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J .W. Campbell, J .M. Blaisdell, and M. Darzi

ABSTRACT

The level -3 data products from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are statistical data
sets derived from level -2 data. Each data set will be based on a fixed global grid of equal-area bins that
are approximately 9 x 9km2. Statistics available for each bin include the sum and sum of squares of the
natural logarithm of derived level-2 geophysical variables where sums are accumulated over a binning period.
Operationally, products with binning periods of 1 day, 8 days,1 month,and1yearwillbeProducedandarchived.
From these accumulated values and for each bin, estimates of the mean, standard deviation, median, and mode
may be derived for each geophysical variable. This report contains two major parts: the first (Section 2) is
intended as a users’ guide for level-3 SeaWiFS data products. It contains an overview of level-O to level-3 data

processing, a discussion of important statistical considerations when using level-3 data, and details of how to
use the level -3 data. The second part (Section 3) presents a comparative statistical study of several binning
algorithms based on CZCS and moored fluorometer data. The operational binning algorithms were selected

based on the results of this study.

1. INTRODUCTION
The level -3 data processing stage is the first stage in

which data from the Sea-viewing Wide Field-of-view Sen-
sor (SeaWiFS) are spatially and temporally averaged. Prior
to this stage, a standard set of geophysical variables will
be derived for individual pixels. These level-2 variables in-
clude chlorophyll concentration, a diffuse attenuation co-
efficient, and water-leaving radiances in the visible bands
of SeaWiFS.

In generating level-3 data products, pixels containing
valid level -2 data will be mapped to a fixed spatial grid
whose resolution elements are 9 x 9 km2. These square
grid elements or bins are arranged in rows beginning at
the South Pole. Each row begins at 180° longitude and
circumscribes the Earth at a given latitude. There are
5,940,422 bins for each level-3 data set. Within each bin,
statistics will be accumulated for time periods of 1 day, 8
days (often referred to as the weekly product), 1 month,
and 1 year. There will be a global level-3 data product
archived for each day, 8-day period, calendar month, and
calendar year of the SeaWiFS mission.

The level -3 data products may be used to derive the
mean, standard deviation, and other statistical measures
for the standard level-2 variables, and for certain other
variables, such as primary productivity, which are func-
tions of level-2 variables. The Coastal Zone Color Scan-
ner (CZCS) North Atlantic monthly composite chlorophyll
images (Esaias et al. 1986 and Feldman et al, 1989) are ex-
amples of monthly means derived from level-3 CZCS data.

The purpose of binning data is to create reduced-volume
data sets appropriate for use in climate and basin-scale bio-
geochemical models. By averaging data over time periods
of several days or longer, problems of missing data can
be overcome. Although temporal and spatial resolutions
are reduced, compared with the level -2 data, the resulting
smoothed level -3 means are effective in depicting seasonal
patterns on regional and basin scales.

There are important statistical considerations that in-
volve the use of level-3 data. Users should be aware of
these considerations, especially in situations where level-3
data are used in models to derive other variables. For ex-
ample, to use a mean chlorophyll concentration (level-3
variable) in an algorithm to derive mean primary produc-
tivity might result in significantly biased results. Recom-
mended procedures for using level -3 variables in models
are presented in this report.

The remainder of this report is divided into two parts.
The first part (Section 2) is intended to serve as a guide for
users of level-3 data products. Section 2.1 is an overview of
the processing from level -O to level-3. Section 2.2 contains
a discussion of the important statistical considerations in-
volved in using level-3 data, and Section 2.3 provides the
equations to be used to compute the mean, standard devia-
tion, median, and mode of each level-3 variable. Equations
for computing statistics of level-4 variables, derived from
level -3 variables, are given in Section 2.4.

The second part (Section 3) documents a statistical
study based on CZCS data and moored fluorometer data
which compared alternative binning algorithms. Results

of this study were the basis for the selection of the binning
algorithm used. Three color plates compare the results of
alternative binning algorithms applied to seven represen-
t ative CZCS scenes.

In addition, there are three appendices providing de-
tails for statisticians and programmers who may wish to
write codes to bin data. Appendix A explains the proce-
dure used for mapping pixels to bins based on the center
latitude and longitude of the pixel, and for determining the
latitude and longitude coordinates of a bin. Appendix B
cent ains details of the weighting scheme used for weight-
ing data from different orbits (times). Appendix C con-
tains three pseudocode that reveal how data are accu-

mulated spatially (Space Binner Code), temporally (Time
Binner Code) and how means, standard deviations, and

1



Level-3 SeaWiFS Data Products: Spatial and Temporal Binning Algorithms

other statistics are calculated from the binned data (Bin
Data Interpreter Code).

2. USERS’ GUIDE

2.1 Overview of Data Processing

As the name would suggest, the level of a data product

refers to the amount of processing that has been applied
to the data. Certain conventions have been adopted to
describe the major levels of processing.

2.1.1 Level-O Data

Data recorded on board the satellite and subsequently

broadcast to ground receiving stations are called level-O
data. Data broadcast directly (without being recorded) are
also considered level -O data. The recorded data provide
either local area coverage (LAC) or global area coverage
(GAC). This classification refers to the spatial resolution of
the data. In SeaWiFS LAC data, the spatial resolution is
1.1 km at nadir (directly beneath the satellite), and pixels

are contiguous.
The GAC data are comprised of individual pixels hav-

ing the same spatial resolution as LAC data (1.1 km), but

the pixels are spaced at 4.4 km intervals. The GAC data
are created on board the satellite by selecting every fourth
pixel on every fourth scan line. This subsampling reduces

the volume of data required to provide global coverage.
A comparative study of alternative GAC sampling algo-
rithms was reported by McClain et al. (1992).

Only a limited amount of LAC data will be recorded

on board SeaWiFS. However, LAC data will be contin-
uously broadcast as high-resolution picture transmission
(HRPT) data to sites around the world which operate li-

censed ground-receiving stations. All HRPT data will be
LAC data.

2.1.2 Level-la Data

The level -la products include the raw image data and
all instrument and spacecraft telemetry, as in the level-O
data, together with appended instrument calibration and
navigation data. In addition, instrument telemetry and
selected spacecraft telemetry are reformatted and also ap-
pended.

Approximately 40 minutes of contiguous level-1 data

are produced on the daylight portion of each orbit. Op-
erationally, this 40-minute swath may be subdivided into

two or more level-1 scenes. The division may occur when
the sensor tilt is changed, i.e., so each scene would nom-
inally have a constant sensor tilt, or other criteria, e.g.,
maximum scan lines per scene, may dictate further subdi-
visions of the swath.

The level -la data can be used to calculate calibrated
radiances in units of W m–2 pm– 1 sr– 1 in the 8 spectral

bands of SeaWiFS. This radiance received at the satellite

altitude is solar radiation backscattered from the Earth’s

atmosphere, ocean, clouds and land. Water-leaving radi-
ance (the signal of interest) usually comprises less than
10% of the total signal.

2.1.3 Level-2 Data

Geophysical properties of the ocean and atmosphere
derived from level -la data are considered level-2 data.
Level-2 data correspond to the original pixel positions;
there is no remapping. Each level-2 scene corresponds to
a level-l scene and vice versa; there is no change in the
geographical coverage of each scene for operational prod-
ucts

Before computing level -2 data, pixels are eliminated if
they contain clouds, sun glint, or other abnormalities. For
pixels that pass these screens, an atmospheric correction
algorithm (Gordon et al. 1983 and Gordon and CaMaiio
1987) is applied to subtract the atmospheric scattering
components from the total radiance, and thus derive the
water-leaving radiances in bands 1–5. Then, bio-optical
algorithms (Clark 1981 and Gordon and Morel 1983) are
applied to the water-leaving radiances to derive in-water
properties.

Standard variables currently planned for computation
are:

Ltv,v(At)

La(At)

r. (865)

PIG

CHL

K490

normalized water-leaving radiances in the
bands i = 1-5,

atmospheric aerosol radiances in the bands

aerosol optical thickness at 865 nm (band
8),

CZCS-like pigment concentration (mg m-3),

chlorophyll a concentration (mg m–3), and

diffuse attenuation coefficient at 490 nm
(m-’).

2.1.4 Level-3 Data

The level -3 data are statistical data products derived
binning level -2 GAC data. This is the first stage atby

which dat~ are both spatially and temporally averag~d. A
level -3 product will be produced for each day, 8-day period
(week), calendar month, and calendar year of the SeaWiFS
mission. The 8-day periods are started from the first day

of each calendar year. Thus, there will be 46 weeks per
calendar year, with the last week having only 5 or 6 days
instead of 8.

Each data product will contain statistics derived by
mapping level -2 data to a fixed global grid whose resolu-
tion elements (called bins) are approximately 9 x 9 km2.
The bins are arranged in rows beginning at 180° longitude
and circumscribing the Earth eastward at a given latitude.
There are 5,940,422 bins for each level -3 data product. Ap-

pendix A contains details related to the gridding scheme,
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and the precise areal coverage and geographic location of
each bin.

Statistical data provided with the level-3 data products
will allow users to calculate the mean, standard deviation,
median, and mode for each level-2 variable listed above.
The procedures are described in Section 2.3, and pseu-

docode for programming implementation are detailed in
Appendix C.

In addition to level-2 variables, statistical data will also
be provided for the ratio:

CHL
IC~ = —

K490
(1)

calculated at each pixel in the level-2 data set (but not

saved as a level-2 variable). This ratio, which appears in
several primary productivity algorithms (Balch et al. 1992,

Platt and Sathyendranath 1988, Eppley et al. 1985, Smith
and Baker 1978, and Bannister 1974), may be regarded as
the integral chlorophyll (units of mg m– 2) integrated over
the upper optical depth. The rationale for including this
as a level-3 variable will be presented in Section 2.2.

In addition to the level-3 data products, a number of
standard level-3 image products will be produced. These
will include standard mapped images, which are equirec-
tangular projections of means derived from the level-3 sta-

tistical data, and reduced resolution images intended for

browsing purposes.

2.1.5 Level-4 Data

In this report, variables derived from level-3 data will

be called level-4 variables. It is anticipated that level-3
data will be used as input to biogeochemical models where
the goal of the modeling is to estimate global fluxes of key
elements such as carbon and nitrogen. In such applica-
tions, it is important that the level-4 variable represent a
spatial-temporal mean, e.g., the average daily, weekly, or
monthly carbon flux. The practice of substituting means

into models to produce spatial-temporal means can result
in significantly biased results. This will be discussed fur-
ther in Section 2.2.

The methods used to produce the level-3 SeaWiFS data
have been designed to overcome this problem for a large

class of level-4 variables. Procedures for computing un-
biased estimates of the mean of level-4 variables will be
discussed in detail in the following sections.

2.2 Statistical Considerations

The question of how to bin SeaWiFS data revolved
around certain statistical issues. Many of the issues or
questions raised had come to light through the experience
of binning CZCS data into daily, monthly, and yearly com-
posites. There were several proposed ways to average data,
and results would be significantly different depending on
the method chosen. It was further recognized that the

choice of method should depend on how level-3 SeaWiFS
data are to be used. The practice of using level-3 means in
equations to derive level-4 means was inappropriate, and,
therefore, this issue had to be addressed as well.

Following is a discussion of four major issues and the
summary of the decisions related to each. In many in-

stances, decisions were based on a statistical analysis of
CZCS data and moored fluorometer time-series data. The
results of the statistical study are presented in Section 3.
The four issues were:

1.

2.

3.

4.

Should statistics be computed for CHL or for
log(CHL)? What about other level-2 variables?
What is the best method for estimating level-4
variables?
What statistics should be saved for each sam-

pling domain?

Should the temporal statistics give equal weight
to all data falling within the sampling domain?
Or, should some accommodation be made to

compensate for the uneven temporal distribu-
tion of data?

2.2.1 CHL vs. log(CHL) Statistics

Chlorophyll measurements tend to be lognormally dis-
tributed, i.e., log(CHL) is normally distributed, in large
data sets of satellite or ship data (Fig. 1). Lognormal dis-

tributions occur commonly in biological processes where
the rate of change of a variable is proportional to its size
(Aitchison and Brown 1957 and Crow and Shimizu 1988).

One of the first issues addressed, therefore, was whether or
not statistics should be computed for CHL or for log(CHL).
The same question was also addressed for other varia-
bles.

It is fairly common practice to log-transform CHL mea-
surements before using them in other derivations. For ex-
ample, Chelton and Schlax (1991) used log-transformed
data in comparing time averages of chlorophyll data. The
CZCS pigment algorithm was derived by a linear regression
of log(CHL) versus log-transformed radiance ratios, and

CZCS pigment images are usually scaled according to the
logarithm of pigment. The mean derived by first averaging
log-transformed data and then inverting the transform is
the geometric mean. Is the geometric mean preferable to
the arithmetic mean?

It was agreed at the outset that the arithmetic mean
is the appropriate mean for most biogeochemical applica-
tions. The mean chlorophyll concentration, for example,
represents the mean biomass per unit volume which will
subsequently be multiplied by total volume (depth x area)
to estimate regional or global biomass. However, the sam-
ple mean derived from small samples might be a poor es-
timator of the true population mean.

Let X be a lognormally distributed variable (Fig. 2),
and let ~ denote the true mean of X within a sampling
domain. In the context of the SeaWiFS data processing,
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Fig. 1. Histograms of chlorophyll concentration derived from in situ measurements. The top panel displays
11,176 measurements from the world ocean collected by C.S. Yentsch, 1956–86. The bottom panel displays
1,047 surface measurements from the northwest Atlantic continental shelf, Marine Resources Monitoring,
Assessment, and Prediction (MARMAP), 1978-82. (Campbell and O’Reilly 1988)
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Fig. 2. The Iognormal distribution: The top panel displays a histogram of log(X), where log(X) is normally
distributed with mean O and standard deviation 0.4. The bottom panel shows the corresponding histogram
of the Iognormal variable, X.
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“sampling domain” refers to a specific bin and averaging

period; X is the level-2 variable, and ~ its level-3 equiv-
alent. The question is: what is the best method for es-

timating ~ given a sample of n measurements (pixels):
Xl, . . ..xn?

In the case of a lognormal distribution, the sample

mean (or arithmetic average):

(2)

tends to underestimate the true population mean when
sample sizes are small (Baker and Gibson 1987). The
higher the variance of the underlying distribution, the more
this is true. The remon for this is that small samples tend

to miss high values which occur much less frequently than
low values. However, the high values have a significant

influence on the mean of the distribution. For example,

much of the biological production in the ocean occurs in
localized areas such as upwelling zones, and in transient
blooms of relatively short duration. A sample that misses
these areas and blooms would significant ly underestimate
global or regional production.

Sample sizes involved in binning GAC data will be
small. Since the GAC data have a 4 km spacing between
pixels, at most 9 pixels from a single orbital pass can fall
into an 9 x 9 km bin. The average sample size will be
closer to four in data sets derived from a single orbital pass.
Although sample sizes will increase with longer averaging

periods, the variance will also increase. Thus, there was

concern that small sample sizes and large variances might
make the arithmetic average a poor estimator for level-3

means.
The practice of transforming data first, computing the

mean, m., of log-transformed data

(3)

and then estimating the mean of X as

Xgeom = em’ (4)

gives the geometric mean. In the case of a lognormal vari-

able, the geometric mean is the median of the distribution.
For any distribution that is positively skewed, the geomet-
ric mean will underestimate the population mean.

Studies have shown that the maximum likelihood esti-
mator for a lognormal mean

(5)

performs better than either of the other two when variances

are large and sample sizes small (Baker and Gibson 1987).

In (5), mz is the sample mean of in(X), given by (3), and

s: is the sample variance given by

(6)

Note that this is not the more commonly used unbiased es-
timator which uses a divisor of n – 1 instead of n. However,

this is the maximum likelihood estimator for the variance
of a normal random variable. In order for (5) to be the
maximum likelihood estimator for ~, mz and s: must be

maximum likelihood estimators for the mean and variance
of in(X) (Crow and Shimizu 1988).

In the statistical study presented in Section 3, the three—
estimators, Xavg, T ~eOm, and ~mle, were compared using

CZCS data and a time series of moored fluorometer data

(Medeiros and Wirick 1992). Results obtained for both
time and space averages were:

1. The sample mean, ~.vg (2), and the maximum

likelihood estimator, ~~i~ (5), gave equivalent
results.

2. The geometric mean or median, ~geom (4), WaS

systematically less than the other two.

The same results were obtained for other standard CZCS

variables: K4g0 and normalized water-leaving radiances
LWN (A,). Thus, based on their performance as estimators
of the mean, ~avg and ~mle were regarded as acceptable

estimators for the true population mean, ~.

2.2.2 Estimating Level -4 Variables

Itis not possible to prescribe a general method for es-

timating level -4 variables. The appropriate method will
depend on the nature of the relationship involved, i.e.,
whether it is linear or nonlinear, and the form it takes.

Let Y = ~(X) be a relationship that defines the vari-
able Y as a function of the level-2 variable X, and let ~ be
the level-3 equivalent of Y. That is, ~ represents the true
mean of Y within a sampling domain. In general, X may
be a vector of level-2 variables, i.e., Y may be a function

of more than one level-2 variable.
The problem that motivates this issue is that ~ is not,

in general, equal to .f (X_). Substitution of the mean of X
into the function is only legitimate for linear functions. In

general, the mean of a function of several variables is not
equal to the function of the means.

For any general function, the only way to obtain an
accurate estimate of the true mean, ~, would be to com-
pute Y, = j(XZ) at each pixel in the level-2 data, and then
determine its average using either the arithmetic average,

~avg~ Or the maximum likelihood estimate, ~~le. In this
case, the function Y = ~(X) would be a level-3 variable
computed by averaging over pixels in the level-2 data. An

example is ICK (1) which will be computed in this way.
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It is not possible or practical to anticipate the many

functions or mathematical relationships that may be ap-

plied to SeaWiFS data. Thus, there needed to be guide-
lines and methods for using level-3 data to obtain accurate
estimates of the mean of level-4 variables.

The decision was made to use the maximum likeli-
hood estimation (MLE) method instead of the more com-
mon arithmetic average (AVG) method because the MLE
method provides a way to estimate the mean (and other
statistics) for a large class of level-4 variables of the form

y . AxB (7)

where A and B are constants, and X is a single variable,
i.e., not a vector.

For variables in this class, in(Y) is linearly related to
in(X)

in(Y) = in(A) + B in(X). (8)

Therefore, the mean and variance of in(Y) can be esti-
mated as

my = in(A) + Elm. (9)

and
2_ ~282

‘v—z (lo)

where m. and s: are the mean and variance of In(X) de-
rived from the level -3 statistics saved for X.

According to the MLE method, the mean of Y is then
given by

~mle = e(mv+~$;), (11)

It should be noted that if (5) proves to be an accurate esti-
mator for the mean of X, then (11) will be an accurate esti-
mator for the mean of Y. There is no loss of accuracy since
(8)-(10) are exact relationships (not approximations).

The procedures for estimating the variance and other
statistics of level-3 and level-4 variables are described in
more detail in Sections 2.3 and 2.4 and in Appendix C. The
equations used are based on MLE methods for estimating

parameters of a lognormal distribution, and hence, they
are referred to as MLE estimators. As will be shown, the
MLE estimator is a robust estimator for the mean, That
is, it generally performs well even when the underlying dis-
tribution is not lognormal. Indeed, the MLE method was
not selected on the basis of an assumed lognormal distri-
bution, but because it performed well compared with the
arithmetic average (AVG estimator), and because it pro-
vided a method for estimating the mean of level-4 variables
of the form given by (7).

An example of such a function is the euphotic depth,
which is commonly defined as the 19’o light-penetration
depth (Kirk 1983). Using the level -2 variable K490 and
applying Beer’s Law, this depth may be defined as

z= = -ln(O’O1)
K490

(12)

which represents the 1YO light-penetration depth at ~ =
490 nm. If the mean of K490 based on level-3 data is used
to estimate the mean euphotic depth, this will yield a bi-
ased estimate of the mean euphot ic depth. However, the
MLE method allows for an accurate estimate of the mean
2. based on the saved statistics of ln[K490).

The equations proposed by Morel and Berthon (1989)
for deriving integral euphotic chlorophyll, (Chl)tOt, from
satellite-derived chlorophyll (or pigment ) also take the form
of (7). Several algorithms for estimating integral produc-
tivity (Smith et al. 1982, Platt 1986, and Morel and Ber-
thon 1989) involve the product of (Chl)tot and photosyn-
thetically available radiation (PAR) at the surface, PAR(0).
The mean of this product can be derived as the product of
the means of (Chl) t.t and PAR(0) since the two variables
are uncorrelated. Thus, these algorithms may be applied
to level-3 data using the saved statistics of standard level-2
variables.

2.2.3 Statistics Saved for Each Domain

Another issue that was raised concerned the choice of
statistics to save for each sampling domain. Given that
~A, (5) is to be used for estimating the mean of the
level -2 data in each domain, the statistics saved must in-
clude the sum and sum of squares of the natural logarithm
of each variable. In addition, counts of the number of pixels
contributing to the sums and similar ancillary information
should also be saved.

Beyond this, further questions regarding what statis-
tics to save are motivated by the concern expressed earlier
as to how level-4 variables will be estimated. Two alter-
natives exist: either a) sufficient information is provided
in the level-3 data to allow estimation of these variables
using saved statistics of other variables or b) the variables
should be computed at each pixel of level-2 data and their
statistics saved as part of the level-3 data set. The latter
is more costly from the standpoint of the storage required
to add additional level-3 variables. As stated earlier, the
NILE method permits the former choice for variables of the
form given in (7).

There are other level -4 variables which cannot be calcu-
lated using only the saved statistics of the standard level-2
variables. Any variable that is a function of two or more
level -2 variables would require additional information on
the covariances between level-2 variables. An example of
this is the variable IC~ (1) which appears in several pri-
mary productivity algorithms (Balch et al. 1992, Platt and
Sathyendranath 1988, Eppley et al. 1985, Smith and Baker
1978, and Bannister 1974). To apply the MLE method,
one must estimate the mean and variance of the natural
logarithm of IC~

ln(IC~) = ln(CHL) – ln(K490). (13)

The mean of hI(ICK) is simply the difference between

the means of ln(CHL) and ln(K4go), but the variance of
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ln(IC~):

var ~n(IC~)] = var [ln(CHL)] + var ~n(K490)]
(14)

— 2 cov [ln(CHL), ln(K490)]

involves the covariance, denoted by “COV”in (14), between
ln(CHL) and in (K4go), as well as their variances. The
CZCS algorithms for CHL and K490 in Section 3 resulted
in a nonlinear relationship between ln(CHL) and in (K4go).
Thus, their covariance varied from sample to sample. For
this reason, it was decided to compute the variable IC~
(1) at each pixel in the level-2 data and save statistics of
ln(IC~) as part of the level-3 data.

2.2.4 Weight ing of Temporal Statistics

After each level -2 scene is generated, valid level-2 data
from individual pixels will be binned. Sums and sums
of squares accumulated at this stage are called spatial
statistics, i.e., no temporal averaging is involved since data
from the same scene are regarded as simultaneous. Spatial
statistics from the same day will be combined into daily
products, from the same 8-day period into weekly prod-
ucts, and so forth. The daily, weekly, monthly, and longer-
term products will become the level-3 data, and the spatial
statistics pertaining to individual scenes will be discarded.

On a given day, there may be two sets of spatial statis-

tics for the same bin. Two sets might occur within the
same orbit on different tilt segments, i.e., before and af-
ter a change in the sensor’s tilt, or from different orbits
in high-latitude areas where swaths overlap. In the case
of two sets from the same orbit, only one set will be used.
The set having the better sun-target viewing geometry will
be selected. However, two sets of spatial statistics from
different orbits will receive the same treatment as spatial
statistics from different days. The same algorithms, called
temporal binning algorithms, will be used to combine data
separated by time gaps regardless of the size of the time
gap.

Let IV be the number of sets of spatial statistics (or-
bits) contributing to a temporal mean; let t,be the time at
which the ith set was acquired; and let nt be the number
of pixels contributing to the ith set, where i = 1, . . . . IV. In
considering the temporal binning algorithms, a major con-
cern was the fact that the times are unevenly distributed,
and that the sample size (hence precision) varies from one
time to another. Samples sizes will vary between 1 and
9, depending on where the bin lies relative to the ground
track. Time gaps occur because of clouds, sunglint, and
other factors.

The methods used to compensate for unevenly distribu-

ted data generally involve a scheme for weighting data.
The alternative is to use simple composite statistics (un-
weighted data), which was the method used to create
level-3 CZCS data such as the North Atlantic monthly

composites (Feldman et al. 1989 and Esaias et al. 1986).
These monthly composites have served as useful products
for a number of scientific investigations (Campbell and
Aarup 1992, Yentsch 1990, and Lewis et al. 1988), but
some of the spatial patchiness in these data sets is an ar-
tifact of the uneven temporal distribution of data.

Chelton and Schlax (1991) have made a strong case for
the superiority of optimal interpolation methods as com-
pared to simple composite averages for deriving temporal
means of irregularly spaced data. Such methods, known
as kriging in the geost at istics literature (Journal 1989), re-
quire the use of correlation functions which must be deter-
mined a priori. When applied to satellite data, the meth-

ods could require both temporal and spatial correlation
functions.

The advantage of optimal interpolation methods is that
they allow estimates to be based on data that lie out-
side the domain (bin and time interval) being estimated.
The disadvantage is their computational complexity, Data
must be deseasonalized before applying the optimal inter-
polation method. That is, seasonal trends must be esti-
mated and subtracted from the data. Therefore, at least
a year of data must be collected before optimal interpola-
tion methods can be applied. This is not compatible with

the plan to generate level-3 data products along with the
level -2 data processing,

It was decided not to apply optimal interpolation meth-
ods in the level-3 binning process. However, the binned
statistics will be useful in applying optimal interpolation
methods during post-processing. As an example, daily
composite statistics might be used in deriving weekly and
monthly means using optimal interpolation methods.

The question was, therefore, whet her to use simple
composite statistics (all data within a given domain are
given equal weight) or to develop a weighting scheme that
could be implemented easily at the time the level-2 data
are processed. In general, a decision to use weighted ver-
sus unweighed statist ics should depend on the distribution
of the data vis-a-vis any trends that might exist. Simple
unweighed statistics are recommended in the case where
there is no trend (either spatial or temporal), or where the
trend is impractical to estimate. The latter is the case for
the spatial statistics. These will be unweighted sums and
sums of squares of the pixels falling within each bin be-
cause it is impractical to estimate spatial trends for each
bin.

In the case of weekly and monthly statistics, there may
be significant trends that call for weighted sums. If sim-

ple composite (unweighed) stat istics are used, each of the
N sets of spatial statistics will, in effect, be weighted by
its sample size, n;. Thus, for example, a data set having
n% = 9 would be much more heavily weighted than one
with ni = 1. Trends may be lost in this process. Alterna-
tively, a temporal mean might be calculated as the average
of IV spatial means, regardless of the number of pixels con-
t ribut ing to the spatial means. However, this would give

8
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data were available (bit = 1) or absent (bit = O) in time in-
tervals (days, two-day intervals, or months) covered by the
averaging period. That is, each bit of the 16-bit number
represents a time interval within the averaging period, and
if a bit is set to 1, it indicates data were available during
that interval.

too much weight to a data set with n, = 1 compared to one
with nt = 9. This concern reflects the belief that precision
is a function of sample size.

As a compromise to these two alternative approaches,
it was decided to apply a weight of & to the spatial mean
at time ti, where ru is the number of pixels falling in the
bin at time t,.This is effected by applying the weight

2.3.1 The Mean and Variance of in(X)

(15) To estimate statistics for the variable X, the first step
is to calculate the mean and variance of in(X). These are
given byto the sums and sums of squares associated with the spatial

statistics for time t,.Details of the weighting scheme are
given in Appendix B. (20)

and2.3 Protocols for Level -3 Statistics
(21)

The level-3 data products available for each day, week,
month, and year oft he SeaWiFS mission will allow users to
compute the mean, standard deviation, median, and mode
of each level-3 variable in each bin. The level-3 variables
consist of level-2 variables, and in addition, the variable
IC~ (l).

For each level -3 variable X, the level-3 data consists
of a pair of sums for each bin

2.3.2 The Mean and Other Statistics of X

The mean of X is estimated by

X,nIe = em’++’: (22)

and the standard deviation by

4SDX = ~mle es: – 1. (23)

(16)
The median or geometric mean may be estimated by

and
(24)

and the mode (most frequent value) by

~mod= em’ ‘s:. (25)

where Xij is the jth observation of X at time tz,Each

observation corresponds to a pixel in the level-2 data. The
number n~ is the number of pixels at time t2 containing
valid level -2 data.

The above equations are based on the MLE method
which was demonstrated to be valid for means of CZCS
data and moored fluorometer data. Equations (22)-(25)
are based on an assumed lognormal distribution of X with-
in the sampling domain. For a discussion of the underly-
ing assumptions and robustness of the estimators see Sec-
tion 3.3.

In
bin:

b

N

n

w

addition, the following statistics are saved for each

bin index number (range: 1,...,5,940, 422),

total number of orbits contributing data,

total number of pixels contributing data, and

sum of weights.

2.4 Protocols for Level -4 Statistics

As defined earlier, a variable, Y = ~(X), which is a
function of one or more level-3 variables, is called a level-4

variable. Here, guidelines are given for computing stat is-
tics of several classes of level-4 variables. It is not possible
to specify protocols for all level-4 variables, in general, be-
cause the procedures depend on the function ~(X).

For the latter two quantities, their formulation is as follows:

N

(18)
%=1

and
N 2.4.1 Computing Statistics for Y=A +BX

w = ~fi, (19)
2=1 If Y is a linear function of X, then the mean of Y is

given by the same linear function of the mean of X
In addition to the above variables, there will be a 16-bit

time distribution variable T whose bits indicate whether ~mle = A + Bymle. (26)

9
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The same is true for the median and mode of Y. The
standard deviation of Y is scaled by the factor B

SDY == B(SDX). (27)

2.4.2 Computing Statistics for Y=AXB

The MLE method was chosen because it provides a
robust method for estimating the mean of level-4 variables
of this form. To use the MLE method, one must first
estimate the mean and variance of in(Y). These statistics,

my and s;, can then be substituted into (22)–(25), in place
2 to estimate the mean, standard deviation,of mz and SZ,

median, and mode of Y.
Let Y = f(X) be a function of this form where X is

a single level-3 variable. Its natural logarithm is a lin-
ear function of in(X) (8). If mz and s: are statistics of
in(X) derived from the level-3 data sets by (20) and (21),
respect ively, then the mean and variance of in(Y) are, re-
spectively:

mv = in(A) + l?mz (28)

and
2_

SY — B2S: (29)

Statistics of Y = f(X) can be derived by substituting
my = m= and s ~ = s: into (22)-(25).

2.4.3 Statistics for Other Functions

So far the only considerations were functions of a sin-
gle variable X. In general, if Y is a function of two or
more level -3 variables, knowledge of the covariances be-
tween the level -3 variables is required to derive statistics
for Y. It was initially recommended that a covariance ma-
trix be saved as part of the level-3 statistics, but the stor-
age costs were considered too high. Subsequently, it was
decided to save statistics of IC~ because this function ap-
pears frequently in primary productivity algorithms.

Another situation involving a function of several level-2
variables occurs when a regional bio-optical algorithm is

applied to derive better estimates of the CZCS-like pig-
ment concentration. For example, suppose the standard
(global) CZCS-like pigment algorithm is

PIG = A [1LW(,Ai) ‘g

g Lw(~j)
(30)

where L WN(Ai) and LWN (Aj) are the normalized water-
leaving radiance in bands i and j, and the wish is to com-
pute pigment according to an alternative algorithm

(31)

using regionally-derived parameters, Ar and B.. In this
situation, it is possible to use the saved level-3 statistics

for PIG to estimate statistics for PIG,. Substituting the
means of L WN(Ai) and L WN(Aj ) into (31) is not recom-
mended.

The recommended procedure is, first, to estimate the

mean and variance of in (PIG) according to (20) and (21).

These statistics can be denoted by mg and s;, respectively.

The mean of ln(PIG1) is then given by

m, = ln(A,) + ~(m, - ln(Ag)) (32)

and the variance of in (PIG,) is

S$ = y.
9

(33)

These statistics can then be substituted into (22)-(25),
2 — 2 to obtain the statisticsreplacing mr = mz, and Sr — s=,

for PIGr.
This flexibility is the primary reason that the MLE

method was chosen over the more commonly used esti-
mation methods, e.g., arithmetic averages, for estimating
spatial and temporal means. As shown in Section 3, the
MLE estimator for the mean proved to be equivalent to
the arithmetic average for spatial averages of CZCS data,

and, in most situations, for temporal averages of moored
fluorometer data. The statistical study detailed in Sec-

tion 3 provides empirical evidence to support the use of
the MLE method, as well as theoretical results which ex-
plain its success and, in some inst antes, failure for certain

data sets.

3. EMPIRICAL BASIS
In 1992–93, a study was conducted to address statis-

tical questions related to level-3 binning algorithms for
SeaWiFS data. The questions addressed and recommen-

dations derived from this study have been presented in
Section 2 of this report. Here, the actual results of this

study are presented. Results pertaining to spatial binning

algorithms are presented in Section 3.1, followed by results
pertaining to temporal binning algorithms in Section 3.2.
Following the presentation of results, Section 3.3 contains
a discussion of the major conclusions. Questions concern-
ing the equivalence of the MLE and AVG methods are
addressed in this section, and specific situations are de-
scribed when the two methods would and would not be
equivalent.

3.1 Spatial Statistics

The first step in creating level-3 data involves averaging

data from a single orbital pass. This is considered the spa-

tial binning step, because the data involved are regarded
as simultaneous.

Three questions

dressed:

related to spatial binning were ad-

10
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1. How should level-2 data be averaged to provide

the best estimate of their mean?

2. How should level-4 means be estimated?

3. What statistics should be saved?

These are the first three questions presented and discussed
in Sections 2.2.1–2.2.3.

3.1.1 Methods

Full-resolution CZCS data were used to address the
aforementioned questions. The procedure was to use the

full-resolution data to define the true mean of each variable
within 9 x 9 km2 bins and to compare other estimates of

the mean against the true mean.
Seven scenes were selected as representative of the full

range of variability in CZCS data. Details of these scenes
are given in Table 1. The level-1 data were processed ac-
cording to standard algorithms using the DSP ANLY2DBL
code [Rosenstiel School of Marine and Atmospheric Sci-

ence (RSMAS) 1990]. (The version of ANLY2DBL.EXE used
in processing CZCS data was created 19 April 1990, and
modified 18 September 1991). The resulting level-2 vari-

ables involved in this study were:

LWN (.Ai) normalized water-leaving radiances in bands
i = 1–3,

CHL pigment concentration (chlorophyll), and

K4go diffuse attenuation coefficient at A = 49o nm.

The normalized water-leaving radiances are radiances cor-
rected for variations in solar zenith angle across the scan.
All radiances are corrected to correspond to a solar zenith

angle of zero. Details oft he algorithms used may be found

in Gordon et al. (1988).
The algorithm for K4go was

K@) = 0.022 + 0.088 [1LW(AI)‘1”491
L&v(A3)

(34)

where Lw (Ai) is the non-normalized water-leaving radi-
ance in band i. The quantity CHL was derived using a

bifurcated algorithm that involved two ratio formulas:

CHL13 = 1.130 [1Lw(~l) ‘1”705

Lw (A3)
(35)

and

CHL23 = 3.327 [1Lw (A2) ‘2”44

Lvv (A3)
(36)

According to this algorithm, CHL was equal to CHL13 ex-
cept when both formula values exceeded 1.5 mg m–3, in
which case, CHL was equal to CHL23. The CHL13 ra-

tio was employed in all of the scenes analyzed, whereas

the CHL23 ratio was employed in only three of the seven
scenes.

After the scenes were processed to standard level-2
data, pixels in each scene were sorted into 9 x 9 km2 bins
oriented in rows perpendicular to the ground track of the
satellite. Based on an instantaneous field-of-view (IFOV)
angle of 0.865x 10–3 radians (0.496° ) and a sensor altitude
of 955 km (and ignoring tilt), the spatial resolution of pix-
els at nadir is 0.825 km. The maximum number of pixels

that fit into a 9 x 9km2 bin was 121 (11 x 11). This oc-
curred only within +300 pixels of nadir where pixels have

spatial resolutions <0.9 km.

3.1.1.1 Estimators of the Mean

Only cloud-free bins cent aining 121 pixels were used for
the analysis. All estimators were evaluated using both full-
resolution (LAC) data and 4 km resolution (GAC) data.
The latter were obtained by subsampling every fifth pixel
on every fifth line (since 5 x 0.825 x 4 km). Thus, LAC
estimators were based on 121 level-2 observations, whereas
for GAC data, the number of observations (pixels falling in
these bins) ranged from 4–9.

The estimators compared were:

AVG

AVG4

MLE

MLE4

MED

MED4

arithmetic average (2) based on LAC data,

arithmetic average based on GAC data,

maximum likelihood estimator (5) based on
LAC data,

maximum likelihood estimator based on GAC
data,

geometric mean or median estimator (4)

based on LAC data, and

geometric mean or median estimator based
on GAC data.

For each bin, the AVG estimator based on LAC data
(n = 121) is given in (2) and was considered the true mean.
In this equation, X, is the ith observation or realization of
the variable X [equal to LwN(A1), LwAr(~2), LwN(~3),

CHL, or K4go], and n is the number of observations (pix-
els) falling in a bin. The true mean was computed for
each variable and each bin having n = 121 valid observa-
tions. The other estimators of the mean were compared
with ~ .Vg to determine how well they performed.

3.1.1.2 Standard Level-2 Variables

Let x - [LlvN(~l),LwN(~ 2), LwN(A3),cHL,K4go] re-
fer to the vector of standard variables, and let Y = ~(X)
be any function that is derived from one or more of the
standard variables.

The arithmetic mean of the function based on LAC
data (n=121)

(37)
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Table 1. CZCS scenes used for the analysis of spatial statistics. The scenes are listed in increasing order. .
of mean pigment (see Fig. 1). The number of lines listed were for the whole scene, and the number of bins
given is the number of 9 x 9 km3 bins containing data. Time is given in Greenwich Mean Time (GMT) in the

(left-to-right) order of hour, minutes, and seconds. (Note: In Tables 2 and 3, the number of bins listed is the
number of bins containing n = 121 pixels. Only these cloud-free bins were used to define true means in the
images. )

ID Orbit Date Time Tilt Location Lines Bins

1 1,200 19 Jan79 1:56:27 20° Northwestern Pacific 1,023 3,186

2 218 9 NOV 78 0:52:23 0 Northwestern Pacific 1,023 2,964

3 1,029 6.Jan79 16:38:13 –14 South Atlantic 1,023 3,087

4 1,016 5 Jan 79 18:33:31 6 Eastern Tropical Pacific 2,376 8,266

5 1,452 6 Feb 79 7:19:17 8 Indian Ocean 1,584 7,475

6 971 2 Jan 79 12:31:21 –2 Northwest of Africa 1,023 1,040

7 1,386 1 Feb 79 12:45:19 20 Southwest of Africa 1,584 4,020

was considered its true mean, where Yi = f (Xi) is the
function calculated at pixel i. This defined the AVG esti-
mator for ~. Similarly, the AVG4, MLE and MLE4 esti-
mators for the mean of Y were defined by substituting Y,
for Xi in the appropriate equations. In addition to these
estimators, the FNC (function) estimator was defined as

Yfnc = f (Xavg) (38)

where Xavg is the arithmetic average of X. This would be
the result of calculating the function using level-3 means.
It was called FNC when ~~.g was the AVG estimator, and
FNC4 when ~avg was the AVG4 estimator.

Functions that were investigated were as follows:

IC~

z,

YAB

integral pigment (1) within the upper optical
depth,

1% light depth, and

pigment algorithm A(Lw~ (A1)/Lw~(A3))’,

where A = 1 and B = –1, –2, and –3.

5’.1.1.3 Relative Errors

For each bin, the relative error in an estimate of the

mean, ~~~t, was defined as a percentage of the true mean
Tavg

Ze.t – Xavg x ~ooyo
ERROR =

Yavg
(39)

where ~e~t was the estimate based on the MLE, MED,
AVG4, MLE4, or MED4 estimator. Similarly, relative er-—
rors in estimates of the mean of a function, Ye~t, were
defined as a percentage of ~.~g, where ~~,t was the esti-
mate based on the MLE, FNC, AVG4, MLE4, or FNC4
estimator.

3.1.2 Results

In Table 1, the scenes are listed in order of increasing
mean pigment. In presenting results, scenes will be ident i-
fied by the number (order) found in column 1 of this table.

5’.1..2.1 Pigment Distributions

The pigment means and coefficients of variation (CV)

for the seven scenes are compared in Fig. 3. Histograms of
log(CHL) are shown in Fig.
bit image value V, which is
10) of pigment as

log(CHL) =

4, where the abscissa is the 8-
related to the logarithm (base

–1.4 + 0.012V. (40)

The distributions of log(CHL) shown in Fig. 4 appear to
be either single normal distributions, e.g., scene 1, or mix-
tures of normal distributions, e.g., scene 3. Thus, CHL is
approximately lognormally distributed within each scene
or within portions of each scene.

In scenes 4, 6, and 7, the bifurcated CHL algorithm
resulted in a discontinuity at CHL = 1.5 mg m–3 (V =
132). Values to the left of V = 132 have been calculated
according to CHL13 (35), whereas values to the right were
calculated according to CHL23 (36). This is an artifact of
the CZCS pigment algorithm, which will be avoided when
defining the SeaWiFS CHL algorithm. In scenes 6 and
7, CHL was recalculated using the CHL13 algorithm for
all pixels. The resulting CHL distributions are shown in
Fig. 5.

3.1.2.2 Comparison of Estimators

Representative results for estimators of CHL are shown
in Figs. 6 and 7. Each point in these scatter plots corre-
sponds to a bin in scene 4, the scene with the highest over-
all variance. The scales are log-log. In Fig. 6, the MLE,
MED, MLE4, and MED4 estimates are plotted against the
AVG estimate. The patterns shown here are typical of
those observed in all the scenes analyzed. In all scenes,
the MLE estimator was nearly identical to the AVG esti-
mator, whereas the MED estimator underestimated AVG.
There was no discernible difference between the MLE4 ver-
sus AVG and MED4 versus AVG plots. Both contained
substantially more scatter than the plots involving MLE
and MED estimates.
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Fig. 3. The mean pigment (upper panel) and coefficient of variation (lower panel) for the seven CZCS scenes
used in this analysis, The scenes are ordered from lowest to highest mean pigment. The numbers appearing
above each bar are the mean pigment (mg m–3) and coefficient of variation (standard deviation expressed as
a percentage of the mean),
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Fig. 4. Pigment histograms of seven CZCS scenes used in this analysis. The abscissa is the image value V
which is linearly related to the logarithm of pigment: log(CHL) = –1.4 + 0.012(V).
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Fig. 4. (cent. ) Pigment histograms of seven CZCS scenes used in this analysis.
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Fig. 4. (cont.) Pigment histograms of seven CZCS scenes used in this analysis.
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Fig. 4. (cont.) Pigment histograms of seven CZCS scenes used in this analysis.

In Fig. 7, the AVG4 estimator is compared with the
AVG and MLE4 estimators. In the AVG4 versus AVG plot,

the scatter is strictly the result of sample size differences;
whereas in the AVG4 versus MLE4 plot, the scatter is the

result of differences between the estimators. It is clear from
these comparisons that the errors associated with GAC
estimators were predominantly the result of their reduced

sample size. When two GAC estimators were compared,

e.g., AVG4 versus MLE4 in Fig. 7, the two agreed as well

as the corresponding LAC estimators.
Color Plates 1 and 2 show level-3 mean CHL images for

the seven scenes. That is, each pixel in these images is a bin
in the level-3 data. Plate 1 compares the AVG and MLE
estimators, and Plate 2 compares the AVG4 and MLE4

estimators. Difference images are shown in Plate 3. Dif-
ferences between the MLE and AVG estimators seemed to

be spatially organized with the largest differences located
along fronts and coastlines. In contrast, there were no ob-
vious spatial patterns in the differences between MLE4 and
AVG4 estimators.

The combined histograms of relative errors (39) in CHL

estimators from all seven scenes are shown in Figs. 8 and
9, and summarized in Table 2a. In all but a few cases,

the MLE estimator differed from the AVG estimator by
less than 1%; whereas, the MED estimator consistently

underestimated the mean CHL. Its bias or average error
was –2. lYo, and 95th percentile range was – 1l~o to – 1$70.

All three GAC estimators had a tendency to under-
estimate the true mean CHL. Errors associated with the
AVG4 estimator are strictly the result of reducing sample
sizes from n = 121 in the AVG estimator to n < 9 in

the AVG4 estimator. The error histograms for AVG4 and
MLE4 are remarkably similar. Their biases were –0.76%

and –0. 75Yc, respectively, and their 95th percentile range
was —19?’o to +1870. The MED4 tended to underestimate

the true mean as did the other GAC estimators, but the

MED4 was a poorer estimator indicated by its largert neg-
ative bias (–2.60Yo).

In the LAC error histograms (Fig. 8), true differences in
the performance of the estimators may be seen; whereas,
in the GAC histograms (Fig. 9), errors associated with
reduced sample size are added to errors or differences be-
tween estimators. Differences between GAC estimators

DIFF1 =
MLE4 – AVG4

AVG4
x 100% (41)

and

DIFF2 =
MED4 – AVG4

AVG4
x 100% (42)

were examined. Here, a distinction is made between errors
(39) which are relative to the true mean (AVG) and ciifFer-
ences, (41) and (42), which are relative to AVG4, another
estimate of the mean.

Histograms of DIFF1 and DIFF2 are shown in Fig. 10.
These results for GAC estimators are very similar to the
patterns seen when comparing LAC estimators (compare
Fig. 10 with Fig. 8). The AVG4 and MLE4 estimators
agree, as well as the AVG and L4LE estimators; differences
between the two methods of estimating the mean CHL
are negligible. Likewise, differences between the MED4

and AVG4 estimators followed the same pattern as differ-
ences between the MED and AVG estimators. In both
cases, the geometric mean underestimated the arithmetic
average. The large errors in AVG4, MLE4, and MED4
(Fig. 9) were clearly dominated by the sample size ef-
fect.

The patterns seen in Figs. 8–10 for CHL estimators
are similar to those that are obtained for other variables.
GAC error histograms for the other variables (compara-
ble to Fig. 9) are shown in Figs. 11–14, and summaries

t In referring to biases, the terms larger and smaller refer to
the magnitude or absolute value of the bias,
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Fig. 5. CHL histograms for scenes 6 and 7 derived using CHL13 algorithm only.
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MLE

MED

Fig. 6. In these scatter plots, four estimators of the mean are compared with the true mean (AVG) defined
as the arithmetic average of all pixels in a bin (sample size = 121). The level-2 data used were ‘CZCS-derived
pigment values from scene 4 (see Table 1). Like the AVG estimator, the MLE and MED estimators are based
on full-resolution (LAC) data, whereas the MLE4 and MED4 estimators are based on 4 km subsampled (GAC)
data. The scales on each plot are log-log where the range is from 0.04 (V=O) to 45 (V=255), where V is the

8-bit image value [see (40)].

AVG4

.,,

Fig. 7. In these scatter plots, the ordinate (AVG4) is the arithmetic average based on 4 km subsampled
(GAC) data for the same scene as in Fig. 6. The plot on the left compares this estimator with the average
based on full-resolution (LAC) data. The scatter in this plot is strictly the result of sample size differences.
The AVG4 has less precision since its sample size is reduced from n = 121 (LAC) to n <9 (GAC). The plot
on the right compares the AVG4 and MLE4 estimators. Like the MLE and AVG estimators (Fig. 6), the
MLE4 and AVG4 are practically identical.
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Fig. 8. Histograms of CHL estimation errors based on 21,290 bins analyzed and full-resolution (LAC) data.
For each bin, the error is defined as the difference between the estimator and the arithmetic average (AVG)

of all data in the bin expressed as a percentage of AVG. The top histogram shows the error calculated as
(MLE - AVG)/ AVG) (%). The bottom histogram shows the error calculated as (~4ED - AVG)/ AVG (%).
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Fig. 9. Histograms of CHL estimation errors based on 21,290 bins analyzed and 4 km subsampled (GAC)
data. The top histogram shows the error calculated by (AVG4 – AVG)/ AVG (%). The middle histogram
shows the error calculated by (MLE4 – AVG) / AVG (To). The bottom histogram shows the error calculated
by (MED4 – AVG)/AVG (%).
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Fig. 10. Histograms of DIFF1 and DIFF2 based on 21,290 bins analyzed. The top histogram was calculated
with (MLE4 – AVG4)/ AVG4 (%). The bottom histogram was calculated with (MED4 – AVG4)/ AVG4 (Yo).
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Fig. 11. Histograms of K490 estimation errors based on 20,373 bins analyzed and 4 km subsampled (GAC)
data. The top histogram was calculated using (AVG4 – AVG) / AVG (%). The bottom histogram was calcu-
lated for (MLE4 – AVG)/ AVG (%).
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Fig. 11. (cont.) Histogram of K4go estimation errors based on 20,373 bins analyzed and 4 km subsampled
(GAC) data was calculated using (MED4 - AVG)/ AVG (%).
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Fig. 12. Histogram of LWN (443) estimation errors based on 21,290 bins analyzed and 4 km subsampled
(GAC) data was calculated for (AVG4 - AVG)/ AVG (%).
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Fig. 12. (cont.) Histograms of LWN (443) estimation errors based on 21,290 bins analyzed and 4 km subsam-

pled (GAC) data. The top histogram was calculated for (MLE4 – AVG)/ AVG (Yo). The bottom histogram
was calculated for (MED4 – AVG)/ AVG (%).
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Fig. 13. Histograms of LWW(520) estimation errors based on 21,290 bins analyzed and 4 km subsampled
(GAC) data. The top histogram was calculated for (AVG4 – AVG)/ AVG (%) The bottom histogram was
calculated for (MLE4 – AVG) / AVG (’Yo).
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Fig. 13. (cent. ) Histogram of L WN(520) estimation errors based on 21,290 bins analyzed and 4 km subsam-

pled (GAC) data was calculated for (MED4 – AVG)/ AVG (%).
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Fig. 14. Histogram of LWN (550) estimation errors based on 21,290 bins analyzed and 4 km subsampled
(GAC) data was calculated for (AVG4 - AVG)/ AVG (%).
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Fig. 14. (cent. ) Histograms of LWN (550) estimation errors based on 21,290 bins analyzed and 4 km subsam-

pled (GAC) data. The top histogram was calculated for (MLE4 – AVG)/ AVG (Yo). The bottom histogram
was calculated for (MED4 – AVG)/ AVG (%).
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of relative errors are listed in Tables 2ay for CHL, K4go,
LWN(AI), LWN(A2), and LWN(A3), respectively. The last
two columns on the right in this table give the 95th per-
centile range for the relative errors. All GAC estimators
had negative biases. AVG4 and MLE4 were nearly iden-
tical with average errors on the order of – lYo; whereas,
MED4 had average errors of approximately –2%, The
CHL variable had the highest overall errors, with a 95th
percentile range generally around +20%; whereas, the oth-
er variables had errors that were generally within
+10%.

The three scenes that used both CHL13 and CHL23 had
substantially higher errors than those of the other scenes.
These scenes also had the highest variance in CHL and
other variables. Alt bough higher estimation errors would
be expected when sampling from distributions with higher
variance, there was the need to determine whether the
CHL errors were anomalously large due to the bifurcated
CHL algorithm. The higher variance in CHL might have
been an artifact resulting from the discontinuous nature of
the pigment distribution.

To determine whether this was true, the analysis was
repeated for scenes 6 and 7 using CHL13 to derive CHL
for all pixels (Fig. 5). The results were essentially the
same. These images still had large intrabin variances in
CHL (CHL13), and their error distributions (not shown)
were essentially unchanged.

Statistics pertaining to the IC~ function estimators are
presented in Table 3, and error histograms for the MLE
and FNC estimators are shown in Fig. 15 and for the
AVG4, MLE4, and FNC4 estimators in Fig. 16, In con-
trast to the MED estimator, the FNC estimator tended to
overestimate the true mean. In the case of the FNC4 esti-
mator, this tendency (positive bias) was apparently offset
by the underestimation tendency (negative bias) associ-
ated with small sample sizes. The result was that the bias
of the FNC4 estimator was nearly zero.

In Section 2.4, a protocol was presented for estimating
the mean of level-4 variables of the form Y = AX~ based
on saved statistics of the level-2 variable X. The accuracy
of the prescribed protocol depends strictly on whether the
MLE estimator is a good approximation to the AVG or
true mean of these functions.

Results for the Z, and Y~,B functions (not shown) es-
tablished that the MLE estimator was essentially identical
to the AVG estimator. Root-mean-square (rms) errors for
the MLE4 and AVG4 estimators were within +570 for Z,,
Errors for YA,B increased as B changed from – 1 to –3,
with the highest rms errors being associated with scenes
6 and 7. MLE4 and AVG4 errors were within +5% for
B = –1, within +15% for B = –2, and +30% for B = –3.
These ranges are consistent with the results for the CHL
algorithm where B = –1.7 (CHL13) and –2.4 (CHL23),
As in the case of the IC~ function, the FNC4 estimator
was not significantly different from the MLE4 and AVG4
estimators. In all three cases, errors were dominated by
the effects of reduced sample size.

3.2 Temporal Statistics

After the spatial statistics are derived from data on a

single orbital pass, these statistics will be averaged over
time to produce temporal statistics. No further reduction
in spatial resolution takes place, but after being averaged
over time, temporal statistics will have reduced temporal
resolution,

Statistical questions regarding the use of weighted ver-

sus unweighted statistics have been discussed above. These
questions were not addressed in this study. This phase of
the study focused on questions concerning the performance

of the
phase
were:

1.

2.

estimators studied in the earlier (spatial statistics)
of the study. Specifically, the questions addressed

Would the MLE estimator continue to be equiv-
alent to the AVG estimator as variance increases
due to temporal variability?

Would the h!lED and FNC estimators diverge
further from the AVG?

In other words, the goal of this phase of the study was

to determine whether the results obtained for spatial statis-
tics would also pertain to temporal statistics. The greatest

differences between the MLE and AVG estimators occurred
in bins having the highest variance. Since temporal statis-
tics, in general, will have increased variance due to tem-

poral variability within bins, it was not known whether
the MLE and AVG estimators would remain equivalent.
Furthermore, it was predicted that the small but system-

atic errors in the MED and FNC estimators would increase
wit h increases in variance.

3.2.1 Methods

Ideally, several time series of CZCS images from differ-

ent geographic regions should be analyzed to address these
questions. However, this approach was not considered fea-

sible. Since CZCS was operated only 107o of the time, its
sampling frequency for any bin was much lower than that
expected for SeaWiFS, which will operate cent inuously.

To investigate how phytoplankton pigment distribu-

tions vary over time at a fixed location, and to answer
the above questions, the Shelf Edge Exchange Program II
(SEEP 11) moored fluorometer data (L4edeiros and Wirick
1992) was analyzed. These data consisted of temporal
records of chlorophyll fluorescence from six moored fluo-

rometer arrays located along the outer edge of the conti-
nental shelf off the Delmarva Peninsula. The mooring ar-

rays were deployed between February 1988 and May 1989.
Details of the SEEP II data are given in Table 4.

At each mooring, a time series of daily satellite-derived
surface chlorophyll measurements was simulated by select-
ing the SEEP measurement closest to 10AM from the shal-
lowest fluorometer. The depths of these instruments ranged

from 16-39 m (see Table 4).
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Table za. Sl]mma,rvof relative errors for CHL estimators.----- -—- --.-----—- . --

Estimator Scene Number Bias Error 95% Range

Used Number of Bins [%] (rms) [%] Minimum Maximum

NILE 1 2,750 0.00 0.00 –1 o

2 1,850 0.00 0.00 –1 o

3 2,584 –0.03 1.26 –1 o

4 5,773 –0.03 0.42 –1 o

5 4,535 –0.05 1.42 –1 o

6 513 0.07 1.19 –2 2

7 3,285 –0.21 1.13 –3 1

Combined 21,290 –0.05 0.95 –1 o

MED 1 2,750 –1.14 1.20 –3 –1

2 1,850 –1.16 1.25 –3 –1

3 2,584 –1.08 2.15 –6 o

4 5,773 –1.98 2.95 –8 –1

5 4,535 –1.37 2.27 –3 –1

6 513 –4.67 7.32 –24 o

7 3,285 –5.13 7.38 –21 –1

Combined 21,290 –2.11 3.74 –11 –1

AVG4 1 2,750 1.12 7.28 –13 15

2 1,850 0.68 7.07 –13 15

3 2,584 –2.00 6.07 –14 8
4 5,773 –3.12 9.35 –21 13

5 4,535 0.00 7.31 –14 14

6 513 0.71 11.79 –22 25
7 3,285 0.71 16.72 –26 42

Combined 21,290 –0.76 9.86 –19 18

MLE4 1 2,750 1.12 7.29 –13 15
2 1,850 0.69 7.06 –13 15
3 2,584 –1.99 6.06 –14 8
4 5,773 –3.10 9.26 –21 13
5 4,535 –0.01 7.25 –14 14
6 513 0.88 11.86 –22 25
7 3,285 0.69 16.51 –26 41

Combined 21,290 –0.75 9.77 –19 18

MED4 1 2,750 0,17 7.14 –14 14
2 1,850 –0.26 6.95 –14 14
3 2,584 –2.96 6.50 –16 7
4 5,773 –4.81 9.95 –24 11
5 4,535 –1.04 7.21 –15 13
6 513 –3,50 12.52 –30 18
7 3,285 –4.07 14.02 –32 24

Combined 21,290 –2.60 9.38 –22 14
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Table 2b. Summarv of relative errors for KM. estimators.. ..”

Estimator Scene Number Bias Error 95% Range

Used Number of Bins [%] (rms) [%] Minimum Maximum

MLE 1 2,757 0.00 0.00 –1 o

2 1,875 0.00 0.00 –1 o

3 2,584 0.00 0.02 –1 o

4 5,773 0.00 0.03 –1 o

5 4,562 0.00 0.02 –1 o

6 424 0.00 0.16 –1 o

7 2,398 0.00 0.05 –1 o

Combined 20,373 0.00 0.04 –1 o

MED 1 2,757 0.00 0.00 –1 o

2 1,875 0.00 0.00 –1 o

3 2,584 –0.05 0.24 –2 o

4 5,773 –0.16 0.55 –2 o
5 4,562 –0.12 0.36 –2 o
6 424 –1.09 2.08 –8 o
7 2,398 –0.93 1.41 –4 o

Combined 20,373 –0.21 0.67 –3 o

AVG4 1 2,757 0.26 1.63 –4 3
2 1,875 0.20 1.71 –4 3
3 2,584 –0.69 2.12 –5 3
4 5,773 –1.02 3.45 –8 5
5 4,562 0.01 3.46 –7 7
6 424 0.37 5.39 –12 11
7 2,398 0.06 6.54 –12 16

Combined 20,373 –0.31 3.59 –8 7

MLE4 1 2,757 0.26 1.63 –4 3
2 1,875 0.20 1.71 –4 3
3 2,584 –0.68 2.12 –5 3
4 5,773 –1.03 3.44 –8 5
5 4,562 0.01 3.45 –7 7
6 424 0.37 5.39 –12 11
7 2,398 0.05 6.52 –12 16

Combined 20,373 –0.31 3.58 –8 7

MED4 1 2,757 0.21 1.62 –4 3
2 1,875 0.14 1.71 –4 3
3 2,584 –0.80 2.16 –6 3
4 5,773 –1,27 3.51 –9 4
5 4,562 –0.24 3.41 –7 6
6 424 –0.75 5.37 –14 8
7 2,398 –0.81 6.09 –13 13

Combined 20,373 –0.59 3.50 –8 6
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Table 2c. Summary of relative errors for L\vN (Al) estimators.

Estimator Scene Number Bias Error 95% Range

Used Number of Bins [%] (rms) [%] Minimum Maximum

MLE 1 2,750 0.00 0.00 –1 o

2 1,850 0.00 0.00 –1 o

3 2,584 0.00 0.00 –1 o

4 5,773 0.01 0.31 –1 o

5 4,535 0.01 0.32 –1 o

6 513 0.00 0.04 –1 o

7 3,285 0.75 3.39 –1 8

Combined 21,290 0.12 1.35 –1 o

MED 1 2,750 0.00 0.00 –1 o

2 1,850 0.00 0.02 –1 o

3 2,584 –0.03 0.19 –1 o

4 5,773 –0.20 0.74 –2 o

5 4,535 –0.08 0.41 –2 o

6 513 –0.60 1.13 –4 o

7 3,285 –3.97 9.10 –31 o

Combined 21,290 –0.70 3.60 –6 o

AVG4 1 2,750 0.35 1.57 –3 3

2 1,850 0.46 1.73 –4 3

3 2,584 –0.76 1.93 –5 2
4 5,773 –1.58 3.53 –9 4

5 4,535 0.73 3.05 –6 6
6 513 0.08 4.18 –9 8
7 3,285 –4.63 12.01 –36 11

Combined 21,290 –0.99 5.39 –12 5

MLE4 1 2,750 0.35 1.57 –3 3
2 1,850 0.46 1.73 –4 3
3 2,584 –0.76 1.93 –5 2
4 5,773 –1.58 3.53 –9 4
5 4,535 0.73 3.04 –6 6
6 513 0.09 4.18 –9 8
7 3,285 –3.95 12.32 –33 15

Combined 21,290 –0.89 5.50 –11 5

MED4 1 2,750 0.30 1.57 –3 3
2 1,850 0.39 1.73 –4 3
3 2,584 –0.88 2.01 –5 2
4 5,773 –1.85 3.78 –lo 3
5 4,535 0.52 3.09 –6 6
6 513 –0.50 4.36 –lo 7
7 3,285 –7.94 16.22 –54 6

Combined 21,290 –1.66 6.93 –16 5
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Table 2d. Summary of relative errors for LWN (A2) estimators.

Estimator Scene Number Bias Error 95% Range

Used Number of Bins [%] (rms) [%] Minimum Maximum

MLE 1
2
3
4
5
6
7

2,750 0.01 0.12

1,850 0.04 0.29
2,584 0.00 0.03

5,773 0.03 0.22

4,535 0.02 0.20

513 0.03 0.22

3,285 0.03 0.36

–1 o
–1 o
–1 o
–1 o
–1 o
–1 o
–1 o

Combined

MED 1
2

3
4

5
6
7

21,290 0.02 0.23

2,750 –0.04 0.24
1,850 –0.15 0.55

2,584 –0.09 0.33
5,773 –0.27 0.73

4,535 –0.11 0.47

513 –1.26 2.45

3,285 –0.90 2.23

–1 o

–1 o
–2 o
–2 o
–3 o
–2 o
–9 o
–7 o

Combined 21,290 –0.30 1.07 –3 o

AVG4 1 2,750 0.43 3.09 –6 6
2

3
4

5

6
7

Combined

1,850 0.49 3.61 –7 7
2,584 –1.29 2.80 –7 3
5,773 –2.30 4.55 –11 5
4,535 0.57 3.24 –6 6

513 0.37 5.41 –13 11
3,285 –2.50 6.08 –14 7

21,290 –0.94 4.19 –lo 6

MLE4 1 2,750 0.44 3.09 –6 6
2 1,850 0.49 3.59 –7 7
3 2,584 –1.29 2.79 –7 3
4 5,773 –2.27 4.51 –11 5
5 4,535 0.59 3.21 –6 6
6 513 0.41 5.40 –13 11
7 3,285 –2.48 6.02 –14 7

Combined 21,290 –0.92 4.16 –lo 6, 1

MED4 1 2,750 0.25 3.13 –7 6
2

3
4

5

6

1,850 0.22 3.71
2,584 –1.48 2.94
5,773 –2.68 5.00
4,535 0.34 3.40

513 –0.78 5.80

–8 7
–7 3

–12 4
–7 6

–16 9
7 3,285 –3.38 6.71 –17 5

Combined 21,290 –1.32 4.53 –11 6
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Table 2e. Summary of relative errors for L WN(A3) estimators.

Estimator Scene Number Bias Error 95% Range

Used Number of Bins [%] (rms) [%] Minimum Maximum

MLE 1 2,750 0.01 0.09 –1 o

2 1,850 0.03 0.22 –1 o

3 2,584 0.00 0.03 –1 o

4 5,773 0.02 0.19 –1 o

5 4,535 0.00 0.07 –1 o

6 513 0.06 0.35 –1 1

7 3,285 0.01 0.25 –1 o

Combined 21,290 0.01 0.17 –1 o

MED 1 2,750 –0.60 0.79 –2 o

2 1,850 –0.77 0.95 –2 o

3 2,584 –0.19 0.50 –2 o

4 5,773 –0.67 1.02 –3 o

5 4,535 –0.13 0.38 –2 o

6 513 –2.09 3.50 –11 o

7 3,285 –1.02 2.01 –6 o

Combined 21,290 –0.59 1.19 –3 o

AVG4 1 2,750 1.07 4.75 –9 10

2 1,850 0.94 4.88 –9 10

3 2,584 –1.92 3.75 –9 4
4 5,773 –3.43 6.18 –15 6
5 4,535 0.77 3.91 –8 8
6 513 0.57 6.90 –15 14
7 3,285 –3.16 6.37 –15 7

Combined 21,290 –1.25 5.26 –13 8

MLE4 1 2,750 1.07 4.74 –9 10
2 1,850 0.95 4.86 –9 10
3 2,584 –1.92 3.74 –9 4
4 5,773 –3.40 6.14 –15 6
5 4,535 0.77 3.90 –8 8
6 513 0.65 6.93 –14 14
7 3,285 –3.14 6.36 –15 7

Combined 21,290 –1.24 5.24 –13 8

MED4 1 2,750 0.67 4.73 –9 9
2 1,850 0.49 4.98 –lo 9
3 2,584 –2.24 3.95 –lo 3
4 5,773 –4.07 6.78 –16 5
5 4,535 0.47 3.92 –8 8
6 513 –1,26 7.42 –20 11
7 3,285 –4.08 7.05 –17 6

Combined 21,290 –1.81 5.63 –14 8
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Table 3. Summa,rv of relative errors for IC,~ estimators.-. -. —–.,

Estimator Image Number Bias RMS 95% Range

Used Number of Bins [%] Error [%] Minimum Maximum

MLE 1 2,750 0.00 0.00 –1 o

2 1,850 0.00 0.00 –1 o

3 2,584 –0.01 0.45 –1 o

4 5,752 –0.01 0.10 –1 o

5 4,533 –0.02 0.48 –1 o

6 423 –0.01 0.23 –1 o

7 2,379 –0.04 0.20 –1 o

Combined 20,271 –0.01 0.30 –1 o

FNC 1 2,750 0.14 0.38 –1 1

2 1,850 0.23 0.48 –1 1

3 2,584 0.39 2.61 –1 2

4 5,752 0.86 1,45 –1 3

5 4,533 0.80 1.32 –1 1

6 423 2.57 4.52 –1 13

7 2,379 1.84 2.53 0 6

Combined 20,271 0.78 1.76 –1 3

AVG4 1 2,750 0.87 5.74 –11 12

2 1,850 0.49 5.44 –11 11
3 2,584 –1.34 3.98 –lo 5
4 5,752 –2.19 6.09 –15 8
5 4,533 0.07 3.68 –8 7
6 423 0.61 7.96 –15 16
7 2,379 –0.30 6.96 –13 16

Combined 20,271 –0.64 5.45 –12 10

MLE4 1 2,750 0.87 5.74 –11 12
2 1,850 0.49 5.45 –11 11
3 2,584 –1.34 3.98 –lo 5
4 5,752 –2.18 6.06 –15 8
5 4,533 0.07 3.68 –8 7
6 423 0.62 7.97 –16 17
7 2,379 –0.33 6.87 –-13 15

Combined 20,271 –0.64 5.43 –12 10

FNC4 1 2,750 1.19 5.83 –11 12
2 1,850 0.82 5.52 –lo 12
3 2,584 –0.91 3.92 –9 6
4 5,752 –1.45 6.10 –14 9
5 4,533 0.59 3.83 –7 8
6 423 2.86 10.05 –15 24
7 2,379 1.28 8.66 –12 24

Combined 20,271 0.05 5.84 –11 11
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Fig. 15. Histograms of CHL/Ki90 estimation errors based on 20,271 bins analyzed and full resolution (LAC)

data. For each bin, the error is defined as the difference between the estimator and the arithmetic average
(AVG) of all data in the bin expressed as a percentage of AVG. The FNC estimator is the AVG estimator of
CHL divided by the AVG estimator of K4g0. The top histogram was calculated for (MLE – AVG)/ AVG (%).
The bottom histogram was calculated for (FNC – AVG)/ AVG (%).
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Fig. 16. Histograms of CHL/K490 estimation errors based on 20,271 bins analyzed and 4 km subsampled
(GAC) data. The top histogram was calculated for (AVG4 – AVG)/ AVG (%). The bottom histogram was
calculated for (FNC4 – AVG)/ AVG (%).
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Table 4, Location and depth of SEEP II moored fluorometer and the period covered by the time series data
used in the analysis of temporal statistics.

Latitude Longitude Depth Time Series

ID Deployment [deg. min.] [deg. min.] [m] Start Finish

1 Spring 37 52.60 74 43.90 39 7 Feb 88 8 Apr 88

Summer 37 52.49 74 43.90 18 25 Jun 88 19 Ott 88

Winter 37 47.62 74 44.60 19 12 Nov 88 17 Mar 89

2 Spring 37 46.11 74 29.50 16 8 Feb 88 9 Apr 88

Winter 37 34.69 74 35.13 24 15 Nov 88 28 Jan 89

3 Spring 37 41.99 74 20.35 19 8 Feb 88 9Jun88

Summer 37 41.98 74 20.37 21 25 Jun 88 17 Ott 88

Winter 37 41.96 74 20.27 19 11 Nov 88 8 May 89

5 Spring 37 39.80 74 15.85 21 8 Feb 88 7 Jun 88

Summer 37 39.78 74 15.72 22 26 Jun 88 17 Ott 88

Winter 37 39.73 74 15.78 21 15 Nov 88 2 May 89

6 Spring 37 37.91 74 12.86 20 12 Feb 88 7 Jun 88

Summer 37 37.90 74 12.87 20 25 Jun 88 19 Ott 88
Winter 37 37.95 74 12.77 35 13 Nov 88 6May89

8 Spring 36 52.63 74 39.04 22 13 Feb 88 8 Jun 88

K4go was derived from the chlorophyll measurement by AVG(n) arithmetic average of all data from days 1
the formula to n,

Kdgo = 0.022 + 0.079 CHLO’875. (43) MLE(n) MLE estimate based on data from days 1

This is the relationship between K490 (34) and CHL13 (35). to n,

In the CZCS imagery analyzed, this relationship would MED(n) MED estimate based on data from days 1

hold for most of the data since CHL equals CHL13 in most to n, and
pixels. FNC(n) FNC estimate based on data from days 1

Weekly and monthly means of CHL and K4go were de- to n.
rived using the AVG, MLE, and MED estimators. When
sample sizes are small (e.g., n < 7), the effect of sample
size dominates the error statistics. To control for this ef-

The cumulative means began day 1 at the start of each

feet in weekly means, only weeks having 7 days, i.e., no
deployment. Since each mooring had up to three separate

missing data, were analyzed. However, because there were deployments (see Table 4), there were 1–3 sets of cumula-

fewer months, all months were analyzed, regardless of their tive means for each mooring. These were plotted against

sample size. The AVG estimator was regarded as the true n to observe how the estimators behaved as a function of

mean. Errors for the MLE and MED estimators were ex- sample size.

pressed as a percentage of the AVG estimator. In a similar manner, the behavior of the estimators

Weekly and monthly means of the function IC~ (1) as functions of area were investigated using CZCS data.
were also derived. Estimators compared with the AVG or Beginning at one or two selected locations in each CZCS

true mean were the MLE and MED estimators, and an scene (Table 1), the estimators were calculated for bins of

FNC estimator defined in two ways: increasing area L x L, with L increasing from 9 km to the

FNC(AVG) =

and

FNC(MLE) =

AVG estimator of CHL size of the image. The maximum value of L was 480 km.

AVG estimator of K4go
(44) Increases in area maybe regarded as analogous to increases

in time. To the extent that this is true, these results would

MLE estimator of CHL pertain to the estimation of temporal means.

MLE estimator of K4go”
(45).

3.2.2 Results
The FNC(MLE) estimator would be applicable if, as rec-
ommended, spatial statistics are derived according to the Histograms of log(CHL) from each mooring are shown

MLE estimator. in Fig. 17. Based on the normal (Gaussian) armearance
To investigate the behavior of the AVG, NILE, MED, of these histograms, the distribution of chlorophyll over

. .

and FNC estimators as samples sizes increase over time, time at a single location is approximately lognormal, or a
cumulative means were obtained as follows: mixture of lognormals.
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Fig. 17. Histograms of CHL from SEEP II moored fluorometer data. Data are from the shallowest fluorometer
at each mooring. All data from moorings 1, 2, 3, 5, 6, and 8 are included in these histograms.
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Histograms of relative errors in weekly and monthly
means are shown in Figs. 18–25 and summarized in Table 5.
The upper panel in each figure is the error histogram for
weekly means, and the lower panel is for monthly means.
The patterns seen in Fig. 18 for the IvILEestimator of CHL
were similar to those obtained for the MLE estimators of
the other variables. The MLE and AVG estimates agreed
within +5Y0 most of the time, with a slight tendency for
MLE to exceed AVG, as indicated by the small positive
biases (usually much less than l%) in all cases. As in the
case of the CZCS data, the K490 and ICK variables had
much smaller MLE errors than the CHL variable.

The MED estimator had relatively large negative er-
rors for all three variables. That is, the MED estimator
underestimated the arithmetic average by 40’% or more in
some cases, and monthly mean errors were about a factor
of 2 greater than weekly mean errors.

Errors that are associated with the FNC(AVG) and
FNC(MLE) estimators are shown in Figs. 24 and 25, re-
spectively, and are summarized in Table 5d. Both distri-
butions are positively skewed, with errors as high as 30%
or more. The FNC(MLE) estimator had larger errors than
the FNC(AVG) estimator.

Results for cumulative means provided important in-
sight concerning the behavior of the estimators, in partic-
ular when the MLE and AVG estimators were substantially
different. These insights will be illustrated here with re-
sults from moorings 3 and 6. Figure 26 shows cumulative
mean CHL estimates from the spring deployments of moor-
ing 3 (upper panel) and mooring 6 (lower panel). In the
case of mooring 3, MLE(n) and AVG(n) remained approx-
imately equal over the entire averaging period, whereas
MED(n) was always less than the other two and gradually
diverged as the averaging period incremed. These results
are typical of what was obtained for the majority of the
cases.

The lower panel in Fig. 26 illustrates a case where
MLE(n) and AVG(n) diverged. The two cumulative means
showed an abrupt divergence at about day 70; prior to that
day, they had been nearly equal. Inspection of the data
(Fig. 27, upper panel) revealed that there were a number
of anomalously low values beginning after day 60. The
dark squares in Fig. 27 were data that were missing from
the original records. These had been set to zero and were
ignored when calculating cumulative means. However, the
open squares lying near the horizontal axis were small posi-
tive values (e.g., 0.01, 0.02, etc. ) which may have also been
bad data. If these are eliminated from the record, then
MLE(n) and AVG(n) agree (bottom panel of Fig. 27).

This suggests that the NILE estimator can be sensi-
tive to outliers, particularly outliers that are close to zero.
When a data value approximately equal to zero is included
in the arithmetic average of n values, the effect is to re-
duce the AVG estimator by a factor of (n – 1) /n. However,
the logarithm of a number approximately equal to zero is
a large negative number, and its effect on the statistics of

the logarithm can be extreme. Including this value will re-
duce the mean of the logarithm but increase the variance,
somewhat offseting effects on the MLE estimator. In gen-
eral, however, the net effect will be to increase the MLE
estimator since the variance of the logarithm is increased
substantially by the inclusion of a large negative value,

Another case in which MLE(n) and AVG(n) diverged
was the summer deployment of mooring 3. The simu-
lated satellite data from this record are shown in the upper
panel of Fig. 28, and the cumulative means in the lower
panel. Like the previous example, there were a number
of low values in the record. However, it is not obvious
that these are bad data, and so there is no justification
for removing them to make MLE(n) and AVG(n) agree.
MLE(n) was approximately 10% higher than AVG(n) for
n > 35 days. The cumulative means of K490 and ICK
for this mooring are shown in Fig. 29. Differences be-
tween MLE(n) and AVG (n) for these variables were much
smaller than those for CHL. However, the two FNC esti-
mates were consistently higher than AVG(n) and MLE(n),
with differences approaching 30’%0by the end of the rec-
ord,

Cumulative means starting at two locations in CZCS
scene 4 are illustrated in Fig. 30 (LAC means) and Fig. 31
(GAC means). In these figures, the cumulative mean CHL
within areas of size L2 is plotted against L. In the north-
ern portion of scene 4 (off the west coast of Mexico), the
MLE and AVG cumulative means diverged at length scales
larger than 50 km. However, in the southern region of this
scene, the MLE and AVG means remained nearly equal for
areas up to 460 x 460 kmz. Results for all the CZCS scenes
are summarized in Table 6. Whenever the MLE and AVG
estimators diverged for CZCS cumulative means, the AVG
estimator was greater than the MLE estimator. This oc-
curred in the scenes that had high chlorophyll levels and/or
high variances. In contrast, when the MLE and AVG es-
timators in SEEP data diverged, the MLE estimator was
usually greater than the AVG estimator.

3.3 Discussion

From the study of CZCS and SEEP II data, it was
concluded that the AVG and MLE estimators are equiva-
lent with respect to their accuracy as estimators of means
within sampling domains. The MED and FNC estima-
tors are not considered acceptable as estimators of the
mean. The h’IED estimator systematically underestimated
the mean, and the magnitude of its error increased with
increasing intrabin variance. The FNC estimator, i.e., the
result of substituting a mean into a function to derive a
level-4 variable, also had systematic errors that increased
with increasing variance.

In the case of satellite data from the same scene (spa-
tial statistics), the MLE estimator proved to be nearly
identical to the AVG estimator when sample sizes were
large (n = 121), The same was true for the MLE4 and
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Fig. 18. Histograms of the relative error in MLE estimates of mean CHL at SEEP moorings. The top
histogram is for the weekly means (n = 213), calculated with 100% x (MLE – AVG)/ AVG. The bottom
panel is for the monthly means (n = 74), also calculated with 100% x (MLE – AVG)/ AVG.
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Fig. 19. Histograms of the relative error in MED estimates of mean CHL at SEEP moorings. The top
histogram is for the weekly means (n = 213), calculated with 100% x (MED – AVG)/ AVG. The bottom
panel is for the monthly means (n = 74), also calculated with 100% x (MED – AVG)/ AVG.
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Fig. 20. Histograms of the relative error in MLE estimates of mean K4go at SEEP moorings. The top
histogram is for the weekly means (n = 213), calculated with 100% x (MLE – AVG)/AVG. The bottom
panel is for the monthly means (n = 74), also calculated with 100% x (MLE – AVG)/ AVG.
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Fig. 22. Histograms of the relative error in MLE estimates of mean CHL/K4go at SEEP moorings. The
top histogram is for the weekly means (n = 213), calculated with 100~0 x (MLE – AVG) / AVG. The bottom
panel is for the monthly means (n = 74), also calculated with 100% x (MLE – AVG)/ AVG.
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Fig. 24. Histograms of the relative error in FNC(AVG) estimates of mean CHL/KzgO at SEEP moorings.
The top histogram is for the weekly means (n = 213), calculated with 100% x (FNC – AVG)/ AVG. The
bottom panel is for the monthly means (n = 74), also calculated with 100% x (FNC – AVG)/ AVG.
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Fig, 25. Histograms of the relative error in FNC(MLE) estimates of mean CHL/K4go at SEEP moorings.
The top histogram is for the weekly means (n = 213), calculated with 100% x (FNC – AVG)/ AVG. The
bottom panel is for the monthly means (n = 74), also calculated with 100% x (FNC – AVG)/ AVG.
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Table 5a. Summarv of relative errors for weekly means derived from SEEP mooring data: results for CHL.

Estimator Mooring Number Bias Error Range

Used Reference of Weeks [%] (rms) [%] Minimum Maximum
1 !

MLE 1 39 ~o:33 2.64 –13 4
2
3
5
6

18 0.02 0.06
53 0.18 1.28
53 0.24 1.21
37 0.47 2.27

0 0
–2 9
–2 6
–3 12

8 13 0.26 2.33 –3 7

Combined 213 0.14 1.79 –13 12
I 1

MED 1 39 –5.32 10.83 –41 o
2
3
5
6
8

18 –1.17 1.44
53 –4.01 7.26
53 –6.07 9.06
37 –7.15 11.07
13 –10.51 12.81

–3 o
–27 o
–42 o
–34 o
–22 –1

Combined 213 –5.46 9.24 –42 o

Table 5a. (cont.) Summary of relative errors for monthly means derived from SEEP mooring data: results
>r CHL. ‘ ‘

Estimator Mooring Number Bias Error Range
Used Reference of Months [%] (rms) [%] Minimum Maximum

NILE 1
2
3
5
6
8

13 –1.69 4.90
6 0.06 0.18

17 0.91 4.09
16 0.98 2.53
17 2.29 6.02
5 1.75 2.88

–1 16
0 0

–3 14
–2 8

–12 12
0 5

Combined I 74 1.37 4.18 I –12 16

MED 1
2
3
5
6
8

Combined

13 –7.59 13.75
6 –2.27 2.70

17 –10.07 15.02
16 –9.24 11.10
17 –17.55 21.92
5 –11.92 15.18

74 –10.66 15.24

–42 –1
–5 o

–37 –1
–28 –1
–39 –1
–24 –3

–42 o
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Table 5b. Summary of relative errors for weekly means derived from SEEP mooring data: results for 1<490

Estimator Mooring Number Bias Error Range
Used Reference of Weeks [%] (rms) [%] Minimum Maximum

MLE 1 39 –0.18 0,89 –4 1
2 18 –0.03 0.15 0 0
3 53 0.03 0.29 –1 1
5 53 –0.01 0.41 –1 1
6 37 –0.11 0.57 –1 1
8 13 0.06 0.70 –1 2

Combined 213 –0.04 0.54 –4 2

MED 1 39 –2.52 4.72 –17 o
2 18 –0.72 0.90 –2 o
3 53 –1.65 3.05 –15 o
5 53 –2.62 3.81 –17 o
6 37 –2.92 4.95 –18 1
8 13 –4.69 5.75 –lo o

Combined 213 –2.38 4.02 –18 1

Table 5b. (cont.) Summary of relative errors for monthly means derived from SEEP mooring data: results
for K490.

Estimator h!looring Number Bias Error
Used Reference of Months [%] (rms) [%]

MLE 1 13 0.27 0.75
2 6 –0.09 0.26
3 17 –0.14 0.70
5 16 0.20 0.47
6 17 –0.20 1.36

Range
Minimum Afaximum

o 3
0 0

–2 2
0 1

–5 2
8 5 0.15 0.56 –1 1

Combined 74 0.01 0.82 –5 3

MED 1 13 –3.94 7,19 –22 o
2 6 –1.42 1.68 –3 –1
3 17 –4.49 6.01 –15 –1
5 16 –4.06 5.06 –13 o
6 17 –5.79 7.88 –20 o
8 5 –4.98 6.43 –lo –2

Combined 74 –4.38 6.25 –22 o
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Table 5c. Summary of relative errors for weekly means derived from SEEP mooring data: results for IC~.

Estimator Mooring .Vumber Bias Error Range

Used Reference of Weeks [%] (rms] [96] Minimum Maximum

NILE 1 39 0.00 0.13 –1 (1
2 18 –0.01 0.03 0 (1
3 53 0.09 0,55 0 4
5 53 0.04 0,11 0 1
6 37 0.16 0.69 0 4
8 13 0.05 0.23 0 1

Combined 213 0.06 0.40 –1 4

MED 1 39 –0.73 1.93 –9 o
2 18 –0.08 0.10 0 0
3 53 –0.74 2.09 –11 o
5 53 –0.95 1.90 –11 o
6 37 –1.40 2.71 –12 o
8 13 –1.44 1.96 –5 o

Combined 213 –0.89 2.03 –12 o

Table 5c. (cont.) Summary of relative errors for monthly means derived from SEEP mooring data: results
for IC~.

Estimator Mooring Number Bias Error Range
Used Reference of Months [%] (rms) [%] Minimum Maximum

MLE 1 13 0.12 0.33 0 1
2 6 –0.03 0.03 0 0
3 17 0.25 0.70 0 2
5 16 0.11 0.29 0 1
6 17 0.95 1.51 0 3
8 5 0.40 0.86 0 2

Combined 74 0.35 0.84 0 3

MED 1 13 –1.15 2.66 –9 o
2 6 –0.17 0.20 0 0
3 17 –1.91 3.89 –11 o
5 16 –1,40 1.91 –6 o
6 17 –5.09 7.13 –14 o
8 5 –2.26 3.12 –6 –1

I Combined I 74 –2.28 4.17 I –14 o
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Table 5d. Summary of relative errors for weekly means derived from SEEP mooring data: results for FNC
estimators of ICK.

Estimator Mooring Number Bias Error Range
Used Reference of Weeks [%] (rms) [%] Minimum Maximum

FNC(AVG) 1 39 2.90 7.25 0 30
2 18 0.40 0.52 0 1
3 53 1.90 3.63 0 13
5 53 3.01 5.16 0 28
6 37 3.53 5.71 0 19
8 13 5.32 6.62 0 11

Combined 213 2.72 5.24 0 30

FNC(MLE) 1 39 2.65 5.85 0 24
2 18 0.45 0.56 0 1
3 53 2.07 4.32 0 18
5 53 3.29 6.06 0 35
6 37 4.16 7.28 0 28
8 13 5.53 7.23 1 17

Combined 213 2.92 5.66 0 35

Table 5d. (cent. ) Summary of relative errors for monthly means derived from SEEP moorin~ data results
for FNC estlmato& of ICK.

Estimator Mooring A’umber Bias Error Range
Used Reference of Months [%] (rms) [%] Minimum Maximum

FNC(AVG) 1 13 3.62 7.23 0 23
2 6 0.70 0.90 0 1
3 17 5.09 8.59 0 25
5 16 4.46 5.43 1 14
6 17 9.76 12.62 1 26
8 5 5.96 7.85 1 13

Combined 74 5.47 8.45 0 26

FNC(MLE) 1 13 5.28 12,14 0 40
2 6 0.86 1.02 0 2
3 17 6.28 11.26 0 31
5 16 5.32 7.42 0 23
6 17 12.52 16.30 0 29
8 5 7.72 10.60 2 18

Combined 74 6.99 11.46 0 40
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Fig. 26. Cumulative mean CHL estimates for data from the spring 1988 deployment of SEEP moorings 3
and 6.
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Fig. 27. Results of correcting for bad data in the time series at mooring 6 (Fig. 26). In the upper panel,
which displays a record of the 10 Al+lCHL measurements versus time at mooring 6, the dark squares are data
missing from the original record. The open squares near zero are probably bad data. Cumulative means
derived after removing these low values are shown in bottom panel.
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Fig. 28. Simulated satellite CHL time series and cumulative mean CHL for summer deployment of mooring
3 (Jun.–Ott. 1988). The upper panel displays 10 Ah~ CHL measurements, and the lower panel displays
cumulative means for the data shown in the upper panel.
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Fig. 29. Cumulative means of K490 (upper panel) and CHL/K4go (lower panel) for summer deployment of
mooring 3 (Jun.–Ott. 1988).
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Fig. 30. Cumulative mean CHL in CZCS scene 4 based on LAC data within boxes of increasing area (LxL)
plotted against length, L. Results for boxes in the northern nearshore region (upper panel) and for the
southern offshore region (lower panel).
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Fig. 31. Cumulative mean CHL in CZCS scene 4, in this case based on GAC data, within boxes of increasing
area (Lx L) plotted against length, L. Results for boxes in the northern nearshore region (upper panel) and
for the southern offshore region (lower panel).
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Table 6. Comparison of cumulative means derived from CZCS data for largest areas (Lx L). The length (L)
,J.. ””” .1 . . . ... ”. U. L... -

CZCS Length ~“umber Estimator % Error
Scene [km] of Pixels AVG AVG4 AVG AVG4

1 479 336,494 0.059 0.059 0.0 1.0

2 463 314,643 0.061 0.061 0.0 0.7

3 441 286,176 0.166 0.163 0.0 –1.5

4-N 222 72,381 0.297 0.302 0.0 1.4

4-s 460 310,518 0.143 0.140 0.0 –2.4
5.~ 480 339,127 0.298 0.297 0.0 –0.4

5-s 291 124,475 0.384 0.382 0.0 –0.4
6 224 73,390 0.629 0.634 0.0 0.1

7-N 361 191,092 0.919 0.933 0.0 1.5

7-s 238 82,714 1.052 1.072 0.0 1.9

Czcs Length ATumber Estirnator % Error
Scene [km] of Pixels MLE MLE4 NILE MLE4

1 479 336,494 0.058 0.059 –0.2 1.0
2 463 314,643 0.061 0.061 –0.2 0.5
3 441 286,176 0.166 0.164 0.4 –1.0
4-X 222 72,381 0.276 0.276 –7,1 –7.3
4-s 460 310,518 0.144 0.140 0.3 –2.2
5-N 480 339,127 0.297 0.297 –0.5 –0.4
5-s 291 124,475 0.386 0.385 0.5 0.2
6 224 73,390 0.531 0.537 –15.5 –14.7
7-N 361 191,092 0.883 0.908 –3.9 –1.2
7-s 238 82,714 0.973 0.992 –7.4 –5.7

Czcs Length iNumber Estimator % Error
Scene [km] of Pixels MED MED4 illED MED4

1 479 336,494 0.057 0.058 –2.05 –0.85
2 463 314,643 0.059 0.059 –3.!33 –3.28
3 441 286,176 0.157 0.155 –5.01 –6.46
4-N 222 72,381 0.229 0.224 –22.97 –24.71
4-s 460 310,518 0.136 0.132 –5.31 –7.75
5-N 480 339,127 0.287 0.287 –3.99 –3.79
5-s 291 124,475 0.335 0.335 –12.76 –12.87
6 224 73,390 0.192 0.194 –69.47 –69.17
7-N 361 191,092 0.488 0.490 –46.86 –46.72
7-s 238 82,714 0.582 0.583 –44,70 –44.56

AVG4 estimators which were based on much smaller sam- the SEEP II data, the MLE and AVG estimators again
pies (n < 9). In both cases, differences were less than
+2Y0 (Fig. 8 and Fig. 10). These results differ somewhat
from those of Baker and Gibson (1987) who found that
the arithmetic average underestimated the true mean of
a lognormal variate, and that the maximum likelihood es-
timator was a better estimator of the mean when sam-
ple sizes were small. In the small samples that resulted
from using GAC data, both the MLE4 and AVG4 estima-
tors had a slight tendency to underestimate the true mean
(AVG), as indicated by their small negative biases (Fig. 9,
and Figs. 11–14), but no significant difference was found
between the two estimators.

In the case of weekly and monthly means derived from

proved to be nearly identical. The AVG estimator ‘was
nominally the true mean, but since it was based on small
samples (7 days for weekly means and 31 or fewer days
for monthly means), it is not necessarily better than other
estimators of the mean.

Although the NILE and AVG estimators are equivalent
with respect to accuracy, it was recommended that the
NILE estimator be used because of its flexibility in allowing
the estimation of level-4 variables from saved statistics of
level -3 variables. In the remainder of this discussion, two
questions are raised regarding the equivalence of the NILE
and AV”G estimators, and the answers discussed.

The first question is: How important is the assumption
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that the variabJe is ~ognormally distributed ? If the variable
being sampled is Iognormally distributed, then the MLE
estimator (5) is the maximum likelihood estimator of the
mean, and the estimators for the standard deviation (23),
median (24), and mode (25) are also maximum likelihood
estimators of these parameters. But what if the underlying
distribution is not lognormally distributed? How robust
will the estimator be if the lognormal assumption is not
valid?

The empirical evidence based on CZCS data and the
SEEP 11 time series data supports the use of the MLE
estimator, These data sets taken as a whole, i.e., a whole
CZCS scene or a 16-month record from a single moored
fluorometer, were approximately lognormal or mixtures of
lognormal distributions. This was demonstrated for both
satellite and in situ CHL distributions (Figs, 4 and 17),
and observed for the other variables, but not shown, It
is not surprising, therefore, that small subsets drawn from
the whole data set behave as random samples drawn from
a lognormal distribution.

However, the binned data were not random samples.
Instead, they consisted of measurements made close to-
gether in space or time, and thus, they were correlated.
To the extent that the binned data are positively corre-
lated, the intrabin variance will be less than the variance
of a random sample of the same size drawn from the whole
data set.

It is possible to show that the MLE estimator will be a
good approximation to the mean of any distribution with
S2 <0.5, where S2 is the variance of the natural logarithm
of the variable. This result is derived from the series ex-
pansion for the exponential function

X2
ex =l+Z+Z+

Let X be any random variable
unknown. Define x = in(X), and
mean and variance of x. Then

x’
~ + . . . (46)

whose distribution is
let m and S2 be the

X = e’ = eme(x–m), (47)

and the expected value of X is

E[X] = ern E[l + (x –m) +
(x -m)’

2!

+
(x-m)’ + ,,

1
(48)

3! “

[
=em El+~+ ~+... 1

where mi denotes the ith central moment of x, defined by

mi E E[(x –TTL)i]. (49)

It is also noted that ml = 0, and m2 = s’.

If the variance is less than or equal to 0.5, then the
terms involving higher order central moments will be a
rapidly decreasing series. In fact, the series in brackets in
(48) can be approximated by its first two terms

[1EIX]=em l+{
(50)

The term on the right is the NILE estimator of the mean.
Thus, there are two situations when the MLE estimator is
valid: 1) when the underlying distribution is lognormal, or
2) when the variance of the natural logarithm of the vari-
able is less than or equal to 0.5 (or the standard deviation
of the base-10 logarithm is less than or equal to 0.3).

Figure 32 is a plot of the average variance of the loga-
rithm of CHL within bins of size L x L plotted as a function
of L for the CZCS scenes 1–5. It is noted that the variance
within 9 x 9 km2 bins was less than 0.5 for all five scenes,
and the variance remained less than 0.5 as L increased up
to the maximum length of 480 km. In scene 4, variances
exceeded 0.5 at L greater than about 100 km.

The second question is: Under what circumstances do

the MLE and AVG estimators disagree, and is it possible
to predict the nature and magnitude of their differences?

In the study of cumulative means (Figs. 26-31), there
were examples shown where the MLE and AVG estima-
tors began to diverge as the size of the sampling domain
increased. In one example (Figs. 26–27), the divergence
could be associated with bad data, and the conclusion
was that the MLE estimator was sensitive to anomalously
low values. The possibility that similar errors might affect
level -3 SeaWiFS data should be considered.

The discussion related to the first question suggests
another circumstance in which the NILE and AVG estima-
tors might disagree: the situation where the variance of
the logarithm is large and the variable is not lognormally
distributed. A situation such as this would occur when the
sampling domain contains a mixture of Iognormal distri-
butions. In the case of spatial statistics, this would occur
in frontal areas between sharply cent rasting water types,
e.g., high-chlorophyll waters mixhg with low-chlorophyll
waters. It is likely to be more common in sampling do-
mains covering longer time periods.

Most of the CZCS scenes can be modeled as mixtures
of Iognormal distributions. Table 7 lists the means and
variances of lognormal distributions that were fit to modes
of the histograms shown in Fig. 4. Values of CHL derived
according to the CHL23 formula were excluded from the
fits. hTote that within all modes, the variance was less
than 0.5. However, when two or more modes are mixed,
the variance of the mixture distribution will be increased
due to differences between modes.

It is possible to quantify errors associated with the
MLE estimator in the case of mixture distributions. An
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Table 7. Results of fitting normal distributions to the modes of the histograms of log(CHL) in the CZCS scenes
analyzed.

Scene Mode 1 Mode 2 Mode 3

Number m s’ m s’ m s’

1 –2.82 0.04
2 –2.98 0.02 –2.68 0.06
3 –2,41 0.04 –1.70 0.04
4 –2.35 0.06 –1.81 0.06 –1.06 0.16
5 –2.38 0.07 –1.25 0.08 –0.63 0.04
6 –2.65 0.09 –1.58 0.45 0.22 0.09
7 –1.78 0.15 –1.00 0.18 –0.07 0.15

1.0 –

0.8 --

0.6 - -
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0.4 --

0.2 - -

0.0

Average variance of ln(CHL)

within bins of size L x L
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1 10
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100 1000

Fig. 32. Average variance of ln(CHL) within areas of size Lx L, as a function of L for CZCS scenes 1–5.
Results for scenes 6 and 7 were not obtained because of the discontinuity in the CHL distributions in these
scenes, which is an artifact of the bifurcated CZCS algorithm.

example is the case where there are two modes mixing in
a sampling domain. Let each mode be a lognormal distri-
bution with parameters m, and s? where i = 1 or 2. If P
is the proportion of the distribution that is mode 1, then
the mean of the distribution is

and the MLE estimator is

[( j) ‘(1-p)(m2+$)
Xn,le= exp P ml + 2

I+P(l –P)(ml ;m’)’ (52)

Relative errors for pair-wise mixtures of the modes list-
ed in Table 7 are plotted against P in Fig. 33, where ml <

m2, and P is the proportion of the lower-chlorophyll mode.
There are 14 curves shown in this figure, but only 5 have
errors that are significantly different from zero. The largest
errors (differences between MLE and AVG) occurred when
modes from scene 6 were mixed, and especially when mode
1 (mean CHL = 0.07 mg m-3) was mixed with mode 3
(mean CHL = 1.3 mg m-3). Of all the cases considered
here, the highest positive error (40%) occurred when 30%
of mode 1 was mixed with 70’% of mode 3 in scene 6, and
the highest negative error ( –30%) occurred when 90% of
mode 1 was mixed with 10~0 of mode 3.

The patterns shown here indicate that the MLE can ei-
ther under or over estimate the true mean when there are
mixtures of lognormal distributions within the sampling
domain, The MLE estimator tended to exceed AVG for
low values of P, whereas AVG exceeded L4LE for high val-
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Fig. 33. Relative errors (%) in the MLE estimator resulting from mixtures of two Iognormal distributions,
plotted against P, the proportion of the mixture derived from the lower-chlorophyll mode. The 14 cases
depicted in this figure represent all pair-wise combinations of modes within the seven CZCS scenes (see Table
7).

ues of P. The former was the situation with the SEEP data
where there were a few low values in the data record that
caused MLE(n) > AVG(n) to diverge. Likewise, the oppo-
site seemed to be the case with CZCS data, where there
were relatively few high values, e.g., values derived using
the CHL23 algorithm, that brought about divergences be-
tween MLE(L) < AVG(L).

The situations depicted in Fig. 33 may not be inclusive
of all possible mixtures that would occur in nature, but
they do span the range in the seven scenes analyzed. It is
clear that patterns are complex, and yet, reassuring that
with very few exceptions, errors were within +1OYC.

3.4 Conclusions

The MLE estimator is a reasonably accurate estima-
tor for the mean of CHL and other satellite-derived vari-
ables within sampling domains. It behaves as well as the
arithmetic average, and yet it has an advantage over the
AVG estimator in that it can be used to estimate means of
a large class of level-4 variables derived from the level-3
data. There were two situations that assure agreement be-
tween the AVG and MLE estimators: 1) if the variable is
lognormally distributed within the sampling domain, or 2)
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if its variance is low. If the variance of its natural loga-
rithm is less than 0.5, then AVG and NILE should agree
regardless of the underlying distribution.

Two circumstances were identified where the MLE and
AVG estimators are expected to disagree. One is the case
where there are anomalously low values in the data (pre-
sumably bad data), and the other is where the sampling do-
main contains a mixture of lognormal distributions. Based
on mixtures found in seven CZCS scenes spanning a wide
variety of ocean environments, relative errors would typi-
cally be within +10%.
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Appendix A

Equal-area Gridding Scheme for SeaWiFS Binned Data

Introduction: This appendixt describes the equal-area gridding
scheme developed by the RSMAS Remote Sensing Group for
binned ocean fields. The same approach has been adopted for
AVHRR Ocean Pathfinder SST products and is proposed for
MODIS. The gridding scheme is based on that adopted by the
International Satellite Cloud Climatology Project (ISSCP).

This document does not motivate the need for an equal area
grid for SeaWiFS or other oceanographic products. Such moti-
vat ion can be found in a paper by W. Rossow and L. Gardner
(1984). Furthermore, this document describes only the design
of the proposed equal-area grid, and does not discuss other re-
lated topics such as rules for spatially or temporally combining
observations into the equal-area bins.

Overview: The gridding scheme proposed consists of rec-
tangular bins or tiles, arranged in zonal rows, A compromise
between data processing and storage capabilities, on one hand,
and the potential geophysical applications of satellite data, on
the other hand, suggest that a suitable minimum bin size would
be approximately 8–10 km on a side.

In the scheme proposed here, the tiles are approximately
9.28 km on a side. This size (9.28 km) was chosen because (a)
it has approximately the desired minimum resolution, and (b)
it results in 2,160 zonal rows of tiles from pole to pole, i.e., 1,080
in each hemisphere. This particular number of rows (2,160) has
some advantages which will be discussed in more detail below.
Because the total number of rows is even, the bins will never
straddle the equator, i.e., there will be an equal number of rows
above and below the equator. This avoids possible situations
where the Coriolis factor is zero, a characteristic that numerical
modellers expect from any gridding scheme adopted.

The total number of approximately 9 km bins is 5,940,422,
The bins or tiles are arranged in a series of zonal rows; the num-
ber of tiles per row varies. The rows immediately above and
below the equator have 4,320 tiles. This number is derived by
dividing the perimeter of the Earth at the equator by the stan-
dard tile size, i.e., 2nRJ9.28, where R. is the equatorial radius
of the Earth (Re = 6378.145 km). The number of tiles per row
decreases approximately as a cosine function as the rows get
closer to each pole (rigorously, there should be an adjustment
for ellipticity of the Earth, as the equatorial radius decreases
progressively to the smaller polar radius; this adjustment is
not applied in the current implementation). At the poles, the
number of tiles is always three. This special situation will be
discussed in detail below. The number of tiles per row as a
function of latitude is shown on Fig. .4-1.

The number of bins in each zonal row is always an integer.
To ensure an integer number of bins, the width of each bin (the
size of a bin along a parallel, or x-length) must vary slightly

t This text is courtesy of the Remote Sensing Group, Roserl-
stiel School of Marine and Atmospheric Science, University
of Miami.

from row to row. The bins, however, are always 9.28 km long
along the meridians. That is, only one of the bin dimensions
changes. The size of the bins at each zonal row is established in
the following manner. First, a preliminary value for the number
of tiles (NP) at a given latitude (L) is computed as

N, = 27rr/x,

where X is the x-size of a bin at the equator (9.28 km) and ~
is the radius of the circle produced by slicing the Earth with a
plane parallel to the equator at latitude L. The radius r can be
calculated as

‘r = R. cos(L),

where R, is the equatorial radius of the Earth. If the fractional
part of NP is greater than or equal to 0.5, then NP is rounded up
to the nearest integer, i.e., the final number of tiles will be the
integer portion of NP plus one; otherwise, NP is rounded down,
The final number of tiles is the integer portion of NP. Once
the final integer number of tiles along a row is calculated, the
x-size of the tiles must be adjusted. This is done by dividing
the perimeter of the row (27rr-) by the integer number of tiles.
The result is the x-length (width) of a tile for a given row.

Because the x-length of the tiles is adjusted to ensure an in-
teger number at each row, the equal area characteristics of this

binning scheme are not rigorously preserved. However, varia-
tions in tile size are negligible throughout most of the globe
and only become relevant at very high latitudes, where there
are fewer tiles per row, and any adjust ments are more notice-
able. As the number of tiles increases with distance from the
poles, the difference between tile sizes rapidly becomes practi-
cally unnoticeable. To provide an idea of the magnitude of the
fluctuations in tile size, the worst possible case occurs when half

a tile remains uncovered after filling a zonal row with an inte-
ger number of tiles. Once a row has 100 bins (approximately 16
rows, or 148 km from the poles), the worst possible difference

between the actual tile x-length and the standard x-length is of
the order of 0.5~o, i.e., half a tile’s length redistributed among
about 100 tiles. For a tile of about 9 km a side, this represents
a difference in the x-length of about 45 m. Through a similar
calculation, a row with 50 bins (about 80 km away from the
poles) has a 1% variation with respect to the standard bin size,

The gridding scheme described here has an extremely useful
feature. The number of 9.28 km tiles in each hemisphere (1 ,080)
is divisible by many numbers (e. g., 2,3,4,5,6); and therefore, it is
extremely easy to generate an integer number of rows at many

useful spatial resolutions. For instance, 12 rows of approxi-
mately 9.28 km tiles can be combined to generate zonal bands
of 1° (10 of latitude is equal to 111.12 km; 12 bins would form
a band 111.20 km wide). Another example is the use of 30 rows
to generate zonal bands of 2.5°, a typicaf output resolution of
atmospheric circulation models,

The poles: Both the North and South Poles are speciaf cases
in the gridding scheme presented here, The pole areas are al-
ways covered by three tiles shaped like pie sectors. While the
meridional size of the polar bins (the y-length) will be the usual
9.28 km, the length of the bins along the arc of the sectors will
be slightly larger. R“eglecting sphericity, the area encompassed
by the last row of tiles is ~X2, where X = 9.28 km. If the
area of the circle is expressed as a rectangle of height X, the
remaining dimension is TX. If the perimeter is divided by three

(to yield three tiles), each tile will have dimensions X by 7rX/3

(approximately 1.05X). Thus, the bases of the triangular polar
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tiles are about 5% larger than the x-length of the equatorial
tiles.

Binning software: Several routines have been developed to

perform the principal transformations required for binning and
mapping data, such as converting latitudes and longitudes into
bin numbers. Other routines perform the inverse transforma-
tion, i.e., given a bin number they return a latitude and longi-

tude corresponding to the centroid of that bin. These routines
use a common initialization routine that must be executed prior
to calling the conversion routines.

Two numbering schemes are used internally, corresponding
to one- and two-dimensional (1-D and 2-D, respectively) ac-
cessing schemes. The 1-D scheme numbers all bins consecu-
tively, beginning with 1 at the southernmost row and working

eastward from – 180° around each circle of latitude. The 2-D
scheme uses a row number, from 1 to 2,160, and a number to
indicate its location within the row, beginning at 1 for each
row.

Variable Dictionary: The variables and their definitions for the
pseudocode are presented below.

NUMROWS

BASEBIN

NUMBIN

LATBIN

TOTBINS

ROW

COL

IDX

LAT

LON

The (integer) number of rows in the grid (equal to
2,160 for SeaWiFS).

An integer*4 array of size NUMROWSthat contains

the index number of the first bin in each row.

An integer array of size NUMROWScontaining the
total number of possible bins in each row.

A real*4 array of size NUMROWSthat contains the
center latitudes (decimal degrees) of the corre-
sponding BASEBINS.

The (integer*4) number of possible bins in the grid
(equal to 5,940,422 for NUMROWS=2,160).

The row number (integer); range is 1 to NUMROWS.

The bin number (integer); the range is from 1 to
NUMBIN(ROW).

The bin index number (integer* 4); range is 1 to
TOTBINS.

The input latitude (real*4) for obtaining the cor-
responding bin’s ROWand COL, or IDX; or the output
latitude for a bin specified by ROWand COL,or IDX.
(The range for LAT is -90 to +90 decimal degrees.)

The input longitude (real*4) for obtaining the
corresponding bin’s ROW and COL, or IDX; or the
output longitude for a bin specified by ROW and
COL, or IDX. (The range for LAT is – 180 to 180
decimal degrees.)

Pseudocode: The following pseudocode demonstrates the gen-
eration of the grid and the calculations for determining the
center latitude and longitude for a given bin and for identifying
a bin given a latitude and a longitude. The algorithms are illus-
trative in purpose and do not necessarily represent an optimal
implementation. They are based on software developed by J.
Brown, University of Miami.

#
# Set up NUMBIN
#
BASEBIN(l)= 1
do from ROW = 1
LATBIN(ROW)=

and BASEBINarrays

to NUMROWS
((ROW-O.5)*180.O/NUMROWS)- 90.0

NUMBIN(ROW)=
int((2*NUMROWS*cos_dbl_deg(LATBIN(ROW)))+0.5)

if ROW>lthenBASEBIN(ROW)= BASEBIN(ROW-1)+ NUMBIN(ROW-1).
end do
TOTBINS= BASEBIN(NUMROWS)+ NUMBIN(NUMROUS)- 1
#
# Identifybin from lat (-90to +90) and lon (-180to 180)
#
ROW =
ROW =
LON =
COL =
COL =
IDX =
#
# Get
#
ROW =
IDX =

integer((90.O+LAT)*(NUMROWS/180.0)) + 1
minimum(ROW,NUMROWS)
LON + 180.0
integer(LON*NUMBIN(ROW)/360.O) + 1
minimum(COL,NUMBIN(ROW))
BASEBIN(ROW)+ COL - i

bin centerlat/lonfor given bin index

NUMROWS
maximum(IDX,l)

do while IDX<BASEBIN(ROW)
ROW = ROW - 1

end do
LAT = LATBIN(ROW)
LON = 360.O*(IDX-BASEBIN(ROW)+O.5)/NUMBIN(ROW)
LON = LON - 180.0
#
# Get bin centerlat/lonfor given bin row/column
#
LAT = LATBIN(ROW)
LON = 360.O*(COL-O.5)/NUMBIN(ROW)
LON = LON - 180.0

Appendix B

Scheme for Weighting Data

This appendix describes the scheme used to weight data from
different times (orbits) in producing temporal means and vari-
ances. The level -2 SeaWiFS data will be log-transformed before
the following schemes are applied. Note that the lower case let-
ter x is used to denote the naturaf logarithm of the variable
X, that is, x = in(X). The MLE estimator for the mean of

a lognormal variable X requires that the maximum likelihood
estimators of the mean and variance of x be obtained first.

The Textbook Case for Unweighed Data: If the data within a
sampling domain, xi, i = 1, . . . . n, are independent and identi-
cally dis~ributed
and variance U2,

normal random variables with a true mean p
then the sample mean

(Bl)

i=]

is the maximum likelihood estimator of p. The sample variance
is defined as

S2 = :i(%-=)2
i=l

and computed as

(B2)

(B3)

isthe maximum likelihood estimator of the variance, o’. Not”e
that s’ is not the more common unbiased estimator of the vari-
ance which is obtained by multiplying (B3) by n/(n – 1). For
the specific case of SeaWiFS spatial statistics, i.e., for data
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within a bin obtained during the same orbital pass, equations
(Bl) and (B3) will be used to compute the mean and variance
of x = in(X), for each variable X.

Appendix C

Algorithms for Binning and Interpreting
SeaWiFS Binned Data

The General Case for Weighted Data: Let w, be the weight
given to the ith observation (data point). The weighted mean
and variance analogous to (B I ) and (B3) are

Three algorithms are described and their pseudocode presented
in this appendix: the Space Binner algorithm bins data from a
single scene; the Time Binner algorithm bins output from the
Space Binner (or from the Time Binner) to accumulate sums
over binning periods; and the Bin Data Interpreter is used to
interpret binned data products to derive the mean, standard de-
viation, median and mode of level-3 data. Only GAC data will
be binned operationally to generate archived level-3 products.

(B4)

i=l

S2 = +5W’X:-‘2 (B5)

,=1
where W is the sum of the weights

SpatialBinning Algorithm: The spatial binning algorithm is

applied to the level-2 GAC scenes. In general, there will be
one set of spatial statistics created for each scene. The only
exception will be when an orbit crosses 180° longitude, in which
case there will be two sets of spatial statistics corresponding to
different days.

w’ = ~w:,
i=l

(B6)

Let Xji be an acceptable observation of the variable Xj in pixel
i, and let LON(Z) and LAT(z)be the longitude and latitude at the
center of pixel i. (A pixel will be considered to have accept-
able level -2 data if it passes screens for sun glint, clouds and
other masks, in which case all of the variables will be considered
acceptable, ) From these coordinates, the bin index number b
will be determined according to known relationships (see Ap-
pendix A).

The Specific Case for Weighted Data: How this applies to the
weighting of spatial statistics as they are binned over time are
considered here. In general, there will be N sets of spatial
statistics, each corresponding to a time ti, i = 1, . . . . N, and each
set of spatial statistics will be based on ni observations from
the same orbital pass. To be obtained is a weighted mean and
variance of the data over observation xii where j refers to the
jth observation at time ti and z = 1,. .,N, and j = l,. ... ni.
(Recall that xij = ln(Xij).

Then for each variable j, the natural Iogarithm LOGX = ln(Xji)
is obtained, and the following sums incrementedOne approach would be to compute a mean, Y,, and variance,

s;, for each set of spatial statistics, and then simply average

the means and variances over all times, ti = 1, . . . . N. If this
approach is used, the weights applied to each observation would

SUMX(b,j) = SUMX(b,.j) + LOGX (cl)

and

SUMXX(b,j) = SUMXX(b,j) + LOGX X LOGX ((72)
be ,1

Wtl = —

n,
(B7)

In addition, the number of pixels contributing to the sums in
bin b is incrementedIt was decided that this gave too much weight to data sets

having few observations, The alternative is to weight all data
equally, but this gives too much weight to the data sets with
numerous observations. The compromise was to use

N(b) = N(b) + 1, (C3)

and a binary-valued variable is set to 1 to indicate bin b contains
data

NSEG(b) = 1. (C4)‘“ = h’ (B8)

This is equivalent to weighting Zi and s? by @. After processing all valid data from this scene, the total weight
for each bin is computed

The weighted mean and variance are

W(b) = m, (C5)

(B9) and the variable sums are weighted as per (B9) and (B1O)

Suivlx(b,j)=
SUMX(b,j)

W(b)
(C6)(B1O)

and
where the sum of the weights is

~ n, N SUMXX(b,j) =
SUMXX(b,j)

W(b)
(C7)

Finally, a 16-bit number TT(b) is defined for each bin. This
number will be used in subsequent stages of temporal binning
to indicate the temporal distribution of the data. In the spatial

Equations (B9) and (B 10) will be used to obtain the temporal
stat istics of !n( X) in each sampling domain.
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binning algorithm, all bits in TT(b) will be O except the lowest
bit which will be set to 1 if there are data in bin b.

The output from the spatial binning algorithm consists of the

spatial statistics for each bin: b, N(b), NSEG(b), W(b) ~TT(b) ~
and a pair of weighted sums, SUlvlX(b,j) and SUklXX(b,j), for

each variable j.

Space 13inner Code: This program takes one level-2 scene as
input and bins it into one (or two, if the level-2 scene crosses
180° longitude) level-3 binned data product w output. This
is called spatial binning since the bins are of lower resolution
and the level -2 product is considered to represent a snapshot,
i.e., no time averaging occurs, of the Earth’s surface. Products
generated by this program are not archived but are used as
input to the time binner.

Variable and Constant Dictionary: The variables and their de f-
init ions for the pseudocode are presented below.

MAXBINS

NVARS

NPIXELS

NSCANS

PXLAT

PXLON

OBS

SUMX

SUMXX

N

NSEG

Constants

The maximum number of bins (5,940,422).

The number of derived level-3 geophysical vari-
ables whose observational values are stored in the
associated SUMXand SrJMXXpairs.

Level -2 Variables

The number of pixels in a scan line of the input
level-2 product.

The number of scan lines in the input level-2 prod-

uct

A real*4 1-D array of size NPIXELS; represents the
latitude for a given pixel I of a given scan line L.

A real*4 1-D array of size NPIXELS; represents the
longitude for a given pixel I of a given scan line L.

A real*4 2-D array of size NPIXELS x NVARS; rep-
resents the derived level -2 values that are to be
binned into the level-3 product for a given pixel I
of a given scan line L.

Output Variables

A real*4 2-D array of size MAXBINSxNVARS;rep
resents the sum of the natural logarithm of the
level-3 geophysical variable’s values divided by the
square root of the number of those values for a
given bin IDX;saved in the output product if, and
only if, N(IDx)is greater than zero.

A real*4 2-D array of size MAXBINSx NVARS; repre-
sents the sum of squares of the natural logarithm
of the level-3 geophysical variable’s values divided
by the square root of the number of those values
for a given bin IDX; saved in the output product if,
and only if, N(IDX) is greaterthan zero.

An integer*2 1-D array of size MAXBINS; repre-
sents the number of values summed into SUMXand
SUMXXfor all variables (Js) and for a given bin IDX;
saved in the output product if, and only if, N(IDX)
is greater than zero.

An integer*2 1-D array of size MAXBINS; repre-
sents the number of level-2 scenes which contribu
ted to SUMXand SUMXXfor all Js for a given bin IDX;

w

TT

IDX

Note:

I

J

L

XLOG

saved in the output product if, and only if, N(IIrx)
is greater than zero. For this program, since only
one scene is input, all saved values of NSEG will be
1.

A real*4 1-D array of size MAXBINS; represents the
weight factor for all Js for a given bin IDX; calcu-
lated as the square root of N(IDX); saved in the
output product if, and only if, N(IDX)isgreater
than zero.

An integer*2 1-D array of size MAXBINS; the bit
values of TT represent the time trend of the values
summed into SUMXand SUMXXfor all Js for a given
bin IDX; saved in the output product if, and only
if, N( IDX) is greater than zero. For this program,
since only one scene is input, all saved values of TT
will have the lowest bit only set to 1.

An integer*4 word representing the index number
of each bin with a value ranging from 1 to MAXBINS;
saved in the output product if, and only if, N(IDX)
is greater than O.

For each N(IDX) > 0, 8 x NVARS+14 bytes of infor-
mation will be output.

Other Variables

Counter index of pixels on a scan line. Range is
from 1 to NPIXELS.

Counter index of geophysical variables to be binned.
Range is from 1 to NVARS.

Counter index of scan lines. Range is from 1 to
NSGANS.

Natural logarithm (real*4) of OBS for a given I
and J.

#
# Initialize
#
do from IDX=Ito MAXBINS

do from J=l to NVARS
SUMX(IDX,J) = 0.0
SUMXX(IDX,J) = 0.0

end do
N(IDX)= O
NSEG(IDX)= O
TT(IDX)= O

end do
read from level-2scene:NPIXELS,NSCANS
#
# Inputlevel-2sceneand accumulatestats for each bin
#
#
do from L=l to NSCANS

read arraysPXLAT,PXLON,OBS for scan line L
do from 1=1 to NPIXELS

if sampleI passesscreenflags then
IDX = get-bin_index(PXLAT(I),PXLDN(I))
do from J=l to NVARS

XLOG = natural_log(OBS(I,J))
SUMX(IDX,J) = suMx(IDX,J) + XLOG
SUMXX(IDX,J) = SUMXX(IDX,J) + XLOG*XLOG

end do
N(IDX)= N(IDX)+ i
NSEG(IDX)= 1

end if
end do

end do
#

66



J.W. Campbell, J.N!. Blaisdell, and h4. Darzi

# Divide sums by
#
do from IDX=lto

if N(IDX) > 0
set lowest

weight and outputspacebinnedproduct

MAXBINS MAXBINS
then
bit of TT(IDX)

NVARS

W(IDX) = square. root(N(IDX))
do from J=l to NVARS

SUMX(IDX,J) = SUMX(IDX,J)/W(IDX)
SUMXX(IDX,J) = SUMXX(IDX,J)/W(IDX)

end do
write to spacebinned level-3product: NBINS

IDX, N(IDX), NSEG(IDX), W(IDX), TT(IDX)
SUMX(IDX,J), SUMXX(IDX,J), fOr J=l tO NVARS

end write
SUMX_INPUT

end if
end do

Temporal Binning Algorithm: The temporal binning algorithm SUMXX_INPUT
combines the appropriate spatial statistics within each sampling
domain. The sampling domain for a particular bin will be either
a day, week, month, or year.

For each set of spatial statistics there is an associated time
t. The output from the spatial algorithm at time t will be the
irmut for the tem~oral binning akzorithm. Let this input be

the pairs of weighted sums, SUhIx(b,j)I
each variable Xj.

If N(b)t >0, then the temporal sums

SUMX(b,j) = SUMX(b,j) +

and

in~exed by the time t: N(b)t, ‘NSEG(b)t, W(b)~, TT(b)t, and
and SUMXX(b,j)t, for

suMx(fr,j)t (C8)

SUMXX(b,j) = SUMXX(b,j) + SUMXX(kj)t (c9)

are incremented for each variable j. In addition, the number of
pixels contributing to the sums is counted

N(b) = N(b) + N(b), (Clo)

and the number of spatial data sets (orbits) contributing to the
sums

NSEG(b) = NSEG(b) + NSEG(b),. (Cll)

The sum of weights is computed

W(b) = W(b) + W(b),. ((712)

and the appropriate bit of the time distribution variable TT(b)
is set to 1 to reflect that data were present at time t in bin b.

Output from the temporal binning algorithm consists of the
level-3 data for each bin: b, N(b), NSEG(b), W(b), TT(b), and
a pair of weighted sums, SUMX(b,j) and SUMXX(b,j), for each
variable j. Note that the output from the temporal binning
algorithm is in the same form as its input. In fact, daily binned
products can serve as input to the temporal binning algorithm
to produce weekly, monthly, or longer-term products.

Time Binner Code: This program takes as input level-3 binned
segment products produced by the space binner and combines
them into a binned product representing one day or takes binned
products produced by the time binner (this program) and com-
bines them into longer-term binned products. This process is
called tempora~ binning since it combines data over ELcertain
time period while not changing their spatial resolution.

VariabIe and Constant Dictionary: The variables and their def-
initions for the pseudocode are presented below.

N-INPUT

NSEG-INPUT

W-INPUT

TT-INPUT

IDX

SUMX

SUMXX

N

w

TT

Constants

The maximum number of bins (5,940,422).

The number of derived level-3 geophysical vari-
ables whose observational values are stored in the
associated SUMX and SUMXX pairs.

Input Variables

The number of bins to read from an input level-3
product.

A real*4 1-D array of size NVARS; represents

SUMX as output by the space or time binner for
all level -3 geophysical variables ( Js) of a given bin
IDX being read.

A real*4 1-D array of size NVARS; represents SUMXX
as output by the space or time binner for all level-3
geophysical variables ( Js) of a given bin IDX being
read.

An integer*2 word; represents N as output by the
space or time binner for a given bin IDX being read.

An integer*2 word; represents NSEG as output by
the space or time binner for a given bin IDX being
read.

A real*4 word; represents Was output by the space
or time binner for a given bin IDX being read.

An integer*2 vord; represents TT as output by

the space or time binner for a given bin IDX being
read.

An int eger*4 word representing the index num-
ber of the bin being read from an input level-3
product.

Output Variables

A real*4 2-D array of size MAXBINSX NVARS; rep-
resents the sum of the SUMX_INPUT for the level-3
geophysical variables (Js) from all input products
for a given bin IDX; saved in the output product if,

and only if, N( IDX ) is greater than zero.

A real*4 2-D array of size MAXBINSx NVARS; repre-
sents the sum of the SUMXX.INPUT for the level-3
geophysical variables (Js) from all input products
for a given bin IDX;saved in the output product if,
and only if, N(IDX) is greater than zero.

An integer*2 1-D array of size MAXBINS; repre-

sents the sum of the N_INPUT from all input prod-
ucts for a given bin IDX; saved in the output prod-
uct if, and only if, N(IDX) is greater than zero.

An integer*2 1-D array of size MAXBINS; repre-
sents the sum of the NSEG_INPUT from all input
products for a given bin IDX; saved in the output
product if, and only if, N( IDX) is greater than zero.

A real*4 1-D array of size MAXBINS; represents the
sum of the W_INPUT from all input products for a
given bin IDX; saved in the output product if, and
only if, N(IDX) is greater than zero.

An integer*2 1-D array of size MAXBINS;the bit

sequence of TT represent the time trend of the val-
ues summed into SUMX and SUMXX for all Js for a
given bin IDX; saved in the output product if, and
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IDX

Note:

J

B

#

only if, N(IDX) is greater than zero. The bits rep-
resent consecutive time in the binning period, the
lowest bit being the earliest time. For daily binned
products, the bits correspond to the relative se-
quence of orbits binned. For 8-day products, each
bit represents one day; for monthly products, each
bit represents two days; and for yearly products,
each bit represents one month. A TT ( IDX) bit will
be set to 1 only if data, for the time corresponding
to that bit, were binned in bin IDX.

An integer*4 word representing the index number

of each bin with a value ranging from 1 to MAXBINS;
saved in the output product if, and only if, N(IDX)
is greater than O.

For each N(IDX) > 0, 8 xNVARS+ 14 bytes of infor-
mation will be output.

Other Variables

Counter index of geophysical variable to be binned.
Range is from 1 to NVARS.

Counter index of bins read from input product.
Range is from 1 to NBINS.

# Initialize
#
do from IDX=Ito MAXBINS

do from J=l to NVARS
SUMX(IDX,J) = 0.0
SUMXX(IDX,J) = 0.0

end do
N(IDX)= O
NSEG(IDX)= O
W(IDX)= 0.0

end do
#
# Input spaceor time binnedproductsend accumulate
# statisticsfor each bin
#
do for each binned inputproduct

read from metadataof binned inputproducts:NBINS
do from B-i to NBINS
read from bin B:

IDX, N_INPUT,NSEG-INPUT, W_INPUT, TT_INPUT
SUMX-INPUT(J), SUMXX_INPUT(J), for J=l to NVARS

end read
do from J=l to NVARS

SUMX(IDX,J) = SUMX(IDX,J) + SUMX-INPUT(J)
SUMXX(IDX,J) = SUMXX(IDX,J) + SUMXX_INPUT(J)

end do
N(IDX)= N(IDX)+ N-INPUT
NsEG(IDX)= NSEG(IDX)+ NSEG_INPUT
W(IDX)= W(IDX)+ W-INPUT
use TT_INPUT,date, or orbit of inputto set TT(IDX)

end do
end do
#
# Outputtime binnedproduct
#
do from IDX=Ito MAXBINS

if N(IDX)> 0 then
writeto time binned level-3product

IDX, N(IDX), NSEG(IDX), W(IDX), TT(IDX)
SUMX(IDX,J), SUMXX(IDX,J), for J=l to NVARS

end urite
end if

end do
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Algorithms for Calculating Statistics of Level-3 Variables: The
means, variances, medians, and modes can be estimated using
the level-3 data as described in Section 2.3. Here the same
equations are described in terms of the pseudocode logic used
in this Appendix. The level-3 data provided for each bin are:
b, N(b), NSEG(b), W(b), TT(b), and a pair of weighted sums,
SUMX(b,j) and SUMXX(b,j), for each level-3 variable j.

For each variable Xj, the mean and variance of its naturaf log-
arithm are calculated

SUNIX(b,j)
mX =

W(b)

and
SUMXX(b,j)

s: =
W(b)

— m:.

(C13)

(C14)

The MLE estimator for the mean of Xj in bin b is

~(b,j) = e(mx+~s~) (C15)

and the standard deviation of Xj is estimated by

SD(b,j) = ~(b,j) [es: - I] ~, (C16)

and [SD(b,j)]2 is the estimated variance.

Assuming the distribution of Xj is approximately lognormal,
then the median can be estimated by

~m.d(b,j)

and the mode (most common

~mod(b,j)

= em’, (C’17)

value) by

= ~(m~-,~), (C18)

Bin Data Interpreter Code: This program interprets the geo-
physical data from binned products created by the space binner
or the time binner. It will calculate the maximum likelihood
estimate (MLE) of the mean, standard deviation, median, and
mode for each level -3 binned geophysical variable.

Variable and Constant Dictionary: The variables and their def-
initions for the pseudocode presented are below.

NVARS

NBINS

SUMX-INPUT

SUMXX.INPUT

Constants

The number of derived level-3 geophysical vari-
ables whose observational values are stored in the
associated SUM_INPUT and SUMXX_INPUT pairs.

Level -3 Input Variables

The number of bins to read from an input level-3
product.

A real*4 1-D array of size NVARS;represents SUMX
as output by the space or time binner for all
level -3 geophysical variables (Js) of a given bin
IDX being read,

A real*4 1-D array of size NVARS; represents SUNXX
as output by the space or time binner for all
level -3 geophysical variables (Js) of a given bin
IDX being read.
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N-INPUT

NSEG_INPUT

W.INPUT

TT-INPUT

IDX

XMEAN

SIGMA

XMEDN

XMODE

N-INPUT

NSEG-INPUT

TT-INPUT

IDX

B

J

AVLOGS

VRLOGS

An integer*2 word: represents N as output by

the space or time binner for a given bin IDX being

read.

An integer*2 word; represents NSEG as output

by the space or time binner for a given bin IDX

being read.

A real word: representsuas output by the space

or time binner for a given bin IDX being read.

An integer*2 word; represents TT as output by

the space or time binner for a given bin IDX being

read.

An integer*4 word representing the index num-

ber of the bin being read from the input level-3

product.

Output Variables

A real*4 1-D array of size NVARS; represents the

mean of the weighted cumulative values of the

level -3 geophysical variables (Js).

A real*4 1-D array of size NVARS; represents the

standard deviation for the weighted cumulative

values of the level-3 geophysical variables (Js).

A real*4 1-D array of size NVARS; represents the

median of the weighted cumulative values of the

level-3 geophysical variables (Js).

A real*4 1-D array of size NVARS; represents the

mode of the weighted cumulative values of the

level-3 geophysical variables (Js).

An integer*2 word; represents N as output by

the space or time binner for a given bin IDX being

output

#
# Inputinformationfor each bin
#
read from metadataof binned inputproducts:NBINS
do from B=l to NBINS

#
#
#

read from bin B:
IDX, N_INPUT, NSEG_INPUT, W_INPUT, TT_INPUT
SUMX_INPUT(J), SUMXX_INPUT(J), for J=l to NVARS

end read

Calc.mean, std.dev., median and mode, and then output

do from J=l to NVARS
AVLOGS= SUMX_INPUT(J)/W_INPUT
VRLOGS= (SUMXX.INPUT(J)/W.INPUT)- (AVLOGS*AVLOGS)
XMEAN(J) = exponential(AVLOGS+ (VRLOGS/2.))
SIGMA(J) = XMEAN(J)*sqroot(exponential(VRLOGS)- 1)
XMEDN(J) = exponential(AVLOGS)
XMODE(J)= exponential(AVLOGS- VRLOGS)

end do
write to screenor file useful info for bin IDX
IDX, N_INPUT,NSEG-INPUT, TT-INPUT
XMEAN(J), SIGMA(J), XMEDN(J), XMODE(J), for J=i to NVARS

end write
end do

AVHRR

Czcs

DSP

GAC
GIvIT

HRPT

IFOV
ISCCP

LAC

An integer*2 word; represents NSEG as output NIAR~lAp

by the space or time binner for a given bin IOX

being output.

An integer*2 word; represents TT as output by
the space or time binner for a given bin IDX being

output.

An integer*4 word representing the index num-

ber of the bin being output.

Other Variables

Counter index of bins read from input product.

Range is from 1 to NBINS.

Counter index of geophysical variables that have

been binned, Range is from 1 to NVARS.

A real*4 word that representsthe mean of the

weightedlogsfora geophysicalvariableJ ofbinB

beingprocessed.I.Jsedto calculateXMEAN,SIGMA,

XMEDN,and XMODE.

A real*4 word thatrepresentsthevarianceofthe

weightedlogsfora geophysicalvariableJ ofbinB

beingprocessed.used to calculateXMEAN,SIGMA,

and XMODE.

ivfODIS

RSklAS

SeaWiFS
SEEP

SST

TDI

Ag
A.

AVG
AVG4

b
Bg
B.

(Chl),o,
CHL

CHL13

CHL23

GLOSSARY

Advanced Very High Resolution Radiometer

Coastal Zone Color Scanner

Iiot an acronym; the name of a software package
developed at RSMAS.

Globaf Area Coverage
Greenwich Mean Time

High Resolution Picture Transmission

Instantaneous Field-of-View
International Satellite Cloud Climatology Project

Local Area Coverage

bfarine Resources Monitoring, Assessment, and Pre-
diction
Moderate Resolution Imaging Spectroradiometer

Rosenstiel School of Marine and Atmospheric Sci-
ence

Sea-viewing Wide Field-of-view Sensor
Shelf Edge Exchange Program
Sea Surface Temperature

Time Delay and Integration

SYNIBOLS

CZCS pigment algorithm constant (global).
CZCS pigment algorithm constant (regional).
Arithmetic average based on LAC data.
Arithmetic average based on GAC data.

Bin index number.
CZCS pigment algorithm constant (global).
CZCS pigment algorithm constant (regional).

Integral euphotic chlorophyll.
Chlorophyll concentration,
Pigment concentration calculated from CZCS bands
1 and 3.
Pigment concentration calculated from CZCS bands
2 and 3,
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DIFF1 Relative difference between MLE4 and AVG4.
DIFF2 Relative difference between MED4 and AVG4.

E[X] Expected value of x.
ERROR Relative error, in percent, of the estimated mean

from the arithmetic mean.

FiNC Function of vector variable X using LAC data.
FNC4 Function of vector variable X using GAC data.

ICK Integrated chlorophyll concentration over the first
optical depth.

ID Mooring identification number.

The diffuse attenuation coefficient at 490 nm.

Bin dimension in kilometers.
Normalized water-leaving radiances in i bands (l-
5).
Atmospheric aerosol radiances in z bands (6-8).
Water-leaving radiance.

Central moment of z.
Sample mean of the natural logarithm of z.
Sample mean of the natural logarithm of g.
Sample mean of regional in (pigment).
Maximum likelihood estimator of LAC data,
Maximum likelihood estimator of GAC data,

Geometric mean or median of LAC data.
Geometric mean or median of GAC data.

Sample size.
The number of pixels per bin on orbit i.
The number of days used for temporal averaging.
The number of orbits contributing to the temporal
mean,

The proportion of the distribution that is mode 1,
CZCS pigment-like concentration.
Pigment calculated with regionally-derived param-
eters.

The sample variance of regional in (pigment).
The sample variance of the natural logarithm of z,
The sample variance of the natural logarithm of y.
The weighted sum of variable z.
The weighted sum of variable y,
The standard deviation of z.
The standard deviation of y,

The time at which orbit z was acquired.
A 16-bit time distribution variable.

The 8-bit image value of a pixel, i.e., gray level.

The weight factor for orbit i.
The sum of the weighting factors.

The natural logarithm of X.
Any random variable whose distribution is unknown,
A level-2 variable.
The true mean of a level -2 variable.
The arithmetic average of X.
The geometric mean of X.
The maximum likelihood estimator of ~.
The median of X.
The mode of X.
The estimated mean of X.
The vector of standard level-2 variables,

Y
Y

~.vg
~mle
Yfrlc

z,

Al
h
AS

Ta(865)

Aitchison,

Any function of a level-2 variable X.
The true mean of Y.
The arithmetic average of Y.
The maximum likelihood estimator of Y.
The arithmetic mean of FNC.

The euphotic depth (depth to 1% light level).

Wavelength of 440 nm,
Wavelength of 520 nm.
Wavelength of 550 nm.

The aerosol optical thickness at 865 nm.
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PLATE 1. Mean CHL images derived from the AVG and MLE estimators for the seven CZCS scenes listed in Table 1.
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