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Abstract

Estimate of systematic error and noise in thermal infrared data of the Moderate Resolution Imaging

Spectroradiometer (MODIS) was made with early MODIS data in 14 cases of sub-area sites with a size of

10 lines by 16 pixels each line, where the brightness temperature in band 31 changes within ± 0.1K. It is

found that the ninth channel in bands 21 and 24, and the fourth channel in band 22 are too noisy to use.

There are significant channel-dependent systematic errors in 1-3 channels in bands 22, 23, 25, 27-30. After

correcting the channel-dependent systematic errors, the quality of the MODIS TIR data is significantly

improved in bands 22-25, and 27-30, and the specification of noise equivalent temperature difference

(NEDT) is reached in all but the three noisy channels of the 16 MODIS TIR bands. Results are given in

the first paper submitted to Remote Sensing of Environment.

The estimate of calibration accuracy of MODIS TIR bands reported in the semi-annual report for January -

June, 2000, has been updated with more comparison results between the band brightness temperatures

from the reprocessed MODIS calibrated radiance product (version 2.5.4 of MOD021KM) and the

calculated values based on in-situ measurements of lake surface temperature and atmospheric

temperature/water vapor profiles. It is found that the calibration accuracy in bands 29, 31 and 32 is better

than 0.5%, the specified absolute radiometric accuracy of 1% is reached or nearly reached in MODIS

bands 21, 29 and 33-34, and also in band 30 if the true atmospheric column ozone is 6-12% below the

value retrieved from the TOMS data. Comparisons indicate a calibration bias 2-3% in bands 20, 22 and

23. It is difficult to obtain a definitive estimate in bands 24-25, 27-28, and 35-36 because of the larger

effects of the variations and uncertainties in atmospheric temperature and water vapor profiles. Results are

given in the second paper submitted to Remote Sensing of Environment.

Significant progress has been made in simultaneous retrieval of land-surface temperature/emissivity and

atmospheric profiles with MODIS data.
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Introduction

In order to deal with the close coupling between land-surface and atmosphere, Dr. Paul Menzel and I

decided that our two groups should work together to improve the qualities of MODIS atmospheric

temperature/humidity profile and LST products. He sent Mr. Xia-lin Ma to UCSB in October 1997. Since

then support for Mr. Ma has been shared by both our MODIS contracts. We worked together to extend the

day/night LST algorithm into a new generalized day/night algorithm to simultaneously retrieve land-

surface temperature/emissivity and atmospheric profiles with MODIS data. We have made significant

progress in this new direction. The new algorithm has been tested with MAS and MODIS data, showing

its ability to improve the accuracies of both the LST and atmospheric profile products. Detailed results are

shown in the manuscript after this brief introduction.
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                           Abstract

An extension to the two-step physical retrieval algorithm was developed.  

Combined clear-sky multitemporal and multispectral observations were used to

retrieve atmospheric temperature-humidity profile, land-surface temperature

and surface emissivities in the midwave (3-5 m ) and longwave (8-14.5 m )

regions.  The extended algorithm was tested with both simulated and real

Moderate Resolution Imaging Spectrodiometer (MODIS) Airborne Simulator (MAS)

data.  Sensitivity study and error analysis demonstrate that the retrieval

performance is improved by the extended algorithm.  The extended algorithm is

relatively insensitive to the uncertainties simulated for the real

observations. The extended algorithm was also applied to real MODIS daytime

and nighttime observations illustrating that it is capable of retrieving

medium-scale atmospheric temperature/water vapor profile and surface

temperature/emissivity with similar retrieval accuracies as the Geostationary

Operational Environmental Satellite (GOES) achieves plus much higher spatial

resolution. Finally, possible further improvements are discussed, and a

conclusion is drawn in the last section.
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1. Introduction

An important objective in satellite remote sensing is the determination of

accurate atmospheric temperature-humidity profile and land-surface or sea-

surface temperature (hereafter referred to as LST and SST respectively) over

the global domain.  To help achieve this objective, the Earth Observing System

(EOS) suite of instruments will provide global radiometric measurements for

retrieving atmosphere, land and ocean properties from space.  The specified

accuracy for EOS atmospheric temperature is 1K root mean square error (rms) in

1km thick layer, 10% rms for tropospheric humidity, 0.3K for SST, and 1K for

LST.

During the past two decades, there has been much research on retrieval

of atmospheric temperature and moisture distribution as well as LST and SST.

In physics-based retrievals it is important to consider all surface-

atmospheric interactions and energy fluxes between the atmosphere and the

surface since radiance measurements by airborne or satellite-borne multi-

spectral infrared radiometers combine contributions from atmospheric

absorption/emission and from surface emission and reflection.  A variety of

split-window methods have been developed to determine SST and LST using data

from National Oceanic and Atmospheric Administration’s (NOAA) Advanced Very

High Resolution Radiometer (AVHRR).  The split-window technique uses two

spectral bands of different opacity within the 800-1000 cm-1 window region to

correct atmospheric effects.  McMillin1-4 and others developed SST retrieval

algorithms for NOAA multichannel SST (MCSST), cross-product SST (CPSST) and

operational nonlinear SST (NLSST).  Empirical coefficients are derived from

regression analyses of AVHRR band brightness temperatures and in situ buoy

measurements.  The global standard errors of these algorithms are in the range
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of 0.5-0.7K.  More recently a new physics-based SST retrieval method was

developed5.  The algorithm requires a-priori specification of sea surface

emissivity (reflectivity) spectra and atmospheric transmittance calculation.

Error analyses have demonstrated that SST can theoretically be retrieved to

within 0.22K rms using the High-resolution Interferometer Sounder (HIS) data

or 0.51K using broadband split-window data provided that the a priori surface

emissivity spectrum has a bias less than 0.5%.  As for LST retrieval, simple

extension to LST using the algorithm originally developed for SST would lead

to unacceptable errors.  Wan and Dozier
6
 analyzed the major difficulties in

the simple extension to the land surface of the split-window technique.

Importantly, spectral variation of emissivity is much larger for different

land-surface materials than water.  For instance, large variations exist

between vegetated and non-vegetated surfaces (e. g. rock, sand).  Land-surface

emissivity measurements show that surface emissivity varies from 0.85-0.99 in

the split-window region, while sea-surface emissivity variation is much

smaller (although sea-surface emissivity varies greatly with sea state).  In

addition, larger LST spatial variation and “mixed-pixel” fields of view (FOV)

complicate the LST retrieval.

Significant effort has been made to estimate LST, including applying a

variety of split-window methods7-10.  Wan and Dozier11 point out that the split-

window algorithm requires surface emissivity knowledge to better than 0.01 to

retrieve LST to accuracy of 1K.  This is a difficult requirement to meet for

land covers with variable emissivities, especially in semi-arid and arid

areas.  Li et. al.13-14 proposed a scheme to retrieve surface spectral

emissivity and LST using pairs of day/night co-registered AVHRR data.  In

their method, a temperature independent spectral index (TISI) in the thermal

infrared bands is derived assuming that the surface thermal infrared

bidirectional reflectance distribution function (BRDF) and atmospheric profile

are known.  Such a-priori information is rarely available.  To relieve the a-
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priori information requirement, a physics-based LST retrieval algorithm has

been developed.  The algorithm simultaneously retrieves daytime and nighttime

LST, surface air temperature and total precipitable water-vapor (TWP), and

surface spectral emissivity using MODIS day/night observations15 under an

assumption that surface emissivity is unchanged from daytime to nighttime.

However, the physics-based LST retrieval is sensitive to the shape of the

temperature and water vapor profile in the lower troposphere.  Unfortunately,

the shape of the lower atmospheric profile is poorly resolved by the spectral

resolution of MODIS sensor.  Thus the accuracy of the physics-based LST

retrieval depends largely upon accurate atmospheric information.

Alternatively, remote sensing of atmospheric temperature-humidity

profile from infrared emission bands usually requires assumptions about the

emissivity of terrestrial materials.  It is usually assumed that the earth’s

surface is a blackbody (emissivity 1.0)16-21 or a gray-body (approximately

0.96-0.98)22 for atmospheric sounding.  These assumptions typically result in

large retrieval errors over non-vegetated surfaces where surface emissivity

spectral/spatial variations are prominent.  Plokhenko and Menzel23 point out

that the surface emissivity must be considered in the physical retrieval

solution because even small emissivity variations cause measurable changes in

infrared radiance.  Therefore, a two-step physical algorithm24 (hereafter

referred to as the “original” algorithm) was developed to include surface

emissivity as a part of the solution of the radiative transfer equation (RTE).

The original algorithm retrieves atmospheric temperature-humidity profile,

surface temperature and surface emissivity in the midwave (3-5 m ) and

longwave (8-14.5 m ) regions simultaneously from MODIS thermal infrared data.

The algorithm was tested using both simulated and real MODIS Airborne

Simulator (MAS) data.  The original algorithm demonstrated that the accuracy

of retrieved atmospheric and surface parameters is improved by including

surface emissivity in the RTE.  However, only two surface emissivities in the
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window regions were retrieved, which may not adequately describe surface

emissivity spectral variation, especially in the midwave region when non-

vegetated surfaces are viewed.  In addition, the improvement of retrieval

accuracy of surface emissivities is rather limited.  Unlike the Atmospheric

Infrared Sounder (AIRS) or HIS with over 2000 spectral bands, the MODIS

scanning ( ± 55 degrees) spectroradiometer is limited to 36 bands (20 in the

visible and near infrared range, and 16 in the 3-14.5 m  region).  Spectral

characteristics of MODIS TIR bands and its prelaunch prototype MAS are listed

in Tables 1 and 2.  To obtain more information needed in retrieval, the

surface-reflected solar beam in the midwave region might be a good external

source since the emitted and reflected radiances are of the same order of

magnitude during the daytime13.  Moreover, surface-reflected solar radiance is

dependent on the lower troposphere and surface properties.  Thus it is

possible to improve retrieval accuracy with information supplied by the

surface-reflected solar beam.

 This paper presents an extended version of the two-step physical

retrieval algorithm (henceforth abbreviated the “extended” algorithm).  The

extended algorithm consists of the following four components: (i) The surface-

reflected solar beam in the midwave region is directly incorporated into the

retrieval; (ii) Clear-sky multitemporal (day and night) and multispectral

observations13 are combined to retrieve the atmospheric and surface

parameters.  (iii) The empirical orthogonal functions (EOFs)25 technique is

applied to not only atmospheric temperature-humidity profiles but also surface

emissivity spectra.  (iv) The retrieved atmospheric and surface parameters

include daytime and nighttime temperature-humidity profile, daytime and

nighttime land-surface temperature and surface emissivities in the window

regions.  It is assumed that the surface emissivity does not change over short

durations (i.e. a few days) unless rain and/or snow occurs15.  Section 2

describes the extended perturbation form of RTE and associated retrieved
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parameter weighting functions when the surface-reflected solar beam term is

included in the RTE.  The solution of the RTE in the eigenvector domain is

also presented.  Furthermore, the improvement of retrieval accuracy is

demonstrated from multitemporal and multispectral observations.  Validation

and error analysis of the extended algorithm are given in section 3.  A more

detailed discussion of the retrieval using MAS and MODIS data is included in

Sections 4 and 5 respectively.  Possible further improvements to the retrieval

algorithm are discussed in Section 6.  Finally, a conclusion is drawn in the

last Section.

2. Methodology

A. Perturbation form of the radiative transfer equation

For a cloud-free atmosphere under local thermodynamic equilibrium the

radiative transfer equation in the thermal infrared region may be expressed as
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where ),( jR  is the mean spectral radiance measured in band j  whose mean

effective wavenumber is j  and the cosine of viewing zenith angle  of the
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observation is , ),( sj tB  is the Planck function of surface temperature st ,

),( j  is the band-averaged surface emissivity at direction , and

),,( sj p  is the transmittance from the surface pressure level sp  to the top

of the atmosphere along the observation angle .  The first term of Eq. (1)

represents surface emission to space (less atmospheric absorption).  The

second term in Eq. (1) is the upwelling atmospheric thermal emission

contribution.  The third term denotes downward atmospheric thermal emission

reflected back to space by the Earth’s surface, where

),,(/),,(),,(),,,(* pppp jsjsjj −=−  is the reflected transmittance

from surface to the pressure level p, the minus sign indicates that direction

is always downward.  Note that the path radiance resulting from scattering of

solar radiation and the solar diffuse radiance reflected by the surface are

omitted in the second and third terms, because they are much smaller than the

atmospheric thermal emittance contributions in general.  In the third term,

the specular reflection can be expanded to general expression by considering

downward atmospheric thermal irradiance.  The final term represents the solar

beam radiance reflected back to space by the surface, where 0  is cosine of

the solar beam zenith angle, and ),,(),,()0,,,( 00
*

sjsjj pp −=−  is the

total transmittance for the solar beam,   is the solar BRDF factor (SBF, See

Subsection 3.B.b).  )(0E  is the solar irradiance incident on the top of the

atmosphere (normal to the beam).  Eq. (1) with surface-reflected solar beam

term may be approximated in the numerical perturbation form24 by
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where the perturbation  is with respect to an a-priori estimated or mean

condition, t B  is a MAS band brightness temperature vector, K tS , K , K t
 and

K q
 are the weighting functions of surface temperature ( st ), surface

emissivity ( ), atmospheric temperature (t ) and water vapor (q ),

respectively,  i  is the atmospheric quadrature pressure level ( 1=i ,..ls ,

from space to surface), j  denotes band number, and ls  is a quadrature level

of the surface pressure.  For simplicity, variable  has been omitted in the

weighting functions.

Eq. (2) can be expressed in its matrix form as

xKy = ,                                                                                                                     

(3)
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For surface temperature,
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(8)

and for surface emissivity,
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where w  is the water vapor component transmittance, ta  and t s  are surface

air temperature (taken at 2m above ground) and surface temperature

respectively, and s  represent transmittance of the atmospheric column

above the level, i , and above the surface, s , respectively, for all gases,

and  /)()( 00 jEC −= .  The symbol ƒ  indicates the partial derivative with

respect to the vertical coordinate.

B. Solution in the eigenvector domain

Eigenvector decomposition technique25 is widely used in retrieval.  The

advantages of this technique are that it reduces the number of retrieved

parameters to the same order as that of measured radiances, and that it

increases computational efficiency.  Recently Li et.al.26 demonstrated that

surface emissivity spectra of more than 50 soil and vegetation samples

measured in the laboratory can be reconstructed using six selected bands in
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the 8-13 m  with an uncertainty of 0.005.  The results of their study

indicate that it may be possible to determine the surface emissivity spectral

variations using a few surface emissivity eigenvectors.  Thus in the extended

algorithm the empirical orthogonal functions technique is applied to not only

atmospheric temperature-humidity profiles as in the original algorithm but

also to surface emissivity spectra.

Following the procedure presented by Ma et. al.24, in the eigenvector

domain the perturbation solution can be written as

Vfvfx i

M

i
i == �

=1

,                                              (10)

where iv  is the i th eigenvector, if  is the i th expansion coefficient, and

M denotes the number of terms.  V  and f  represent the eigenvector matrix

and coefficient vector, respectively.  The eigenvectors of atmospheric

temperature and water vapor are derived from a statistical covariance matrix

of a large number of atmospheric temperature and water vapor profiles.  The

eigenvectors of spectral emissivities are derived from an 80 surface

emissivity sample dataset.  And the eigenvector of surface temperature is

assumed to be the unit vector.  In the eigenvector domain, Eq. (3) becomes

fKKVfxKy ˆ=== .                                                                                            

(11)

The sounding retrieval problem has been reduced to solving a set of

eigenvector expansion coefficients.

C. Combination of multitemporal and multispectral measurements
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In the original algorithm, the solar contribution term was not included in the

derivation of the numerical perturbation form of RTE.  A sensitivity study

using simulated MAS data showed that the retrieval accuracy of surface

emissivities was limited, partly because the surface-reflected solar beam

contribution was not included.  In the extended algorithm more surface

information from MODIS measurements13,15 is utilized by including a surface-

reflected solar beam term in the RTE, and by combining multitemporal and

multispectral measurements in the retrieval.  The surface-reflected solar beam

radiances in the midwave region are an important external information source

since the reflected solar contribution term in Eq. (1) is related to the

surface properties and atmospheric condition in the low troposphere.  In the

original algorithm, a reflected sunlight model22,27 was used to estimate the

surface-reflected solar beam radiance to remove from the midwave IR

measurements.  It is appropriate for the removal of the solar beam

contribution if surface emissivity is a known constant.  However, when surface

emissivity is retrieved simultaneously along with atmospheric parameters, the

surface-reflected solar beam radiance provides additional information on

surface properties and atmospheric status in the low troposphere (See

Subsection 3.B.a).  Combining daytime and nighttime measurements is also

useful if surface emissivity does not change between measurements.  This is

probably an acceptable assumption in the absence of precipitation or

vegetation change (e.g. due to fires)15.

To evaluate the role of multitemporal and multispectral observations,

the extended two-step physical retrieval algorithm was applied to day/night

simulated MAS radiances.  Retrieved parameters include day/night temperature-

humidity profile, day/night surface temperature and surface emissivities in

the window regions (MAS bands 30, 31-34, 42, and 44-46).  The test data set is

the same as that used for the original algorithm24.  A set of 2512 atmospheric

profiles measured by radiosonde in the period of March 2 to April 11, 1996
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over the central U. S. was used as a daytime dataset.  The nighttime dataset

was constructed from the daytime dataset in the following way: (i) the

nighttime temperature profile was generated from the daytime temperature

profile by a linearly interpolated shift –6K at 1000 hPa and no change at 500

hPa;  (ii) the daytime water-vapor mixing ratio profile was dried by 15% from

500-1000 hPa layer (no change above 500 hPa).  The atmospheric profiles were

divided into dependent (2094 profiles) and independent (418 profiles)

datasets.  The surface temperature was simulated for each profile from surface

air temperature plus a random number with variance 4K and mean value equal to

zero.  The surface emissivity data, consisting of band-averaged emissivities

of 80 terrestrial materials15,24, were incorporated into the dependent and

independent data.  A fast regression transmittance model28 was used to generate

MAS simulated brightness temperatures for each radiosonde profile in the

daytime and nighttime datasets.  In the forward calculation, it is assumed

that the local zenith viewing angle and solar zenith angle are 0 (nadir) and

40 degrees respectively.  The solar BRDF factor is set to 1.0.  Table 3.1

shows the retrieved rms of the independent dataset with the original algorithm

from the daytime dataset but without the surface-reflected solar beam term

(equivalent to a nighttime dataset).  Table 3.2 is the same as Table 3.1 but

using combined day and night simulated data.  As can be seen, the retrieval

accuracies of atmospheric temperature-humidity profile and surface temperature

and emissivity are improved when day/night observations are used: the rms of

TPW is reduced by about 30% (0.27 versus 0.34) and the rms of daytime surface

temperature is significantly reduced (0.23 versus 0.49).  The improvement of

surface emissivity accuracy is more significant, the rms of surface

emissivities in the midwave and longwave regions are 0.003 and 0.005 compared

to 0.020 and 0.009 in Table 3.1.  It is clearly demonstrated that the combined

daytime and nighttime observations with surface-reflected solar beam radiances
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directly included in the retrieval, improved the retrieval accuracies in

particular for the surface emissivity in the midwave region.

3. The extended algorithm retrievals

A. Daytime/nighttime dependent and independent datasets

To demonstrate the robustness of the extended algorithm under a variety of

global atmospheric conditions, 117-sounding profiles from the National

Environmental Satellite, Data and Information Service (NESDIS) dataset (called

Wark subset) were utilized to generate the dependent data set.  The NESDIS

dataset is a well-known test dataset that has 1200 profiles to comprise the

complete dataset covering four seasons on the global scale.  The Wark subset

represents the range of meteorological conditions contained in the full

dataset.  An additional 40 profiles were selected from three zones (middle-

latitude, high-latitude and tropical) and four seasons (Summer, Winter, Spring

and Fall) in the NESDIS dataset.  These profiles were used as an independent

dataset.  A few profiles of the independent dataset contained low level

temperature inversions.  For the dependent dataset, variation of surface

temperature, sensor viewing zenith angle, solar zenith angle and BRDF factor

for daytime are as follows: surface temperature was assigned as atmospheric

air temperature at  – 15 K to at  + 15 K in step of 3K.  Sensor viewing zenith

angle varied from 0 (nadir) to 20 degrees in step of 5 degrees, and from 20 to

42 degrees in step of 2 degrees.  Solar zenith angle varied from 25 to 65

degrees in step of 5 degrees and the solar BRDF factor varied from 0.85 to

1.15 in step of 0.05.  These variations produced a dataset of 1,297,296 cases

that should represent real atmospheric and surface variations for four seasons

on the global scale.  The nighttime dependent dataset was constructed from the

daytime dataset following the description in Subsection 2.C.  The independent

dataset was generated from the 40 chosen atmospheric profiles by changing

surface temperature, sensor viewing zenith angle, solar zenith angle and solar
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BRDF factor randomly from their mean values.  This expanded the independent

dataset to 440 cases.  Eighty samples of surface emissivity data spectra were

randomly incorporated into the daytime/nighttime dependent and independent

datasets.  The surface emissivities vary from 0.56 to 0.99.

B. Sensitivity and error analysis

Forward calculations of transmittance, upwelling surface and atmospheric

radiances were performed by a fast regression model28 to obtain MAS bands 30-

50 brightness temperatures for each dependent and independent case.  For the

daytime dataset, midwave region (bands 30-37) brightness temperatures included

the surface-reflected solar radiance.  An eigenvector decomposition technique

was applied to the dependent dataset to describe the temperature and water

vapor mixing ratio profiles.  Two sets of empirical orthogonal functions were

calculated; one for temperature and one for the natural logarithm of water

vapor mixing ratio.  Moreover, the eigenvector decomposition technique was

also applied to the surface emissivity spectra dataset to generate surface

emissivity eigenvectors.  In the eigenvector domain, the sounding retrieval

problem in the extended algorithm has been reduced to one of solving for 23

unknowns (five day/night temperature eigenvector coefficients and three

day/night water vapor eigenvector coefficients, five surface emissivity

eigenvector coefficients and two day/night surface temperature perturbations).

Regression analysis was then applied to the dependent dataset to

generate regression coefficients relating MAS bands 30-50 brightness

temperatures to the matching radiosonde temperature and water vapor profiles,

surface temperature, surface emissivities and SBF.  Regression retrievals were

conducted with the independent simulated MAS brightness temperatures to

produce a first-guess of atmospheric state and surface properties to

facilitate physical solution of the RTE.  A physical retrieval with a two-step

algorithm24 and iterative solution of the RTE provide the final retrievals of
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temperature and water vapor profiles, surface temperature, surface

emissivities.

a. Error analyses for day/night datasets versus day or night alone

dataset

Table 4 lists rms values of the retrieval comparisons with the combined

daytime and nighttime simulated MAS datasets versus separate daytime and

nighttime datasets.  The second and third columns are rms values of the

combined day/night regression and two-step physical retrieval results (results

for nighttime dataset are not listed).  As shown, physical retrieval rms is

less than that for regression retrievals.  Layer Mean Temperature (LMT) 1 in

the first column is the temperature profile averaged from 50 to 200 hPa.  The

other LMTs are averaged from 200-400, 400-600, 600-800 and 800-1000 hPa.  The

rms of the LMT from the regression retrieval is from 0.88-2.66K (see column 2

in Table 4) while the rms values of the extended algorithm physical retrieval

is 0.84 to 2.43K.  The total precipitable water vapor (TPW) rms is reduced

from 0.36 to 0.25 cm.  For surface properties, the rms of surface temperature

and surface emissivities are reduced significantly.  Especially for surface

emissivities in the midwave region, accuracy improvement is much more

prominent (50-66% reduction).  Histograms of extended algorithm retrieval bias

(true – retrieval) in surface temperatures are shown in Figure 1, where the

left-hand (right-hand) panel is for daytime (nighttime).  Figure 2 is the same

as Figure 1 but for TPW.  As shown, the errors are within 0.5K for surface

temperature and 0.5cm for TWP in most of cases.  Figure 3 is the same as

Figures 1 and 2, but for retrieved surface emissivities.  The upper two panels

represent biases in window bands 31 (left-hand) and 32 (right-hand)

emissivities; the bottom two panels are in window bands 44 and 45

emissivities.  The range of bias is within 0.01.  Columns 4 and 5 in Table 4

represent the rms values of regression and physical retrievals with the
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daytime dataset alone.  Columns 6 and 7 show the rms values for the same

dataset when the surface-reflected solar beam contribution is removed.  It is

equivalent to a nighttime dataset.  As shown in columns 4 and 5 in Table 4,

physical retrieval rms values of all retrieved parameters are smaller than

those generated from regression retrieval although the improvements are not as

large as those with the combined daytime and nighttime datasets.  However, the

accuracy of retrieved surface emissivities was not improved for the nighttime

alone dataset.  These error analyses show that the extended physical algorithm

using combined daytime/nighttime observations and retaining the surface-

reflected solar beam term is able to retrieve atmospheric and surface

properties simultaneously with much better retrieval performance.

b. Sensitivities to the uncertainties in solar BRDF factor

It’s assumed that a single BRDF factor15 can be used for the surface-reflected

solar beam within the midwave region.  The SBF  is defined as follows:

r

f r ),;( 00−= ,

where r is reflectance of the assumed Lambertian surface.  ),;( ′′−rf  is the

BRDF, where the cosine of local zenith angle  of the observation is ,

′−  and ′  represent solar beam incident direction (the minus sign indicates

downwelling).  In the retrieval, the SBF is obtained from regression analysis,

then this value is directly used in physical processing due to lack of a

simple and accurate physical model to estimate the solar BRDF factor.  By

doing this, it would bring 0.05 rms error of SBF (regression SBF vs. true SBF)

into the physical retrieval processing.  Thus the uncertainties in SBF would

degrade the retrieval performance.  Table 5 summarizes error analysis results,

where column 2 represents the rms departure of the independent dataset cases
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from the mean profile of the dependent dataset, and column 3 is the rms in the

regression retrieval.  Column 4 indicates the rms of the extended physical rms

in the regression retrieval.  Column 4 shows the rms values of the extended

physical retrieval under conditions: (i) no noise was added; (ii) regression

guess SBF was used; (iii) surface emissivity spectrum unvaried from daytime to

nighttime.  Column 5 shows the rms values when a true SBF was used.  It

illustrates that rms values of retrieved parameters almost do not vary with an

uncertainty range of 0.05 in SBF (columns 4 versus 5), except some small

changes in the retrieved midwave emissivities.

c. Sensitivities to instrument noise and co-registration error

The MAS instrument noise can be described statistically as having a Gaussian

probability distribution with a mean of zero and a spectrally varying standard

deviation referred to as the noise equivalent temperature difference NEDT (K).

Also, when clear-sky day/night observations are combined to retrieve

atmospheric and surface properties, there may be an error in day/night

registration.  The day/night registration error can be reduced by using

surface features to adjust the day/night registration.  Investigation was

conducted to estimate how MAS instrument noise and co-registration error

influence retrieval results.  A random noise of 0.2K was added into MAS bands

30-50 to simulate uncertainties arose from MAS instrument noise, co-

registration error, and other error sources such as the forward model

calculation error.  The rms results are given in column 6 of Table 5.

Statistical comparisons between the values in columns 6 and 4 show that as

noise is added the accuracy of the retrieval is slightly degraded but it is

still quite good.  The accuracy of retrieved atmospheric temperature profile

and surface  temperature degrade by less than 0.1K.  TPW degrades less than

0.1cm.  Retrieved surface emissivities degrade less than 0.3%.  It indicates
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that the extended physical retrieval algorithm is not highly sensitive to

instrument noise, co-registration error, and other error sources.

d. Sensitivities to the uncertainties in surface emissivities

In the extended algorithm with day/night observations it is assumed that

surface emissivities remain unchanged from daytime to nighttime.  However, it

is possible that the night surface emissivity changes with surface moisture.

Thus some variations for the nighttime surface band emissivities are

introduced to simulate the emissivity variation.  A nighttime surface band

emissivity was regenerated from a daytime surface emissivity plus a random

number with mean of zero and variance 0.01.  The rms of retrieved parameters

is summarized in the final column of Table 5.  As shown, improvements of

atmospheric and surface parameters are mitigated as surface band emissivities

vary from daytime to nighttime (columns 4 versus 7).  But it is still better

than regression retrieval as long as the emissivity variation is small.

4. Application to MAS real observations

The extended algorithm was applied to MAS real data collected during the

WINter Experiment (WINTEX)29.  WINTEX was conducted in Madison, Wisconsin from

March 15 to April 2 making measurements from a NASA ER-2 to define the

measurement requirements for the next generation of the National Polar Orbiter

Environmental Satellite System and to further global climate study.  During

ER-2 flight #99-051 (18 March, 1999), MAS clear sky data scenes were collected

over Madison in Wisconsin.  Three minutes of data (1000 scans, ~40 km X 35 km)

from 21:13 to 21:16 UTC were selected to test the extended algorithm.  The

WINTEX home page (http://asapdata.arc.nasa.gov/WINTEX_home.html) provides MAS

browse image and flight information for the ER-2 flight track for 18 March,

1999 (20:00-22:00 UTC).  The MAS 50 m resolution image contained 1000 lines

with 716 pixels per line.  The MAS data were averaged on 10x10 pixels. The
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average processing reduced the image size to 70 large pixels per a line by 100

lines (See Fig. 4).  Unfortunately, there were no ER-2 flights in the week

following 8 March, so only daytime MAS data were utilized to validate the

extended algorithm.  We used 1471 sounding profiles from the period of 1

February to 5 March, 1999 over the central and eastern U. S. and Canada to

develop coefficients for the regression first-guess.  Following the same

procedure in Subsection 3.A, the nighttime dependent dataset was created.  To

better represent surface types in the Madison area, some material samples such

as minerals and rocks were excluded from the MAS band averaged surface

emissivity database.  The mean solar zenith angle used to calculate solar beam

contributions was 66.88 degrees.  A set of regression coefficients that relate

retrieved parameters (atmospheric temperature-humidity profile, surface

temperature, surface emissivities and SBF) to the MAS simulated brightness

temperature was generated from the dependent dataset.  Surface pressure and

sensor viewing angle were added as additional predictors to account for in the

real observations.  Empirical orthogonal functions were calculated for the

dependent dataset to generate temperature, water vapor, and surface emissivity

eigenvectors.

The extended algorithm uses surface-reflected solar beam radiances to

improve retrieval of lower troposphere and surface properties.  Thus it is

important to accurately estimate surface-reflected solar beam radiances over

different types of land cover.  Figure 4 shows the image of MAS band 7 (in

visible region) reflectance data.  The dark (low reflectance) areas on the

image are Lakes Mendota, Monona, Waubesa and Kegonsa in sequence of from upper

left to lower right.  As shown, open water and ice contrast sharply to land.

To validate this observation, two MAS pixels were chosen, one over Lake

Mendota and the other over nearby land.  Their brightness temperatures are

listed in Table 6.  The brightness temperature in band 45 is ~ 7K colder over

open water than land, while the band 30 brightness temperature difference
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approaches 15K.  Thus it is necessary to generate separate sets of regression

coefficients for different surface types.  No solar beam contribution was

considered in the midwave region for MAS pixels in open water and ice-coved

lake.  Namely the effect of solar beam contributions over open water was

neglected.  When regression retrieval was implemented at each MAS pixel, the

reflectance value in MAS band 7 was used in a test to distinguish open water

(< 0.8) from land (?  0.8).  Figure 5 shows retrieved surface emissivity for

bands 45 (the left-hand panel) and 46 (the right-hand panel).  Emissivity

ranges from 0.95 to 1.0.  Figure 6 shows results for bands 31 (the left-hand

panel) and 32 (the right-hand panel).  Obviously, the surface emissivity in

the midwave region varies in a larger range (from 0.9 to 1.0).  It is

desirable to compare the retrieved surface emissivities  with measured

emissivity spectra30-31.  However, these comparisons are of limited value since

the measured emissivity spectra are for specific terrestrial materials only,

e.g. tap water, ice, a specific tree, soil, rock, etc.  Surface emissivity

depends on the surface composition (soil, vegetation, snow, wetness, etc.) and

geometry (soil roughness, geometry of the vegetation canopy, topography,

etc.).  Real surfaces often consist of several mixed terrestrial materials

except when snow cover is present.  For this reason, comparisons were limited

to the Lake Mendota and other lake scenes; it was independent observed that

~75% surface of Lake Mendota was ice covered on 18 March, while the other

lakes were entirely open water.  The measured and retrieved emissivity values

in MAS bands 31, 32, 45 and 46 are summarized in Tables 7.1 and 7.2.  As shown

in Figures 5 and 6, retrieved water emissivity is slightly higher in band 32

than band 31, and in band 45 than band 46.  This agrees with measurement

values given in Table 7.1.  The emissivity retrieved over ice (Lake Mendota)

is almost identical (approximately 0.98) for bands 31 and 32, but it is higher

in band 45 (~0.98) than 46 (~0.96).  One can see some variations in the

retrieved emissivity over Lake Mendota because it was partly covered by ice.
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Furthermore, Figure 7 provides a comparison of retrieved surface emissivities

in band 31 (the left-hand panel) and band 46 (the right-hand panel).  The

retrieved surface emissivity over water (ice) is higher (lower) for band 46

than band 31.  Again this is consistent with the measured results.  Therefore,

the extended algorithm did well in retrieving surface emissivities over open

water and ice.  Surface emissivity over land requires further investigation.

Figure 8 shows retrieved land-surface temperature.  The retrieved

surface temperature ranges from 272K (lake scenes) to 289 K (urban cover).

Surface temperature of Lake Mendota is a few K colder than the other lakes

since 75% Lake Mendota was ice covered.  Note that there is a strip of warmer

surface temperature between Lakes Mendota and Monona in the image. This is

downtown Madison, a highly urbanized region.  Much of the snow cover has been

removed in this strip.  Figure 9 shows a retrieved atmospheric temperature-

humidity profile compared with a collocated AERI (Atmospheric Emitted Radiance

Interferometer)-GOES retrieved profile.  The solid curve represents the

retrieval results from the extended algorithm.  The dotted-dashed curve

represents regression retrieval.  The dashed curve is the AERI-GOES retrieved

profiles (the time difference between MAS and AERI-GOES is less than 10

minutes).  The AERI is a ground-based passive infrared observation system that

provides 10-min temporal resolution atmospheric emitted radiance spectra of

better than one wavenumber in spectral resolution.  The AERI has demonstrated

a capability of retrieving thermal and moisture vertical structure in the

lowest 3 km of the Earth’s atmosphere32-34.  Combined AERI-GOES retrievals take

advantage of up-looking and down-looking emission measurements.  Satellite

based GOES measurements are best suited for temperature-humidity vertical

structure in the upper and mid-troposphere, while ground-based AERI excels at

providing thermal and moisture information in the planetary boundary layer

(PBL).  In the left-hand panel of Fig. 9, the extended algorithm retrieved

temperature profile is almost exactly the same as the regression retrieval
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(only 0.1-0.2K better at low troposphere).  This indicates that the physical

retrieval is not able to improve temperature retrieval accuracy.  The MAS and

AERI-GOES temperature retrievals in Fig. 9 show a large discrepancy of almost

10 K near the tropopause (~200 hPa).  This on large part is traceable to the

MAS first-guess regression retrieval, which has difficulty resolving the

tropopause temperature.  By contrast, the National Centers for Environmental

Prediction (NCEP) 6- to 18-h forecast from the Nested Grid Model35 is adopted

as a first-guess profile in the GOES retrieval.  The discrepancy between the

guess temperature profile and rawinsonde observation (RAOB) can reach as small

as 1-2K.  Thus GOES retrieval benefits from the accurate guess profile.  In

the AERI retrieval first-guess profile is obtained from regression analysis,

similar to the MAS retrieval.  However, the radiosonde climatology data were

collected in a small region for AERI retrieval so that a good regression

first-guess can be achieved (the rms differences between regression first-

guess and RAOB is within 1-2K33).  MAS water vapor retrieval is much better

than temperature retrieval (right-hand panel of Fig. 9).  The physical

retrieval made a significant improvement for TPW with MAS data.  The water

vapor regression first-guess is too wet compared to AERI-GOES retrieval

result.  The physical retrieval made it drier based on water vapor information

provided by MAS bands 40-42.   The TPW values from regression and physical

retrievals are 0.86 and 0.58 respectively, while the TPW from AERI-GOES

retrieval is 0.50.  The retrieved bias is reduced from 72% to 16%.

5. Application to MODIS real observations

The extended algorithm was also applied to MODIS real observations. The

daytime data set (descending overpass) was selected at 17:00-17:05 UTC on 17

September, 2000, and the nighttime data set (ascending overpass) at 04:05-

04:10 UTC next day.  The MODIS calibrated radiance level-1B (L1B) data granule

has 2030 scan lines with 1354 pixels per line.  The daytime/nighttime datasets
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have an overlapped area over central and eastern U. S. (Figure 10). Only 1900

lines are shown in Figure 10 since there are some missing data lines in the

beginning of the daytime L1B data.  The left-hand (right-hand) panel in Figure

10 is the image of daytime (nighttime) brightness temperature in MODIS band

32.  We used MODIS datasets including calibrated radiances in L1B data product

(version 2.4.3), and  latitude/longitude, sensor local zenith angle, solar

zenith angle, land/water flag, and clear/cloud scene information in the

corresponding geo-location and cloud mask data products. The MODIS bands used

for retrieval performance evaluation are bands 20, 22-25 and 27-36

respectively.

 

A. Data pixel registration  

It is a crucial step to register pixels in the daytime and nighttime datasets

with a minimum registration offset so that the sensor views the same

geophysical location.  The registration is accomplished by mapping the

daytime/nighttime data into standard map grids (resolution 10 km).  The map-

grid adopted here is an equal-area grid since the equal-area grid maintains

approximately equal statistical significance36. So it would be more

appropriate for the aggregation of radiance data.  First, pixels with cloud

flags or brightness temperatures out of reasonable ranges were excluded.

Second, daytime/nighttime data were mapped into equal-area grids and the

number of pixels was counted in each grid.  If the number of clear pixels in a

grid is less than 5, then this grid is discarded. Latitude/longitude, sensor

local zenith angle, solar zenith angle, corresponding to clear-sky pixels were

also averaged.  The land flag was set to 1 (0) if more (less) than 50% pixels

within a grid were over land.  Finally, daytime and nighttime band brightness

temperatures were averaged in 10x10 km grids.  Figure 11 shows the collocated
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daytime/nighttime images of band 32 brightness temperatures at 10x10km grids.

Lakes Michigan, Huron and Erie are shown in both daytime and nighttime images.

B. Regression and physical retrievals

Regression and physical retrievals were applied to the collocated

daytime/nighttime datasets.  Since MODIS overpass times are not close to the

synoptic time (0 or 12 UTC), the GOES retrieval results instead of RAOB data

were used for comparison.   There are two options to choose the first- guess

for physical retrieval, option 1 is from regression method and option 2 is to

use the GOES first-guess.  It is better to use the GOES first-guess to

evaluate the performance of the extended algorithm because it would be much

comparable if the same first-guess was used for both retrievals.  However, the

GOES first-guess could not be used directly for MODIS retrieval due to

different spatial resolutions.  For instance, there are 1574 temperature and

water vapor guess profiles with GOES for the daytime dataset, while 19682

profiles are needed for the grids in the MODIS retrieval.  Hence for each

MODIS retrieval, a MODIS first-guess was generated using a linear

interpolation method based on the nearest GOES FOVs.  The generated MODIS

first-guess has resemblance to the GOES first-guess.  For the first-guess of

surface temperature and emissivities, the regression results were used.  So

the MODIS first-guess is a hybrid first-guess including temperature-humidity

profile from the GOES first-guess and surface temperature and emissivities

from the regression results.  Figure 12 shows the retrieved surface

temperature from MODIS data. The upper (bottom) panel is for the daytime

(nighttime).  Note that the white dots or curves or areas in the images

indicate no retrieval result available.  The diurnal variation of surface

temperature over land is clearly shown. The surface temperature is much colder

at night than in day over land, while surface temperature over open water

varies much smaller.  Figure 13 is the surface temperature retrieved from GOES
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data and displayed at the MODIS retrieval grids for a better comparison.  The

GOES retrieved surface temperature (Figure 13) and TWV (figure 15) images were

generated from the GOES retrieved results, if no GOES retrieval results exists

at the MODIS retrieval grid, a value was selected from the GOES dataset at the

nearest distance.  As shown, a good agreement is achieved between two images

in Figures 12 and 13, higher (lower) surface temperature areas are matched

well.  However, the retrieved daytime surface temperature at the left-bottom

area in the MODIS image (upper panel) is probably 1-2K higher than that in the

GOES image.  One of the reasons to explain the discrepancy might be the

difference in their retrieval algorithms.  In the extended algorithm, surface

temperature and emissivity along with atmospheric temperature-humidity profile

are retrieved simultaneously. In the GOES physical retrieval algorithm, a

sequential method is used to deal with the surface emissivity22.   Since there

were no GOES sounding data available at 04:00 UTC on 18 September, the dataset

at 03:00 UTC was used for the nighttime surface temperature comparison (bottom

panels).  Figures 14 and 15 are the same as for Figures 12 and 13, but for the

retrieved total precipitable water vapor (TWV).  The wettest grids (~4.0 cm)

in the MODIS image on the upper panel of Figure 14 cannot be found in Figure

15 of the GOES retrieval results because there are no GOES retrieval results

available at these grids due to clouds.  Except that, the TWV distribution

retrieved from MODIS data is similar to the GOES retrieval result.  The

validation of the retrieved surface emissivities in band 22 (in the midwave

window) and band 32 (in the longwave window) was limited to Lake Michigan. The

retrieved surface emissivities are approximately 0.97 and 0.98 in these two

bands, which are close to the measured values in Table 7.1.  In summary, the

performance of extended algorithm was evaluated by comparing the retrieved

results from MODIS data with the GOES retrieval result.  It demonstrates that

the extended algorithm is capable of retrieving medium-scale atmospheric
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temperature/water vapor and surface temperature/emissivity with similar

retrieval accuracies as GOES achieves plus much higher spatial resolution.

6. Possible further improvements

Physical retrieval algorithms, including the extended algorithm presented in

this paper, benefit from a good first-guess profile.  With the NCEP NGM37

output as first guess, the GOES retrieval provides higher spatial and temporal

resolution moisture information beyond that of conventional radiosondes35.

Thus using a model-based first-guess for the MODIS retrieval also improves

moisture retrieval as demonstrated in Section 5.  Another first-guess option

is to take advantage of the AIRS retrieval.  The high spectral resolution of

AIRS produces sharp vertical weighting functions and minimizes the

contamination of temperature sounding with water vapor lines and other

atmospheric gases.  AIRS, together with the Advances Microwave Sounder unit

(AMSU) and the Microwave Humidity Sounder supplied by Brazil (HSB) is expected

to obtain global temperature-humidity profile with much higher accuracy at

coarser spatial resolution.  The retrieval accuracy for temperature and

humidity are 1K rms in 1km thick layers and 10% rms in troposphere

respectively.  The second MODIS, AIRS, and other sounders will be flown

together on the EOS PM-1 platform  (to be launched in 2001).  The retrieved

temperature-humidity profile and surface temperature from AIRS data can be

used as a first-guess in the MODIS retrieval.  Due to its higher spatial

resolution (1km at nadir for MODIS versus 15km for AIRS in the infrared

region), more spatial variations in atmospheric thermal structure and humidity

distribution as well as surface parameters could be retrieved from MODIS data.

Moreover, MODIS data provide more detailed cloud information in the FOV of

AIRS and cloud information is crucial to obtain better retrieval results.

The first guess of surface emissivities is another important factor for

the performance of physical retrieval algorithms.  The temperature independent
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spectral index based day/night method13-14 may provide a better first-guess of

land-surface emissivities. In cases of spectral/spatial surface emissivity

variation, accounting for this variation will improve the accuracy of

retrieved atmospheric profiles23.  Multiple end-member spectral mixture

models38,39 may provide useful information to infer emissivity.  A better first

guess of surface emissivity may be obtained by a combined use of MODIS

visible, near-infrared, and thermal infrared data through a synergism of BRDF

models in visible near-infrared40-41  and thermal infrared42 regions.

7.Conclusion

An extension to the two-step physical algorithm has been presented in this

paper.  The extended algorithm retrieves day/night atmospheric temperature-

humidity profile, day/night land-surface  temperature and  emissivities in the

atmospheric window regions simultaneously from combined day/night MODIS

observations.  The solar contribution term has been included in the linear

perturbation of RTE.  The surface-reflected solar beam radiance within the

midwave region is an additional source to improve retrieval accuracy in lower

troposphere and surface properties.  Simulation study has demonstrated that

retrieval performance is greatly improved when the combined day/night

observations are used.  Sensitivity study and error analysis also indicate

that the extended algorithm is relatively insensitive to instrument noise, co-

registration error between multitemporal observations, surface emissivity

variation during the day/night period and the SBF uncertainty.  The extended

algorithm was applied to MAS real observations from NASA ER-2 aircraft over

Madison, WI during the WINTEX campaign.  The retrieved surface emissivities

within the window regions were obtained.  Good agreements between retrieved

and measured surface emissivities of water and ice surfaces were achieved.

Along with retrieved surface emissivities, surface temperature and atmospheric

temperature-humidity profile were also retrieved simultaneously.  Retrieved
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TPW was verified against AERI-GOES results.  The TPW bias is reduced from 72%

to 16%.  Furthermore, the extended algorithm was also applied to real MODIS

day/night observations illustrating that it is capable of retrieving medium-

scale atmospheric temperature/water vapor and surface temperature/emissivity

with similar retrieval accuracies as GOES achieves plus much higher spatial

resolution.  With the MODIS data collected from the EOS AM platform (named

Terra) and to be collected from the EOS PM platform (named Aqua) in the near

future, the extended day/night method will provide better diurnal information

of the global atmospheric and surface information at a moderate spatial

resolution of 5-10km.
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1. The histograms of extended algorithm retrieval bias in surface  temperature

(Ts).  The left-hand panel is for daytime dataset and the right-hand panel is

for nighttime dataset.

2. Same as Fig. 1, but for total precipitable water vapor (TWV).

3. The histograms of extended algorithm retrieval bias for surface

emissivities.  The upper two panels are for MAS bands 31 (left-hand) and 32

(right-hand) respectively.  The bottom two panels are for MAS bands 44 (left-

hand) and 45 (right-hand) respectively.

4. MAS visible band 7 reflectance on 18 March, 1999 (21:13-21:16 UTC) over

Madison, Wisconsin.

5. MAS bands 45 (left-hand panel) and 46 (right-hand panel) surface emissivity

images retrieved from the MAS real observations.

6. Same as Fig. 6, but for MAS bands 31 (left-hand panel) and 32 (right-hand

panel).

7. MAS bands 31 (left-hand panel) and 46 (right-hand panel) surface emissivity

images retrieved from the MAS real observations on 18 March, 1999 (21:13-21:16

UTC) over Madison, Wisconsin.

8. Surface temperature (in Kelvin) image retrieved from the MAS real

observation on 18 March, 1999 (21:13-21:16 UTC) over Madison, Wisconsin.

9. Temperature and water vapor mixing ratio retrieval comparisons with AERI-

GOES retrieval results.
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10. MODIS daytime (left-hand panel) and nighttime (right-hand panel) band 32

image at 10x10km grids on 17 (17:00-17:05 UTC) and 18 (04:05-04:10 UTC)

September, 2000.

11. Same as Fig. 10, but for the collocated daytime (upper panel) and

nighttime (bottom panel) datasets at 10x10km grids.

12. Daytime (upper panel) and night (bottom panel) surface temperature (in

Kelvin) image retrieved from the MODIS real observations on 17 (17:00-17:05

UTC) and 18 (04:05-04:10 UTC) September, 2000.

13. Same as Fig. 12, but for retrieved from the GOES real observations on 17

(17:00 UTC) and 18 (03:00 UTC) September, 2000.  The image was generated from

the GOES retrieved dataset but displayed at the retrieval grids.

14. Same as Fig. 12, but for retrieved total precipitable water vapor (in

centimeter).

15. Same as Fig. 13, but for retrieved total precipitable water vapor (in

centimeter).

Table 1, Spectral characteristics of the MODIS
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TIR bands

NEDTa(K)MAS band Central
wavelengt

h ( m )

Bandwidth
( m )

Specified Estimated

Primary
use

20 3.79 0.19 0.05 0.21 L
21 3.99 0.08 2.00 1.07 F
22 3.97 0.09 0.07 0.19 L, O
23 4.06 0.09 0.07 0.18 L
24 4.47 0.09 0.25 0.31 A
25 4.55 0.09 0.25 0.27 A
27 6.77 0.24 0.25 0.73 A
28 7.33 0.33 0.25 0.63 A
29 8.54 0.37 0.05 0.18 A, L
30 9.73 0.30 0.25 0.36 Ozone
31 11.01 0.52 0.05 0.17 A, L, O
32 12.03 0.52 0.05 0.17 A, L, O
33 13.36 0.31 0.25 0.35 A
34 13.68 0.33 0.25 0.45 A
35 13.91 0.33 0.25 0.36 A
36 14.20 0.29 0.35 0.61 A

a Noise Equivalent Temperature Differences (NEDT) for bands 20-36
were estimated with the 17 September dataset over Lake Michigan.
They are larger than specifications.  A recent study12 shows the NEDT
specifications are achieved in the most bands.

 

    Note:

             A    atmospheric studies         L    land studies

             C    cirrus cloud                      O    ocean studies

             F    fire

Table 2, Spectral characteristics of the MAS
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TIR bands in its 1999 configuration

MAS band Central
wavelengt

h ( m )

Bandwidth
( m )

NEDTa(K) Primary use

30 3.75 0.16 1.36 L
31 3.92 0.15 1.02 L,O
32 4.07 0.17 1.09 L
33 4.23 0.16 2.87 L
34 4.38 0.16 3.46 L
35 4.54 0.15 0.75 A
36 4.70 0.16 0.49 A
37 4.85 0.16 0.38 A
38 5.00 0.16 0.31 A
39 5.16 0.15 0.54 A
40 5.30 0.16 0.34 A
41 5.39 0.16 1.06 A
42 8.48 0.44 0.09 A, L
43 9.67 0.62 0.13 Ozone
44 10.44 0.49 0.09 A, L
45 10.95 0.54 0.07 A, L,O
46 11.94 0.45 0.25 A, L,O
47 12.82 0.46 0.41 A, L
48 13.22 0.47 0.59 A
49 13.76 0.60 1.81 A
50 14.22 0.42 4.18 A

     a Noise Equivalent Temperature Differences (NEDT) for bands 30-
50 were estimated with 25 March 1999 data over Lake Superior.

  

Note:

              A    atmospheric studies

              L    land studies

              O     ocean studies

Table 3.1.  Retrieval rms of the independent dataset simulated for 418
daytime cases, with solar contribution removed and no noise added
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Layer(hPa)a Dep. mean
profile

Regression rtvl. Physical rtvl.

1 (50-200) Ta (K) 4.46 1.04 0.89
2 (200-400) Ta (K) 3.32 1.49 1.42
3 (400-600) Ta (K) 5.62 1.26 1.14
4 (600-800) Ta (K) 6.96 1.25 1.18

  5 (800-1000) Ta(K) 8.23 1.84 1.64
Ts (K) 10.59 0.62 0.49

TPW( cm) 0.85 0.49 0.34
Mw 0.060 0.024 0.020
Lw 0.027 0.012 0.009

a Ta, atmospheric layer mean temperature; Ts, surface temperature; TPW,
total precipitable water vapor; Mw , surface emissivity in the midwave
region; Lw , surface emissivity in the longwave region.

Table 3.2.  Retrieval rms of the independent dataset simulated for
daytime/nighttime 418 cases, with no noise added
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Layer (hPa)a Dep. mean profile Regression rtvl. Physical rtvl.
Daytime

1 (50-200) Ta (K) 4.46 0.90 0.84
2 (200-400) Ta (K) 3.32 1.40 1.35
3 (400-600) Ta (K) 5.62 1.13 1.07
4 (600-800) Ta (K) 6.96 1.19 1.12

5 (800-1000) Ta (K) 8.23 1.72 1.63
Ts(K) 10.59 0.41 0.23

TPW(cm) 0.85 0.34 0.27
Nighttime

1 (50-200) Ta (K) 4.46 0.90 0.84
2 (200-400) Ta (K) 3.32 1.40 1.35
3 (400-600) Ta (K) 5.62 1.13 1.04
4 (600-800) Ta (K) 6.96 1.19 1.14
5 (800-1000) Ta (K) 8.23 1.72 1.61

Ts(K) 10.59 0.41 0.17
TPW(cm) 0.70 0.27 0.23

Emissivities
Mw 0.060 0.011 0.003
Lw 0.027 0.007 0.005

a Ta, atmospheric layer mean temperature; Ts, surface temperature; TPW,
total precipitable water vapor; Mw , surface emissivity in the midwave
region; Lw , surface emissivity in the longwave region.
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Table 4.  Retrieval rms of the independent dataset simulated for
daytime/nighttime 440 cases, versus daytime or nighttime dataset alone

(1) (2) (3) (4) (5) (6) (7)
Layer (hPa)a Regression

rtvl.
(day/night)

Physical
rtvl.

(day/night)

Regression
rtvl. (day

alone)

Physical
rtvl. (day
alone)

Regression
rtvl. (nightb

alone)

Physical
rtvl. nightb

alone)
1 (50-200) Ta (K) 0.88 0.84 1.04 0.95 1.00 0.87

2 (200-400)  Ta (K) 1.99 1.78 2.12 1.99 2.06 1.86
3 (400-600) Ta (K) 1.96 1.55 2.26 1.66 2.07 1.68
4 (600-800) Ta (K) 1.88 1.41 2.24 1.55 1.93 1.52
5 (800-1000) Ta (K) 2.66 2.43 2.98 2.75 3.07 2.84

Ts(K) 0.76 0.49 0.92 0.68 1.10 1.01
TPW(cm) 0.36 0.25 0.40 0.30 0.38 0.30

30
0.022 0.011 0.022 0.013 0.043 0.045

31
0.025 0.010 0.023 0.012 0.050 0.051

32
0.024 0.009 0.023 0.011 0.050 0.048

33
0.025 0.008 0.024 0.010 0.051 0.049

34
0.027 0.009 0.025 0.010 0.051 0.051

42
0.016 0.013 0.017 0.016 0.022 0.021

44
0.012 0.008 0.013 0.010 0.018 0.016

45
0.011 0.008 0.013 0.011 0.016 0.016

46
0.010 0.008 0.011 0.009 0.013 0.013

a Ta, Atmospheric layer mean temperature; Ts, surface temperature; TPW,
total precipitable water vapor; 46,...,30 , surface emissivities.

 b Daytime dataset but removal of surface-reflected solar beam contribution
within the midwave region.
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Table 5.  Retrieval rms of the independent
dataset simulated for daytime/nighttime 440 cases, with guess SBF, no

noise added and unvaried night emissivities versus true SBF, noise added
and varied night emissivities

(1) (2) (3) (4) (5) (6) (7)
Layer (hPa)a Dependen

t mean
profiles

Regressio
n rtvl.

Physical
rtvl.

(guess
SBF, no
noise

added,
unvaried
emis.)

Physical
rtvl.
(true

SBF, no
noise

added,
unvaried
emis.)

Physical
rtvl.

(guess
SBF,
noise
added,

unvaried
emis.)

Physical
rtvl.

(guess,
SBF, no
noise
added,
varied
emis.)

Daytime
1 (50-200) Ta (K) 8.11 0.88 0.84 0.85 0.87 0.87
2 (200-400) Ta(K) 6.05 1.99 1.78 1.78 1.80 1.78
3 (400-600) Ta (K) 10.92 1.96 1.55 1.56 1.60 1.58
4 (600-800) Ta (K) 12.10 1.88 1.41 1.40 1.41 1.47
5 (800-1000) Ta 13.89 2.66 2.43 2.43 2.45 2.45

Ts (K) 18.80 0.76 0.49 0.49 0.52 0.55
TPW (cm) 1.04 0.36 0.25 0.26 0.27 0.25

Nighttime
1 (50-200) Ta (K) 8.11 0.88 0.82 0.82 0.89 0.99

2 (200-400) Ta (K) 6.05 1.99 1.75 1.75 1.80 1.76
3 (400-600) Ta (K) 10.92 1.96 1.51 1.51 1.54 1.54
4 (600-800) Ta (K) 12.09 1.86 1.33 1.33 1.37 1.46
5 (800-1000) Ta 13.90 2.66 2.40 2.40 2.44 2.46

Ts (K) 18.03 0.73 0.41 0.41 0.45 0.48
TWP (cm) 0.96 0.31 0.23 0.23 0.24 0.25

Emissivities

30 0.059 0.022 0.011 0.011 0.012 0.011

31 0.064 0.025 0.010 0.009 0.011 0.011

32 0.062 0.024 0.009 0.007 0.009 0.009

33 0.062 0.025 0.008 0.007 0.009 0.009

34 0.060 0.027 0.009 0.008 0.009 0.009

42 0.043 0.016 0.013 0.010 0.012 0.015

44 0.026 0.012 0.008 0.008 0.010 0.010

45 0.022 0.011 0.008 0.008 0.009 0.010

46 0.016 0.010 0.008 0.008 0.008 0.009

 a  Ta , atmospheric layer mean temperature; SBF, solar BDRF factor; Ts, surface
temperature; TPW, total precipitable water vapor; 46,...,30 , surface emissivities.
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Table 6.  MAS band brightness temperatures in window regions at two
sounding pixels, one over Lake Mendota, and another over nearby land

(20:15 UTC, 18 March, 1999)

Band 30 31 32 45 46
Lake 275.96 274.59 271.75 275.42 275.02
Land 290.23 286.25 280.04 282.56 282.78

Table 7.1.  Lab measured and retrieved surface emissivities in window
regions for tap water

Band 31 32 45 46
Wavelength

)( m
3.92 4.07 10.95 11.94

Measured surf.
emissivitya

0.976 0.977 0.990 0.984

Retrieved surf.
emissivity

0.975 0.980 0.992 0.985

Table 7.2.  Lab measured and retrieved surface emissivities in window
regions for ice

Band 31 32 45 46
Wavelength

)( m
3.92 4.07 10.95 11.94

Measured surf.
emissivitya

0.974 0.976 0.978 0.955

Retrieved surf.
emissivity

0.980 0.980 0.980 0.960

a Band-averaged surface emissivity at viewing angle 10 degree from nadir,
weighted by the band spectral response function.
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