post-correction residuals. Shown here in this figure are the: a)
results from the 10 pixel high radiance measurements—the averages for all eight bands, i.e., for the results
from subpanel d of Figs. 19-26; and b) results from the 3 pixel high radiance measurements—the averages
for all eight bands, i.e., for the results from subpanel d of Figs. 27-34.
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Fig. 52. The residual SeaWiFS along-scan stray light responses after correction. These results give the
means and standard deviations (1o) for the post-correction residuals. Shown here in this figure are the: a)
results from the 10 pixel high radiance measurements—the averages for all eight bands, i.e., for the results
from subpanel d of Figs. 35-42; and b) results from the 3 pixel high radiance measurements—the averages

for all eight bands, i.e., for the results from subpanel d of Figs. 43-50.
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is arbitrary and based on judgement and experience. The
threshold, in effect, defines what is or what is not a bright
target. The value for this threshold can also be changed.
The bright targets in the laboratory measurements with
the smallest optical overdrives (Figs. 35 and 43) had ra-
diances that correspond to 1.6-1.7 of those from Rayleigh
scattering on orbit. In the laboratory, the bright targets
were displayed relative to a black background. On orbit,
the bright targets are located in the midst of typical radi-
ances. An initial estimate for the bright target threshold is
1.3 times the Rayleigh radiance. This is the fractional mul-
tiplier for a bright source with a radiance of approximately
half of the radiance found in Fig. 35.

Each pixel’s radiance from Rayleigh scattering can be
calculated, based on values transmitted in the data stream
from the satellite. The actual data products, calculated in
the initial step of SeaWiFS data reduction, are:

w The view angle of the instrument relative to
nadir (also called the scan angle);

s The zenith angle of the sun; and

» The azimuth angle between the view angle and
the solar zenith angle of the instrument.

Rayleigh scattering accounts for two effects in the ra-
diances measured by SeaWiFS on orbit. First, the radi-
ances become brighter as the instrument scans away from
nadir, since the pathlength through the atmosphere (and
the number of molecular scatterers in that pathlength) in-
creases. Second, the radiances become dimmer with in-
creasing solar zenith angle, since the solar flux becomes
attenuated by passing through more atmosphere before it
reaches the molecular scatterers in the path between the
instrument and the Earth. As a result, Rayleigh scattering
gives a relatively flat background radiance over a scan line
for BTD, i.e., it gives a background that changes smoothly
with view angle and with solar zenith angle. The exact cal-
culation of the Rayleigh radiance is somewhat lengthy and
computationally cumbersome. Calculation of the Rayleigh
radiances for each pixel in each scan line would take a
significant amount of computer time. The direct calcula-
tion of individual Rayleigh radiances is not recommended
here. It seems more reasonable to determine the radiances
from a set of simplified equations based on approximations
or, more simply, from a set of look-up tables. These ta-
bles could be somewhat complex, since the azimuth angle
changes as the satellite moves from north to south in an
orbit, and also changes with the seasons.

For the Rayleigh radiance procedure, a bright target
exists where there are radiances above the threshold value,
and the edge of the target exists at the transition through
the threshold. The stray light mask in this procedure in-
cludes the pixel next to the transition and the three pixels
beyond it. For the benefit of the along-track correction
procedure presented in Section 11.2, it is important to dis-
tinguish between the pixels masked for the bright source
and those pixels in the mask’s extension for stray light.
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11.1.2 Scan Line Radiance Change BTD

This technique examines the first and second deriva-
tives of radiance changes across a scan line. The transitions
between ocean and bright target radiances are expected to
be relatively sharp, i.e., occurring over intervals from one
to a few pixels. The transitions are expected to be rela-
tively large, since bright sources are, by definition, bright
compared to ocean measurements.

This technique also examines slopes and slope changes,
without a fixed reference, such as the Rayleigh radiance. It
uses these values to determine the edges of bright sources
with greater precision than the Rayleigh radiance tech-
nique. In portions of the scan line where radiances are
relatively constant, the radiance change technique cannot
discriminate between a bright source and a background
ocean measurement.

The first derivative is examined in terms of the differ-
ence of a given pixel’s radiance from that of its predecessor
in the scan line. As the scan reaches a bright source, it is
expected that the change will be 0.25 times the value of
Lyypical (0.25 Leypical), Or greater, i.e., a positive slope with
a relatively large change in radiance. As the scan leaves a
bright source, another relatively large change is expected,
but with a negative slope. As with the Rayleigh radiance
procedure, the size of the changes required to determine a
bright target is arbitrary. The value of 0.25 Lyypicar used
here represents a smaller transition than in the Rayleigh
technique, since transitions between the ocean and bright
targets are not necessarily completed over the span of one
pixel.

The second derivative is also examined in terms of
changes in radiance. It is used to find the overshoot in the
correction algorithm discussed in Section 10.3. The pixel
at the point of this overshoot shows less radiance than
either its predecessor or its successor. The slope before
the overshoot pixel is negative; the slope after is positive.
In this procedure, the magnitude of the changes both be-
fore and after the overshoot pixel must be 1% of Lypical
or greater. Insofar as is currently known, when the correc-
tion algorithm has been applied, in all cases, the overshoot
occurs after the bright source, and in the large majority of
cases, it also occurs before the bright source.

Similar methods are used to determine the left and
right sides of bright sources. Approaching the bright source
from the left side, i.e., from the start of the scan line,
a search is made for a positive change of 0.25 Lyypical OF
greater. The pixel after this change is considered to be the
leftmost pixel in the bright target. A search is then made
backwards (towards the beginning of the scan line) for the
pixel at the overshoot. When this pixel has been located,
the range of pixels starting three pixels before the over-
shoot and ending immediately before the leftmost pixel
of the bright target is then masked for stray light effects.
Note that the overshoot from the correction algorithm may
not be present in all bands; however, its presence in at least
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four bands should be sufficient to define the location of the
overshoot for all eight bands.

Leaving the bright source, a search is made for a neg-
ative change of 0.25 Lypicai or greater. The pixel before
this change is considered to be the rightmost pixel in the
bright target. A search is then made forward (toward the
end of the scan line) for the pixel at the overshoot. When
this pixel has been located, the range of pixels starting
immediately after the rightmost pixel of the bright target
and ending three pixels after the overshoot is then masked
for stray light effects.

In this procedure, the left and rightmost pixels in the
bright targets are determined, and the signatures of the
overshoots from the correction algorithm are found. From
the locations of these overshoot pixels, the stray light masks
are added to the bright target masks. By itself, however,
this procedure is flawed. There is no certainty that the
transitions in the procedure, that is, the first derivatives,
will always be between ocean measurements and bright tar-
gets. Transitions from land to (or from) clouds, or transi-
tions from ocean glint to {or from) clouds, can be confused
with transitions to and from the oceans. A combination
of the procedure presented here and the Rayleigh radi-
ance procedure from Section 11.1.1 is recommended. The
Rayleigh radiances should be used first to determine the
location of the bright sources and mask those bright tar-
gets. Then, there should be a search for the overshoots in
the correction algorithm, in order to determine the loca-
tions of the pixels for the stray light additions to the bright
target masks.

11.1.3 Arbitrary Radiance Threshold BTD

Bright target corrections will be applied early in the
set of computer programs that reduce SeaWiFS data. The
SeaWiF'S data volume is large, and as a result, the detec-
tion schemes presented in Sections 11.1.1 and 11.1.2 may
be too cumbersome and time consuming to incorporate
into these programs. An alternative detection scheme may
be to declare all radiances above an arbitrary value, such
as the knee radiance in the bilinear gain, to come from a
bright source. A second alternative may be to apply the
existing cloud mask, which is provided in McClain et al.
(1995). Both alternatives can give the edges of bright tar-
gets and the reference pixels for the start of the stray light
masks.

The BTD schemes in Sections 11.1.1 and 11.1.2 may
prove to be too computationally complex for the routine
reduction of flight data, and therefore, a less complicated
scheme may be needed. Sections 11.1.1 and 11.1.2, how-
ever, provide insights into the characteristics of bright tar-
gets that can be used to test and improve the algorithms
for the on-orbit data. Since the stray light analysis in
this document is prelaunch and zeroeth order, in the same
manner, so are the masking algorithms that will be used
at launch.

11.2 Along-Track LAC Correction

There is no correction algorithm in the along-track di-
rection, and thus, there are no calculations to be made.
The along-track LAC correction only includes expansion
of the bright target masks. The stray light correction pro-
cedure masks two additional pixels on each along-track
side of bright targets. In principle, this masking procedure
is very simple. Using the along-scan procedures in Sec-
tion 11.1, the locations of the bright targets have already
been determined for each scan line in the LAC scene. Thus,
the scene need only be searched in the along-track direc-
tion for bright target masks, and stray light masks can be
added before and after the bright targets. In this along-
track search, it is important to discriminate between bright
target masks and the stray light masks that were added to
them in the along-scan direction.

The addition of along-track masks requires a new ap-
preciation of the relationship between scan lines in LAC
(and GAC) scenes. Before the study of stray light in Sea-
WiFS8, individual Earth scans by the instrument were con-
sidered independent of each other. As a result, the analysis
of on-orbit measurements was scheduled to be performed
on a line-by-line basis only. The two-dimensional ocean
scenes were considered to be composites of independent
one-dimensional scan lines. The inclusion of along-track
stray light requires an additional, albeit simple, analysis
in a second dimension. The LAC (and GAC) data arrays
must be manipulated in a different fashion. This require-
ment adds possible complications to the SeaWiF'S on-orbit
data analyses.

12. PROPOSED GAC CORRECTION

As discussed in Section 1.1, there is a 3 pixel spacing
between GAC pixels, both in the along-scan and along-
track directions. Knowledge of the edges of bright targets,
in the manner of LAC measurements, is much coarser.

It is possible, however, to determine which of the GAC
pixels are bright targets, and which are ocean measure-
ments. This can be done through the Rayleigh scattering
technique from Section 11.1.1. In that technique, the back-
ground Rayleigh radiance is determined from geometric
factors in the SeaWiFS measurements. Using the proce-
dure in Section 11.1.1, it is possible to mask the bright
targets in each scan line.

A prelaunch method for determining the edges of bright
targets must be developed if GAC stray light corrections
are to be applied at the start of on-orbit sampling. As the
set of LAC and GAC measurements from SeaWiFS accu-
mulates, an improved method for determining bright tar-
get edges will be designed and implemented (Section 1.2).
From those on-orbit samples, a statistically derived data
set should improve the two assumptions presented here.

First, in GAC scenes, it is assumed that the edge of
each bright target, i.e., each cloud, is located midway be-
tween the endmost GAC pixel that is masked as a bright
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source and the next GAC pixel. This places the bright
target edge 2 LAC pixels (£1LAC pixel) from the near-
est unmasked GAC pixel. Thus, it is assumed that the
unmasked GAC pixels (i.e., unmasked as bright targets)
lie in the progression of 2, 6, 10 LAC pixels, and so forth,
from the bright source.

Second, it is assumed that the edge pixels for all of
the bright sources have the same radiance as the closest
pixel masked as a bright target. In other words, it is as-
sumed that the endmost few pixels of bright sources have
the same radiances. This particular assumption can be
improved using on-orbit measurements. It is known that
clouds and cloud banks can taper off at their edges, and
many clouds do not end abruptly. A cloud radiance lo-
cated one or two pixels from the edge of a cloud may be
significantly different from those closer to the edge. Thus,
the use of the nearest bright pixel for stray light corrections
may cause a miscorrection in the nearby GAC pixels. In
this case, a statistically derived data set based on on-orbit
measurements should determine the magnitude of any such
miscorrections.

With these assumptions, and with knowledge of the
locations of the bright sources in the GAC scene, it is pos-
sible to apply stray light corrections and masks to the ad-
joining pixels. The procedure is simple in the along-track
direction—mask the GAC pixels that neighbor the bright
targets for stray light. These GAC pixels are a distance of
1-3 LAC pixels from the bright source, and the along-track
LAC mask is applied at distances up to 2 LAC pixels from
bright targets. The GAC pixels that are one place further
removed from the bright sources should not be masked,
as they are from 5-7 LAC pixels distant from the bright
source. As with the along-track LAC masking procedure in
Section 11.2, masking for along-track GAC stray light wiil
require the manipulation of the GAC scene in a second di-
mension. This can also add significant complications to the
analysis of on-orbit GAC measurements from SeaWiFS.

In the along-scan direction, the GAC stray light masks
are determined using the same procedure as that for the
GAC along-scan masks. The GAC pixel closest to the
bright source is masked for stray light. For along-scan
GAC pixels that are two and three GAC positions away
from the bright target, however, a stray light correction
must be applied. In terms of LAC distances, these GAC
positions are 6 +1 and 10 +£1 LAC pixels removed from the
bright source. The stray light corrections for these GAC
positions are based on the along-scan impulses discussed
in Section 7.5. However, the application of the corrections
must reflect the uncertainties in position and brightness of
the full set of pixels in the bright target.

As shown in Table 12, the stray light correction algo-
rithm is cumulative. It includes contributions from all of
the adjacent pixels along the scan line. When the adja-
cent pixels on both sides are counted, the total for the
contributing pixels reaches about twenty. As a result, the
LAC along-scan algorithm, with its impulses, cannot be
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used in GAC, since there are gaps in the GAC scenes. In-
stead, the GAC along-scan correction presented here uses
the test results shown in Figs. 27-34. The radiances in
those results include the stray light from the full set of
adjacent pixels.

The calculation of the GAC along-scan correction fac-
tors can be demonstrated using the test results in Table 13.
These results are for band 7, with high radiance output,
and a 10 pixel slit. For the purpose of GAC correction
factor calculation, the bright source in Table 13 extends
from pixel 634 to pixel 643. The data point that is 6 LAC
(or 2 GAC) pixels before the bright source is located at
pixel 628. The correction factor is the corrected residual,
minus the uncorrected residual, divided by the radiance at
the source. For pixel 628, the relative correction from the
stray light algorithm (using data from Table 13) is

0.00504 — 0.01003
24.15416 + 26.28747]’

(8)

Fgac = 2

where Fiac is the GAC correction factor (dimensionless),
0.01003 and 0.00504 are the input and output radiances
from the stray light correction at pixel 628, and 24.15416
and 26.28747 are the radiances at the edge of the bright
source that correspond with those input and output radi-
ances. The average of the two edge radiances (correspond-
ing to the corrected and uncorrected residuals) is used in
the correction factor to minimize the bias that might arise
from selecting either one. These radiances are given in
terms of Leypical, but the actual radiances or the radiances
normalized to Leioud can also be used, since the results are
given as a relative correction.

The calculated correction factor, —0.00020, compares
favorably with the correction factor of —0.00027 in Ta-
ble 15 for band 7 (2 GAC pixels before the bright source).
The correction factor is applied to the measured radiances
as follows:

R(PedgeiPA) = R(Pedgeﬁ:PA)

+ FGAC(Pedge:tPA)R(Pedge)v (9)
where P.qge represents a pixel located exactly on the edge
of the bright source in the GAC scene; +Px is the loca-
tion of the pixel to be corrected in GAC pixels relative
to the (bright target) edge pixel; and Fgac is the cor-
rection factor from Table 15. For a pixel from band 1
that is 2 pixels before a bright source, the correction fac-
tor, Foac(Pedge — 2), is —0.0079 (Table 15). This value is
multiplied by the radiance of the edge pixel in the bright
source. The product is then added to the on-orbit radiance
for the pixel from band 1 that is 2 pixels before the bright
source.

Since these correction factors are ultimately based upon
the along-scan impulses, they should show the odd-band
even-band asymmetry from Figs. 15 and 16. Band 8 shows
a special case. For this band, there is a correction after the
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Table 15. Along-scan GAC correction factors (Fgac). These factors are multiplied by the radiance from the
endmost pixel of the bright target, and that product is subtracted from the radiance in the given GAC pixel. The
correction factors are dimensionless, and the correction calculations are performed, using the standard SeaWiFS
radiance units. There are no corrections for the GAC pixels immediately before and after bright sources.

Band GAC Pixels Before Bright Source GAC Pixels After Bright Source
Number 3 2 1 2 3
1 —0.00000 —0.00079 Mask Mask —0.00733 —0.00090
2 —0.00060 —0.00363 Mask Mask —0.00110 —0.00001
3 —0.00000 —0.00069 Mask Mask ~0.00303 —0.00055
4 —0.00074 —0.00322 Mask Mask ~0.00043 —0.00000
5 —0.00000 —0.00028 Mask Mask —0.00194 —0.00053
6 —0.00055 —0.00359 Mask Mask —0.00061 —-0.00000
7 —0.00000 —0.00027 Mask Mask ~0.00199 —0.00055
8 —0.00037 ~0.00201 Mask Mask —0.00233 —0.00033

bright source that is the same magnitude as that for band
7. At the wavelength range for band 8, the silicon in the
detectors starts to become transparent to long wavelength
photons. This effect causes some photons to penetrate
within the silicon substrate before the photon is absorbed
by the detector. This increased distance causes the photon-
created electrons to travel further before leaving the detec-
tor. These delays cause the small additional tail in band
8 after the bright source. The transparency of the silicon
increases with longer wavelength until the response deteri-
orates badly at about 1,000 nm. The correction factors for
radiances located 2 GAC pixels from bright sources seem
very small. For example, the factor for band 8 for 2 GAC
pixels before a cloud is —0.00201. Clouds in band 8 can
be over 30 times brighter than the typical ocean radiance,
however. If the correction factor is incorrect by 0.00020,
i.e., by 10% of its value, then the error in the corrected ra-
diance is 0.006 Lyypicai. The limit for residual stray light in
the SeaWiF$S performance specifications is 0.005 Liypical-

According to this error analysis, the correction factors
for radiances located two GAC pixels from bright sources
may be inadequate to provide the required proper stray
light removal. This is also true of the knowledge of the
brightness of clouds near their edges in GAC scenes. It
is suggested that the along-scan mask for stray light be
extended to 2 GAC pixels from bright targets. This is a
determination made before launch. It may be possible that
the statistical analysis of on-orbit LAC measurements, as
described in Section 1.2, will show this suggestion to be
overly cautious.

APPENDIX A

SUMMARY OF SeaWiFS STRAY LIGHT
REDUCTION SCENARIOS

(Note: This appendix is a reprint of an internal SeaWiFS docu-
ment written by Wayne Esaias. It is presented here to describe
some of the items taken under consideration by the SeaWiF$
Project to find alternative modifications to reduce stray light.
Some minor modifications of the original text has been made
in order to conform to the format of the Sea WiFS Technical
Report Series.)

From: Wayne E. Esaias
Date: May 11, 1993

This is a partial compilation of possible alterations being
studied to alleviate stray light/bright target recovery. Studies
are under way, and this document is expected to change con-
siderably. Short of scrapping the whole thing or launching as
is, changes in the following areas may make some difference.
There is no priority indicated, and some of the scenarios are
mutually exclusive. Magnitudes of improvements are not well
quantified, and usually are not additive. Additional approaches
might arise from the studies, or impacts refined. Risks, cost,
and schedule impacts are crude estimates at the present time,
but are expected to be refined considerably as studies are com-
pleted.

. Re-coat optics.

. Tilt interference filters.

. Change TDI.

. Completely mask one or two detectors.

. Implement bilinear gain for band 1.

. Implement bilinear response for more bands, inter-
mediate focus mask.

- Reverse the band positions on focal planes.

. Software corrections.

. Collect one full LAC band in GAC data.

. Assemble the HRPT LAC data.

. Redesign the focal planes.
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CHANGE 1
Re-coat optics with better anti-reflection coatings.

Intent: Decrease reflections from lenses. Improve response near
all bright targets. Decrease distance affected.

Magnitude of improvement: Awaiting results. Could decrease
stray light by 20-200%. Lenses already show very good
anti-reflection properties.

Negative impact: None to science data. Affected data will still
show asymmetry (from interband cross talk).

Risk: Medium.

Cost/Schedule impact: Major. Requires new lenses, reassem-
bly, recalibration.
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CHANGE 2
Tilt interference filters.

Intent: Redirect reflections from primary source and to elim-
inate them by tilting the interference filters or the focal
planes along the axis of the detectors.

Magnitude of improvement: This is uncertain pending mod-
eling. Could virtually eliminate the stray light problem.
Possible 120% increase in uncontaminated data (2.2 times
as much) if 75% effective. This could mean 3 pixel cloud
masks versus 12 pixel masks. Could reduce degree of asym-
metry (from interband cross talk).

Negative impact: Broadening of bandpass or some loss of trans-
mission if new filters are required.

Risk: High

Cost/Schedule: Major. May require buying new filters unless
specifications are relaxed. May require making new focal
plane filter mount.

CHANGE 3
Change TDI to two detectors (Operational change).

Intent: Select only the central two detectors for TDI. Change
the distance affected by two IFOVS.

Magnitude of improvement: Increase ocean data by 8% rela-
tive to 12 pixel mask. No change in amount of stray light
present or asymmetry (correction still difficult).

Negative impact: Decrease SNR by 30% (still within spec).
Decrease redundancy.

Risk: None.

Cost/Schedule: None. TDI under command control already.

CHANGE 4
Mask one or more detectors on focal plane
(paint filters partially black).

Intent: Permanently blacken or mask a portion of the filter to
both decrease the amount of stray light and decrease the
distance affected.

Magnitude of improvement: Uncertain until model and test
are done, but could cause significant improvement in in-
tensity at edges. Increases ocean data by 8% relative to
12 pixel mask (potentially more depending on stray light
reduction), plus aids correction near land.

Difficulties: Masking the /2 system in front of the filter will
lead to vignetting.

Negative impact: Decrease SNR (by 30% if two channels are
blackened). Permanent change compared to #3 above.
Possible MTF change. Loss in redundancy.

Risk: Medium. Focal plane 1 is hard to access.

Cost/Schedule: Significant.

CHANGE 5
Bilinear respounse for band 1.

Intent: Increase dynamic range of band 1 (412nm) so it can
quantify bright target radiances. Reduces gain of one of
four detectors in band 1 to 20% of present value, so that
the sum of 4 detectors shows a bilinear response with a
knee at about 800 counts and overall saturation at cloud
radiance.

Magnitude of improvement: Necessary for any correction that
requires knowledge of intensity of bright targets. Solves
no problem by itself. May provide sufficient information
to infer cloud radiances for all bands. Not sufficient for
overall land radiance.
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Negative impact: Decreases resolution of ocean level radiance
by 20% , decreases the range of quantization 20%. Both
may be acceptable, but will impact DOM corrections to
chlorophyll derivations. Range limit would primarily affect
scan edges and low latitude bright waters.

Risk: Low.

Cost/Schedule: Significant, but changes only the electronics
module, not the instrument.

CHANGE 6
Bilinear response for bands other
than band 1. Partially mask one detector per
band at intermediate focus.

Intent: Increase dynamic range of all bands to quantify bright
target radiance. Reduce stray light by partially masking
the outer detectors on each band at the intermediate focus
mask (pinhole).

Magnitude of improvement: Awaits model results. Provides
full Earth albedo dynamic range on all channels. Aids cor-
rections at all wavelengths (land). Solves no problem by
itself. Occlusion decreases distance of effect by about a
pixel, and reduces stray light by 20%. Provides redundant
bright target sensors. Increases ocean data by less than 5%
relative to 12 pixel mask, without correction.

Negative impact: Decreases radiometric resolution by 20-30%
in the ocean range. Limits range of high resolution data
(primarily affects scan edges and low latitudes, but proba-
bly acceptable). Requires both instrument and electronics
module work. Pinhole would have to reduce light. level
by about 1:16 (all bands) to accommodate bands 7 and 8.
Potential impacts on diffuser and lunar accuracy.

Risk: Medium-high.

Cost/Schedule: Major. Requires instrument work, calibration,
tests, and electronics work.

Added benefit: Mission would collect good (250 levels) global
land and cloud data as well (making an 8-bit MODIS sim-
ulator).

CHANGE 7
Reverse odd and even channel positions
on one or more focal planes.

Intent: To provide a useful quartet of spectral bands which
do not anticipate bright targets, by switching positions on
various focal planes. Ratios of the counts in odd bands
show very similar responses to the anticipation stray light
and have minimal bright target anticipation. Present odd
channels are 412, 490, 555, and 765 nm.

Magnitude of improvement: Partial. Potentially enables CZCS-
like results up to 5 pixels from the up-scan edge of land and
clouds (by reversing the 412 and 443 bands}, or reliable
atmospheric correction for the same region (by reversing
three focal planes). Provides 22% increase with CZCS-like
data relative to 12 pixel masks.

Negative impact: None. Contributes little to solution of trailing
edge or electronic recovery.

Risk: Medium-high. Filters have been replaced on one focal
plane before. Focal plane 1 is hard to access.

Cost/Schedule: Major. Requires disassembly and removal of
filters, with risk of damage. Only one spare filter exists for
band 5. Would require recalibration, realignment.
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CHANGE 8
Software Corrections.

Intent: Solve the problem in software. Need the focal plane
response function and methodology.

Magnitude of improvement: Uncertain. Asymmetry of odd and
even band effects places a major constraint on the errors
allowed. If effects are corrected to 50% (of 12 pixels total),
this would provide a 44% increase in ocean data, or 75%
increase if 75% correction is possible (relative to 12 pixels).

Negative impact: Major software and coding task. Requires
knowledge of bright target spectral radiance and focal plane
response. Amounts to passing a variable response, 25 el-
ement filter through the data. Any change in focal plane
response over time will be difficult to resolve. May ne-
cessitate production and archive of a level-1b data set.
Corrections to GAC data are more difficult.

Risk: None to flight segment, high risk of guaranteed success.

Cost/Schedule: Requires some combination of changes 1 or 2,
5 or 6,and 7, plus a full focal plane BRDF, significant com-
puter upgrades, intensive validation measurements, and 6
months to a year post-launch for a significant improvement.

CHANGE 9
Collect full scan of one band in GAC data.

Intent: Provide high resolution data along-scan for one band
on GAC scan lines, to enable position of bright targets to
be determined in GAC data. Provides unambiguous flag
for corrupt data when small clouds are missed in GAC
subsamples.

Magnitude of improvement: Impact being assessed.

Negative impact: Major impact on spacecraft data system, re-
quires data compression.

Risk: High.

Cost/Schedule: Increased data storage by 11/8, and changing 2
Gbits unpacked data per day to 2.75 Gbits to keep the same
potential coverage frequency. Major rework of spacecraft
data system, data formats.

CHANGE 10
Collate global LAC HRPT data.

Intent: Since the location of bright targets is not known in GAC
data to better than 3 pixels, correction of the stray light
effect is only possible with LAC data.

Magnitude of improvement: Dependent on change 8. Most of
North Atlantic and coastal waters are covered.

Negative impact: None, benefit regional science by having all
data available.

Cost/Schedule: Major, since it implies doing a correction, plus
processing 16 times the GAC volume to arrive at a global
data set.

CHANGE 11
Rearrange bands on focal planes (parallel bands).

Intent: Put bands in parallel instead of in line, to reduce-along
scan distance effect, and odd-even responses.

Magnitude of improvement: Could be significant from about 12
to about 5 pixels anticipation. Total area of effect remains
about the same.

Negative impact: Increases distance along-track in which a
bright target would affect a given pixel. Total area affected
would remain the same.

Risk: High.

Cost/Schedule: Major, major impact.

GLOSSARY
A/D Analog-to-Digital

BRDF Bidirectional Reflectance Distribution Function
BTR Bright Target Recovery
BTD Bright Target Detection

CZCS Coastal Zone Color Scanner
FOV Field of View

GAC Global Area Coverage
GSFC Goddard Space Flight Center

IFOV Instantaneous Field-of-View
LAC Local Area Coverage
MTF Modulation Transfer Function

NASA National Aeronautics and Space Administration
NIMBUS Not an acronym, but a series of NASA experimental
satellites containing a wide variety of atmosphere,
ice, and ocean sensors.

OSC Orbital Sciences Corporation
RC Resistor-Capacitor {circuit)

SBRC Santa Barbara Research Center
SCADP SeaWiFS Calibration and Acceptance Data Package
SCDR SeaWiFS Critical Design Review
SeaWiFS Sea-viewing Wide Field-of-view Sensor
SNR Signal-to-Noise Ratio
SPR SeaWilF'S Preship Review
SPMPR SeaWiFS Post-Modification Preship Review
SSLSP SeaWiFS Stray Light Signal Paths

TDI Time Delay and Integration

SYMBOLS

Feac GAC correction factor.
Fsp Correction factor for stray light.

K; Correction constant at the ith pixel.

Leowa Maximum radiance from reflected light off of clouds.
Liypical Expected radiance from the ocean measured on or-
bit.

P.age A pixel located on the exact edge of a bright source
in a GAC scene.
P; The ith pixel under correction.

Paiy Designates the number of pixels after the slit for the
instrument to return to the residual counts allowed
in the specification.

P,ero Designates the number of pixels required for the in-

strument to settle to a level of zero residual counts.

Pa The location of the pixel to be corrected in GAC
pixels relative to the (bright target) edge pixel.

R; Radiance of the ith pixel.
Rp Bidirectional reflectance distribution function.

a Off-axis angle.

o Standard deviation of a set of data values.
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