
Development of Algorithms and Strategies for Monitoring Chlorophyll 
and Primary Productivity in Coastal Ocean, Estuarine and 

Inland Water Ecosystems 

Semi-Annual Technical Report 
July l&l998 

Janet W. Campbell 
University of New Hampshire 

Durham, New Hampshire 03824 

Summary 

This is the semi-annual progress report for the period January through June 1998 for the 
Execution Phase of my MODIS Instrument Team investigator project. The objectives of 
this work are: 

Establish a protocol for developing regional or site-specific bio-optical algorithms for 
coastal “case 2” waters. 

Demonstrate the protocol by developing algorithms for two coastal seas: the Gulf of 
Maine/Mid-Atlantic region and the Yellow Sea/East China Sea region. 

Prescribe a protocol for “stitching together” local or site-specific algorithms. 

Develop a strategy for monitoring coastal oceans, estuaries, and inland waters. 

In this report, I will describe progress toward the first three objectives. This report reflects 
the efforts of a research team consisting of myself, an assistant research scientist (Timothy 
Moore), a research associate (Karen Garrison), and three graduate student assistants (Hui 
Feng, S. Gaudreau and K. Jacobs). During the time period covered by this report, I have 
been working at NASA Headquarters as program manager for Ocean Biology and 
Biogeochemistry. Therefore, my direct involvement in this research has been limited, 
although I maintain contact with and continue to supervise the work of the team at UNH. 

Chlorophyll Algorithm Protocol Development 

Broadly stated, the goal of a bio-optical algorithm is to estimate a suite of water constituents, 
including chlorophyll, which affect the optical properties of the water. Other constituents to 
be estimated include colored dissolved organic matter (CDOM), organic detritus, and 
suspended sediments. Our goal is to define a protocol for pararneterizing regional bio- 
optical algorithms and a technique for ‘stitching together’ retrievals from different regional 
algorithms. Chlorophyll derived by the bio-optical algorithm will be used to estimate 
primary productivity. Progress toward the goal of parameterizing primary productivity 
algorithms will be described later. 

Task #l: Define a generalized mathematical framework for bio-ontical algorithms 

The framework for bio-optical algorithms will be a radiance model that predicts upwelling 
spectral radiance as a function of the inherent optical properties of the water (Table 1). 



Table 1. Equations used to derive LW~ from bh and a (left column) and the inversion equations used to derive bda from LW~ 
(right column). Eqs. I-l to I-3 predict the normalized water-leaving radiance given a and bb, whereas eqns. I-4 to I-6 are the 
basis for analytical algorithms used to derive in-water optical properties given water-leaving spectral radiance measurements. 

Given the inherent optical properties, a and bh, we define 
X as follows: 

X E 4 
a+bb 

where a and bt, are the effective absorption and back- 
scatter coefficients within the upper optical depth. 

Based on results of Gordon (1986), the remote-sensing 
reflectance is accurately represented as: 

Rrs = 0.0949 x + 0.0794 x2 U-2) 

for solar zenith angles t$, > 20”. 

According to the “Semianalytic Radiance Model” of Gordon Since a 77 bb in most Case 1 waters, equation (I- 1) is often 
et al., (1988), the normalized water-leaving radiance can be approximated by X = bt,/a. However, this approximation is 
modeled as: unnecessary, since the ratio of bb to a is easily computed as: 

bvN = 
U-~Wp’FoRrs 

m2( 1 -@W 
u-3) 

where the symbols are defined previously (see text). In this 
expression, the term (1-rR) which appears in the paper by 
Gordon et al., (1988), (their equation l), is replaced by 
the term (l-rQR,) where Q is an estimate of R/R,. Q does 
not need to be particularly accurate since (l-rR) only varies 
from about 0.92 to 1.0, and is sometimes ignored. 

Given normalized water-leaving radiance, L,N, equation 
(I-3) is inverted to obtain the remote-sensing reflectance: 

Rrs = &N&I 
M + rQ*LwN/Fo (1-4) 

where M = (1-p)( l-p’)/m2. Note that both LW~ and F, depend 
on wavelength, whereas the other terms in (I-4) do not. 

Equation (I-2) is a quadratic equation with two roots. The only 
positive root is: 

x= - 0.0949 + dO.0090 + 0.3176 Rfs 
0.1588 

!a2 = x 
a 1-x 

(I-5) 

Thus, beginning with normalized water-leaving radiances in 
the visible-range ocean bands of MODIS, the ratio of back- 
scattering, b&i), to absorption a(&) is derived for each band. 
Models of inherent optical properties am then parameterized to 
express the dependence of bb and a on in-water constituents 
(e.g., CHL, TSS, CDOM, etc.). 



The inherent optical properties, in turn, are parameterized as functions of in-water 
constituents. The bio-optical algorithm is the inverse of the radiance model in that it 
predicts in-water constituent concentrations given upwelling spectral radiance. 

Table 1 summarizes the equations for deriving the normalized water-leaving radiance as a 
function of inherent optical properties (forward direction of the radiance model) and the 
equations for inverting the model to derive the ratio X = bda. These equations are based on 
the semi-analytic radiance model of Gordon et al. (1988) which is the basis for our work 
and that of others (Carder et al., 1997; Garver and Siegel, 1997; Hoge and Lyon; 1996). 

This approach is flexible enough to be used in a variety of environments including the open 
ocean (case 1 waters) as well as coastal, estuarine and inland regions (case 2 waters). 
Flexibility is derived by allowing for locally parameter&d inherent optical property (IOP) 
sub-models. Specifically, we require parameterizations of the effective upper-water 
absorption and backscattering coefficients: 

a(A) = (1) 

b(h) = hxv(~) + bbp(h) (2) 

where a,(h) and bh&) are known properties of pure water (or seawater); a@(h) is the 
absorption coefficient of phytoplankton; b(h) is the absorption coefficient of colored 
dissolved and particulate organic matter; and bh (A) is the backscattering coefficient of 
particulate matter in the upper water column. TR ‘s is illustrated in Table 2. 

Table 2. The dependence of inherent optical property submodels on chlorophyll 
(CEIL), total suspended matter (TSM), and colored dissolved organic matter 
(CDOM) may be parameterized for each local region. Here are examples of 
commonly used submodels: 

Inherent Optical Property Submodel 

Backscattering coejficient of particles: 

Retrieval Variables 

bbp(h) = b&50) (y)’ 

Absorption coeflcien t of phytoplankton: 

aph@) = a@*(h) CHL 

Absorption coeficient of CDOM and detritus: 

bb,(550) -- related to TSM 

Y -- size distribution of particles 

CHL -- chlorophyll concentration 

%dlm = ~d&oo) e -S(hm) e&400) -- CDOM and detritus 
concentrations 



The absorption and backscattering coefficients will require locally parameter&d submodels 
to account for the effects of materials found in each body of water. Specifically, regional 
algorithms will differ in how they parameter& the absorption and backscattering 
coefficients associated with phytoplankton cells, detritus, CDOM, sediments and other 
mineral particles. Algorithms based on this framework will differ in two ways. First, the 
submodels associated with each constituent (e.g., phytoplankton, detritus, CDOM, sediment, 
etc.) may differ in their mathematical form, and second, parameters may differ among 
algorithms using the same mathematical form. 

Task #2: Prescribe a nrotocol for narameterizing algorithms 

Once the mathematical relationships have been established, the next step is the estimation of 
parameters. Each radiance model has an associated set of variables and parameters. The 
distinction between parameters and variables is often blurred because parameters tend to 
vary spatially and temporally. However, the distinction is clear in the context of an 
algorithm. Any terms associated with the radiance model (factors, exponents, slopes, 
intercepts, etc.) that are estimated using data and subsequently held constant when the 
algorithm is applied are considered parameters. Terms in the model that are either input to 
or output from the algorithm on a pixel by pixel basis are considered variables. 

For example, the absorption coefficient for CDOM and detritus is usually modeled as 

hh&) = acdm(kd exp[-S(h - kJ1 (3) 

In this expression, ~(&-,) is a variable that is used as an index of the CDOM plus detritus 
concentrations. Most algorithms seek to estimate -(ho) and assume a constant value for 
S, in which case, S is a parameter. On the other hand, if S is estimated as part of the 
algorithm then S is also a variable which would vary from pixel to pixel. 

The estimation of parameters requires concurrent data on constituent concentrations, 
inherent optical properties, and remote-sensing reflectance at n stations. The latter is derived 
from measurements of upwelling radiance and downwelling n-radiance. Given measured 
remote-sensing reflectances (R& and constituent concentrations (C), the unknowns are the 
m elements of the parameter vector, 0. 

Our objective is to defme a statistical procedure for determining the parameter values, 8, 
which minimize errors in C. Errors may be defined either as simple differences between the 
retrieved and measured values (A) or as differences in log-transformed values (A’). For 
either definition, the goal is to minimize the mean squared error: 

MSE = A i$o Ai (4) 

defined here in terms of simple difference errors. 

The ordinary least-squares procedure is to solve a system of m equations: 

GMSE 
F = f &Ai% = 0 (i=l ,...m> (5) 
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which can be written: 

(i=l ,...,m) (6) 

Bet use of the nonlinear nature of the radiance model, we do not have an explicit expression 
for 6 i as a function of the input variables and parameters. However, numerical solutions 
may be obtained for the above system of equations. 

Hui Feng (as part of his Ph.D. thesis) has investigated optimization procedures for 
parameterizing a simplified reflectance model: 

R = G 
bbw + bbn 

a + bw + bbp (7) 

where G is a constant. Using the spectral absorption measurements and reflectance data 
from Tokyo Bay (Kishino et al., 1985), he solved for a “derived” bhp: 

bbp = (8) 

Hui then parameterized bbp as a function of total suspended solids [TSS]: 

‘%p = A [TSS] B (9) 

where the parameters A and B are spectrally varying. The measured absorption coefficients 
were parameterized in terms of CHL and a(400). Parameters were estimated by two 
methods: One method minimized the MSE in the IOP submodels, and the other method 
minimized the MSE in remote-sensing reflectance (the latter required a nonlinear 
optimization technique). The resulting parameters were similar. 

We found that a single reflectance model (based on parameterizations of bbI,, a@ and *) 
was not adequate to represent the range of variabilty found in the Tokyo Bay data set. 
Using an unsupervised classification procedure, the measured reflectance spectra were 
classified into three distinct water types. Then algorithms were parameterized for each water 
type. Results were greatly improved. The Tokyo Bay data set is considered to be 
representative of coastal waters where complex mixtures of different waters types exist. A 
publication based on these results is in preparation (Feng et al. “Modeling the Spectral 
Reflectance of Optically Complex Waters: A Demonstration for Tokyo Bay.“) These 
results were presented at the Ocean Sciences Meeting in San Diego in February, 1998. 

An error analysis to determine the sensitivity of chlorophyll retrievals to errors in the IOP 
parameterization was presented at the 1998 Pacific Ocean Remote Sensing Conference 
(PORSEC ‘98). See Appendix A. This paper is now being prepared for publication in a 
refereed journal. 

Task #3: Prescribe a nrotocol for ‘stitchine topether’ alporithm retrievals 

In coastal regions, large lakes or estuaries, there is often a mixture of waters of distinct 
optical properties. Well-defined color fronts mark the boundary between water types. Each 
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Fig. 1 - Proposed Strategy for “Case 2” Bio-Optical Algorithm Development 

Build a data base for narameterizing local bio-optical algorithms 

Publish protocols for measurements and parameterizing algorithms 

Data needed: in-water remote-sensing reflectance, inherent optical 
properties, constituent concentrations of interest (CHL, TSS, etc) 

I 

, I 

Parameterize local algorithms 

Classify the reflectance spectra into optically distinct water types 

Save the statistics for use in classifying remotely-sensed reflectance 
spectra using “fuzzy” classification 

Parameterize the bio-optical algorithm for each water type 

ADD~V algorithms to satellite data 

For each pixel, test whether Case 1 or Case 2? 

If Case 1, apply Case 1 bio-optical algorithm 

If Case 2, calculate the membership functions for all water types 
indicating likelihood that the remotely-sensed reflectance spectrum 
is from a particular water type (based on saved statistics) 

For each plausible water type (membership > threshold), 
determine retrievals (CHL, TSS, etc.) 

Calculate weighted sum of algorithm retrievals for each 
plausible water type where weights are based on memberships 

Validate alrzorithm 

Conduct local measurement programs to validate algorithm results 
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water type may require its own algorithm, and thus there is a need to “stitch together” 
algorithms in regions were two or more water types mix. We are investigating the use of a 
‘fuzzy logic’ approach to this task. 

The overall strategy (Figure 1) begins with the development of a data base for 
parameterizing coastal ocean algorithms. The data needed include: in-water remote-sensing 
reflectance, inherent optical properties, and constituent concentrations of interest. We have 
begun to collect data for the Gulf of Maine and Mid-Atlantic region. Timothy Moore and 
Hui Feng have been working to develop and demonstrate the procedures outlined in Fig. 1. 
An unsupervised classification procedure was applied to remote-sensing reflectance data 
from the Gulf of Maine and Mid-Atlantic region, and 5 distinct water classes were 
identified. 

After classifying the in-situ reflectance data into 5 classes, we derived the mean MI and 
covariance matrix Q for remote sensing reflectance within each water class i, i = 1,...,5. 
These statistics are used to compute the class membership functions for any measured 
reflectance spectrum, R, as follows. 

Let R be a measured remote-sensing reflectance vector (dropping the ‘rs’ subscript). Then 

z2 = (R - Mi)’ Q-’ (R - Mi) (10) 

is the squared Mahalonobis distance between the measured R and the ith class mean MI. If 
R belongs to class i, then Z2 has a x2 distribution with n degrees of freedom (where n is the 
dimension of R). As a measure of the likelihood that R is drawn from class i, we compute 
the probability: 

Pi = 1 - Fh(Z2) (11) 

where F,(Z2) is the cumulative x2 distribution with n degrees of freedom. For even values 
of n, PI has the exact solution: 

Pi = 
m (Z2/2)i 

exp(-Z2) C --p-- 
i=O * (12) 

where m = n/2 - 1. Images of Pi (i = 1 ,...,5) for the 5 water classes from SeaWiFS data for 
Gulf of Maine and Mid-Atlantic region were produced. 

We will set a threshold for Pi such that any class with a probability above this threshold is 
considered “plausible.” Then, for each pixel, the retrieved variables will be a weighted sum 
of plausible retrievals, where weights are based on the Pi values. 

In the future, we believe that a large globally distributed data base can be classified using 
similar techniques to identify water types. The algorithms parameterized for each water type 
may be used -- regardless of where that type was located in the original in-situ data base. I 
am collaborating with Dr. Sinjae Yoo, of the Korean Ocean Research and Development 
Institute (KORDI) to promote the development of this globally distributed data base. We 
have proposed that this become a pilot project of the Coastal Global Ocean Observing 
System (C-COOS). (Dr. Yoo is a member of the C-GOOS panel. See Appendix B). 



My graduate student (Ken Jacobs) is developing an algorithm for the Great Bay Estuary in 
New Hampshire. Ken has obtained the relevant data (optical, biological and chemical) to 
characterize optical properties of waters mixing in this estuary. We will thus have the data 
to test ‘fuzzy logic’ concepts in these local waters. In addition, we are collaborating with Dr. 
Yoo to test ‘fuzzy logic’ concepts on algorithms in the Yellow Sea and East China Sea. Dr. 
Yoo will provide in-water biological, chemical and optical (MER and PRR) data. 

Publications/Presentations: 

Moore, T. S., H. Feng, and J. W. Campbell. Fuzzy classification of remote sensing 
reflectance data for merging bio-optical algorithms in coastal regions. A poster on this was 
presented at the Ocean Sciences Meeting in San Diego in February 1998, and a poster 
demonstrating the technique for the Gulf of Maine/Mid-Atlantic region will be presented at 
the Ocean Optics meeting in Nov. 1998. 

Primary Productivity Algorithm Protocol Development 

MODIS will have two types of primary productivity algorithms (Esaias, 1996, ATBD). 
There will be an algorithm that predicts annual primary productivity (units: g C m-2 y-1) 
from the average annual surface chlorophyll concentration. This algorithm is based on an 
empirically-determined linear relationship and will be applied to a running mean chlorophyll 
updated ‘weekly’ (every 8 days). The algorithm will only be applied in areas determined to 
be “high variance” regions where there are seasonal blooms. These regions account for 
most (-70%) of the export production (i.e., phytoplankton carbon exported from the 
euphotic zone to the deep ocean). In low-variance regions, surface chlorophyll (gross 
production) tends to be tightly coupled with grazers (secondary production) and thus the 
surface chlorophyll concentration is relatively constant and does not reflect variation in 
primary production. The annual variance in chlorophyll will be determined from the 
satellite-derived chlorophyll and used to decide whether to apply the algorithm at a particular 
location. 

A second type of algorithm predicts daily primary productivity (units: g C m-2 d-1). 
Although there have been many candidate algorithms proposed and described (see 
Beherenfeld and Falkowski, 1997), there are two that will be implemented with MODIS. 
One computes daily integral productivity in the upper mixed layer, and the other computes 
productivity in the euphotic zone. Both of these algorithms will be applied to level-3 
‘weekly’ chlorophyll data although they could be applied on a daily basis to level-2 
chlorophyll data. The weekly values will be summed to estimate annual primary 
productivity, and results from the two short-term algorithms will be compared with that of 
the annual primary productivity algorithm. 

Task #l: Establish a protocol for evaluating primary productivity algorithms 

A protocol for evaluating primary productivity algorithms was established and applied to 
algorithms in a round-robin experiment (see task #2). Algorithm results were compared 
with 1‘tCbased estimates at stations distributed over a range of ocean environments. This 
protocol was based on errors defined in two ways: the difference between the algorithm and 
measured (le) estimate (A), and the difference in log-transformed estimates (A’). The latter 
is a measure of relative error. For each definition of error, two measures of performance 
were determined: the mean error or bias, and the root-mean-square error (RMSE). 



Neither of the two measures of error (A and A’) is entirely satisfactory. The linear measure, 
A, is overly sensitive to algorithm performance in high-productivity regions and insensitive 
in low-productivity regions. Daily primary productivity ranges over three orders of 
magnitude globally, and the global distribution is probably lognormal or a mixture of 
lognormal distributions (i.e., one having several modes). Low-productivity regions are 
predominant both on a areal basis and on the basis of global carbon fluxes. Although the 
data set used for evaluating algorithms included stations from low and high productivity 
areas, its distribution did not reflect the distribution found globally. The linear error A’ was 
disproportionately affected by the high-productivity stations. 

The A’ errors tended to be symmetrically distributed about their mean (M’) and 
approximately normally distributed. Assuming an underlying normal distribution, 68% of 
the A’ values would lie within one standard deviation of the mean. Thus, we used the mean 
and standard deviation of A’ to define a “one-sigma” range for 6: 

b= ( lo”‘-s’ - 1) 
(13) 

bnax= ( lo”‘+s’ - 1) 

where 
1 

6 = (lOA - 1) 

Most algorithms tested in the round robin were within a factor F = 2.3 of the measured 
productivity, where F was defined by: 

F 
1 = 

maxE 1+6,iin ’ ~ l+baxl 

(14) 

(15) 

Task #2: Conduct an evaluation of candidate algorithms 

The second Primary Productivity Algorithm Round Robin (PPARR-2) was completed in 
the summer of 1997. A manuscript describing the results was drafted and distributed to 23 
co-authors in September 1997 (just before my taking the position at NASA Headquarters). 
Co-authors returned comments and corrections and a second draft was distributed in 
January 1998. However, since that time there has been no progress on completing this task. 
The graduate student who was working on this (S. Gaudreau) left UNH after the fall 
semester 1997. I have not had time to devote to this work since January. 



Appendix A 

UNCERTAINTY ANALYSIS FOR RETRIEVAL OF CHLOROPHYLL 
CONCENTRATION FROM OCEAN COLOR: A SIMULATION STUDY 

Hui Feng, Janet W. Campbell, and Timothy S. Moore 
Ocean Process Analysis Laboratory 

Institute for the Study of Earth, Oceans and Space 
University of New Hampshire, Durham, NH 03824, USA 

( Phone: 603-862-0690; Fax: 603-862-0243; e-mail: feng@jerlov.sr.unh.edu ) 

Abstract 

This work presents a general approach to quantifying retrieval errors in chlorophyll concentration induced by uncertainty 
in the underlying model parameterization. The chlorophyll retrieval is obtained by inverting an ocean color model with nonlinear 
inherent optical property (IOP) submodels. Here we demonstrate and quantify how uncertainty in the IOP submodel 
parameterization influences the accuracy of the chlorophyll concentration retrieval at different chlorophyll concentration levels. 

Background 

One of the main objectives in ocean color remote sensing is to determine in-water constituent concentrations. 
Constituents of interest include phytoplankton chlorophyll, colored dissolved organic matter (CDOM), and suspended sediments. 
Techniques for concentration retrieval have evolved from empirical towards analytical (model-based) algorithms for the last two 
decades. Analytical algorithms usually resort to an inversion technique applied to a parameterized ocean color model. Currently, 
several such inversion techniques have been proposed. Hoge and Lyon (1996) applied a semi-analytical radiance model (Gordon 
et al., 1988) with IOP submodels to the retrieval of three in-water variables. For each constituent under consideration, its IOP was 
modeled as the product of the IOP at a reference wavelength multiplied by a spectral shape function. The spectral shape functions 
were fixed and independent of in-water constituent concentrations. Thus, the IOPs at reference wavelengths could be retrieved by a 
linear system inversion. 

Garver and Seigel (1997) presented an inverse model to retrieve chlorophyll concentrations. In their model, the 
chlorophyll-specific absorption coefficient was a nonlinear function of the chlorophyll concentration, and thus a non-linear 
optimization technique was adopted to invert their model. Campbell et al. (1997) used a radiance model configured with nonlinear 
IOPs to retrieve chlorophyll concentration, gelbstoff (CDOM) absorption, and a variable associated with total particle 
backscattering. Their model can be inverted using a nonlinear optimization method. The model configurations and inverse 
techniques essentially differ in the three models mentioned above. For any inverse model, it is necessary to quantify the potential 
sources of uncertainty in an inverse solution. Hoge and Lyon (1996) showed that their inverse solution is very sensitive to model 
parameters. The goal of this work is to characterize retrieval errors resulting from IOP parameterization uncertainties for the model 
of Campbell et al. (1997) using normalized water-leaving radiances in the first five SeaWiFS bands (412, 443, 490, 510, and 550 
nm). We focus strictly on chlorophyll retrieval errors in this paper. 

Methodology 

General Consideration 

Without losing generality, a forward ocean color model may be expressed as 

where L(k) is an ocean color measurement at wavelength h (e.g. water-leaving radiance), and f is a model configuration (or 
function) relating L(h) to the in-water concentration vector C to be retrieved through a model parameter vector O(k). Distinct 
model configurations f will possess different parameter vectors. For example, parameters related to IOPs will depend on the 
constituent-specific IOP submodels used. In the case of the chlorophyll-specific absorption coefficient, for example, the models of 
Carder et al. (1991) and Bricaud et al. (1995) would have different parameters. 

The retrieval of C based on (1) can be written: 

c = f -1u4w(v) (2) 
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where f-’ represents an inversion of the model f. This might be an explicit expression, as in the case of a model that is linear 
with respect to the in-water concentrations (e.g., Hoge and Lyon, 1996), or the symbol f-l might denote an inversion technique if 
the inversion of (1) does not yield an explicit solution. 

Generally speaking, there exist four potential candidates responsible for accuracy in retrieving the concentration vector C. 
The first candidate source of error is the modelfitself which links an apparent optical property, L(h), to inherent optical properties. 
Exact solutions to radiative transfer equations are highly complex (Zaneveld, 1995), and are not amenable to inverse solutions. 
Almost all forward models are approximations to the more complex equations. The second source of error is the inherent 
variability in constituent-specific IOPs. The IOP submodels and their associated model parameter vector O(h) only approximate 
the actual constituent-specific IOPs. One of the main objectives in this work is to quantify the retrieval errors caused by the 
parameterization of constituent IOPs. A third source of error might be the inversion scheme itself although this can generally be 
controlled by setting convergence criteria. Finally, errors in the measurements L(7c) caused by sensor calibration errors, 
atmospheric correction errors, etc., can affect accuracy of the retrievals. In this paper, we consider only the errors resulting from 
the parameterization of constituent-specific IOP submodels. Analysis of other error sources will be the subject of future work. 

Radiance Model 

Normalized water-leaving radiance is related to remote sensing reflectance R,(h) by the relationship 

MFo &SW 
L,(h) = 1 -w&(h) (3) 

where r , M, F, and Q are spectral constants (Table 1); R,(k) is directly related to IOPs by 

MV = 0.0949 X(k) + 0.0794 X(# (4) 

(Gordon et al., 1975, 1988) where 

X(h) = 
b(h) 

mmim (5) 

The absorption and backscattering coefficients are modeled by a(h) = a&) + a,@) + a&h) and bb(A) = b&h) +bb,(n), 
respectively, where subscripts w, 4, g, d, and p refer to pure water, phytoplankton, gelbstoff (CDOM), detritus, and particles, 
respectively. 

The absorption of detritus decreases exponentially with increasing wavelength in a manner similar to that of gelbstoff 
(Carder et al., 1991). For simplification, we combine their absorption coefficients into a single term, a&) = a@(375) exp(-S(h- 
375)). The absorption coefficient of gelbstoff and detritus at 375 nm, a&(375), is used as a measure of the gelbstoff and detritus 
concentration. The spectral shape parameter for gelbstoff and detritus absorption, S, varies between 0.011 and 0.021 with a mean 
of 0.0145 (Bukada et al., 1995).The phytoplankton absorption coefficient a,@) = A,(k)Chl Be(h) is based on the model of Bricaud 
et al. (1995) which gives 
the chlorophyll-specific absorption coefficient, q*(h), as a fimction of the chlorophyll concentration, Chl. Using over 800 
globally-distributed observations of absorption spectra and chlorophyll concentration, Bricaud et al (1995) fit lines to log(a+*(h)) 
vs. log(Ch1). The model used for our analysis involves two parameters, A,(h) and B,(h) = B,*(k) + 1, where A,(k) and B,*(X) are 
from Bricaud et al. (1995). 

The particle backscattering submodel is bb,(h)-boAb(h)ChlBb(h) and is based on the parameterization scheme of Gordon 
et al. (1988). This expression involves two variables, bo and Chl, being used to describe variations in particle backscattering. The 
variable bo is associated with variability in total particle scattering which was found empirically to be a function of chlorophyll 
given by b(A) = bo Chl o.62. The particle backscattering probability b&)/b@) was parameterized as a power-law function of 
chlorophyll (Gordon et al. 1988), and its parameters, Ah(h) and Bb*(h) were obtained by linear fits on log-log plots. The exponent 
in the particle backscattering submodel was, thus, Bb(h) = Bb*(k) + 0.62. Variation in the amplitude of particle backscattering is 
associated with the properties of particles, such as their size distribution and 
composition (i.e. refraction index). 

The model parameter vector, O(h) = [S, A,(h), B,(h), Ah(h), Bh(h)], fully defines the IOP submodels for each 
wavelength. Constant model parameters used in the inversion algorithm are given in Table 1. The in-water concentration vector 
associated with this model is C=[a@(375), Chl, bo]. 
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Inversion method 
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Given a measured radiance, L,(h), and assumed values for r, M, F, and Q (in Table I), equation (3) can be solved for 
R,(A), and equation (4) can be solved for X(k). Thus, a value of X(7c) is derived from the measured radiance, L,(x). A non-linear 
optimization technique is then required to solve equation (5) for the constituent vector, C. The Levenberg-Marquardt algorithm 
was selected for this purpose. This algorithm, which is now widely used in ocean color inversions ( Bukada et al., 1991; Roesler 
and Perry, 1995; Garver and Seigel, 1997; Feng et al., 1997), is similar to the Gauss-Newton algorithm with a modification to 
quicken its convergence. Its theoretical base has been described in detail by Press et al. (1992). Bukada et al. (1995) gave an 
excellent review of its potential applications in water color interpretation. 

Simulations 

Uncertainties in three constituent-specific IOPs were simulated as follows: 

S’ = s + 6s 
hel+‘(v) = ~0f&qw+ ,$l(‘c) (6) 

bidbbp’(~)) = b@bp(~)) + 6bp@) 

where 6s, 6,&h), and 8hp(h) are normally distributed pseudo-random errors with zero means, and standard deviations equal to 
0.0015, 0.04, and 0.04, respectively. These represent 10% RMS errors in the IOP submodels. Two complete sets of simulations 
were carried out: one in which errors were uncorrelated, and another in which S,+(hl) = . . . = 6&), and &,p@]) = . . . = S&5), but 
where $(hi) and &p(hi) were uncorrelated. We refer to these as the “Independent Error” and “Equal Error” simulations, 
respectively. In future work, we will attempt to estimate the error covariance matrix. 

To determine whether retrieval accuracy is dependent on the chlorophyll level, we conducted simulations for three levels 
representing low (Chl = 0.1 mg me3), medium (Chl = 1.0 mg ms3) and high (Chl = 10 mg mJ) chlorophyll concentrations. For 
each chlorophyll level, we simulated a random sample of n = 200 a&375) and bo values. The distribution of a&(375) depended 
on Chl as follows: log a@(375) = 0.47909 log(Ch1) - 0.75657 + 6, where 6, was normally distributed with zero mean and a 
standard deviation of 0.1649. This relationship was derived from in-situ measurements of Chl and a.& The distribution of bo was 
assumed to be normal with a mean of 0.3 and a standard deviation of 0.07, and bo was independent of a&375). 

For each chlorophyll level, the following steps were taken: 

Step One: The radiance model was run in the forward direction and forced by the ensemble of 200 in-water 
concentration vectors, C=[a@(375), Chl, bo], using the constant model parameter vector (Table 1) to generate a set of 200 L&) 
vectors. Each L,(h) vector was then inverted to obtain the concentration vector C’ which was then compared with C. The purpose 
of this step was to estimate errors due to the inversion method, since the parameter vector was assumed to be exact. 

Step Two: The model was run forward again with a perturbed model parameter vector @‘(A) as defined by Eq.(6) to 
produce another simulated data set of 200 L’,,,(n) vectors, and these were then inverted to obtain C” as in Step One. We perturbed 
each IOP separately to isolate the impact of individual IOPs, and then we added errors to all three IOPs to see their combined 
effect, 

Step Three: In general, differences between vectors C’ and C would be used to define retrieval errors caused by 
perturbations in the model parameter vector. In this paper, we concentrate only on the accuracy of the chlorophyll retrieval. The 
RMS error in both Chl and log(Ch1) were used as measures of error. Specifically, from the sample of 200 retrievals, we calculated 
simple difference errors: A = Chl’ - Chl, and log difference errors Alog = log Chl’ - log Chl, which are related to relative errors. 
For each type of error, two statistics were obtained: the mean error, M and Mlog and mean-square error, MSE and MSEl,. 

Steps Two and Three were repeated 100 times, each time with a new random set of parameter perturbations, applied 
simultaneously and individually. The statistics on M, Ml,-+,, MSE and MSEl,, were accumulated. 
Then, the root-mean-square errors, RMSE and RMSEI,~, were computed as the square roots of MSE and MSElog. Resulting 
statistics were thus based on N = 20,000 random retrieval errors (100 simulations involving an ensemble of 200 C vectors). 

Results and Discussion 

Effect of Inversion Scheme (Step One) 
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We found no errors resulting from the inversion scheme in Step One. That is, the Levenberg-Marquardt algorithm was 
able to retrieve each of the 200 C vectors to an arbitrary level of accuracy controlled by the convergence criteria. 

Effect of IOP Uncertainties (Steos Two and Three) 

Results for all the simulations are shown in Table 2, where the units of M and RMSE are mg Chl me3 and the units of 

Wag and US%, are decades of log. Results for the “Independent Error” simulations in plain font are followed by the “Equal 
Error” results in bold font. In all simulations, the “Equal Error” retrievals had much less error than the “Independent Error” 
retrievals. This was not surprising. “Equal Error” perturbations result in shifts of the IOP spectra upward or downward without 
changing their spectral shapes. The resulting radiances also tend to vary with minimal changes in spectral shape, and thus band 
ratios, for example, remain stable. In the “Independent Error” case, however, spectral shapes were altered significantly, and this 
resulted in much larger errors in the chlorophyll retrievals. 

We were surprised at first by the fact that “Equal Error” perturbations in b&) produced no errors in chlorophyll 
retrievals. In examining the retrievals of a&375) and bo, we found that only bo retrievals had errors, and in fact its errors were 
precisely equal to the &,P@) perturbation. The effect of a nonspectral perturbation in bb&) is equivalent to a perturbation in bo. 
In Step One we found that perturbations in agd(375) and bo did not affect our ability to retrieve Chl, in the absence of other IOP 
perturbations. This result is quite significant, because in the case of “Independent Errors” the bh&h) uncertainty was the largest 
source of error (Table 2). This suggests that the accuracy in chlorophyll retrievals can be improved significantly if the spectral 
shape of the particle back-scattering coeficient is known, but that the absolute level of b@) (whether shified upward or 
downward) does not affect chlorophyll retrievals. 

The effect of uncertainty in a&h) and a+(h) depended on the chlorophyll level, with a general tendency of a+(A) 
becoming more critical as Chl increased. Comparing low-chlorophyll (Table 2a) and medium-chlorophyll (Table 2b) results, we 
see that errors tended to be proportional to the chlorophyll level. For example, in the “Independent Error” case, the combined M 
ranged horn 10% to 12%, and the RMSE was between 63% and 70% of the chlorophyll level. The tendency for errors to be 
proportional to Chl is also indicated by the consistency in MI, and RMSEI, between Tables 2a and 2b, since the log-difference 
Alog reflects a “relative” error. 

In the high-chlorophyll “Independent Error” case (Table 2c), the combined RMSE represented only a 48% error, but the 
RMSEl, increased from 0.30 to 0.42 between medium and high chlorophyll cases. Further examination of the retrievals revealed 
a number of anomalously low chlorophll retrievals (< 1 mg m”) when the true chlorophyll was high (10 mg m”). We have been 
unable to account for this, as we have not seen any pattern in either the a&375), bo variations, nor in the perturbations of the IOPs 
that is consistently related to these low chlorophyll values. We are continuing to examine this question. 

The most significant finding was the improvement in retrieval accuracy that resulted from “Equal Errors” compared with 
“Independent Errors.” Although the inherent variability in IOPs cannot be controlled, we believe it is important to model their 
spectral shape as accurately as possible. Knowledge of the spectral shape is critical, particularly in the case of the particle 
backscattering coefficient. Shifts in the IOP spectra upward or downward had little effect on chlorophyll retrieval accuracy, 
whereas random independent perturbations to the spectral IOP values resulted in very large errors (RMSE values as high as 70%). 

Summary 

A general approach is presented to qualifying retrieval errors of in-water concentrations. The simulations focus on 
demonstrating how retrieval errors in chlorophyll concentration are affected by uncertainties of inherent optical property (IOP) 
submodels in an underlying radiance model . Two complete sets of simulations, which were designed and conducted, represent 
two extreme cases between which “real” cases may occur. The results from “Equal Errors” and “Independent Errors” are 
significantly 
different. It is suggested that precise determinations of spectral shapes of IOP submodels is important in chlorophyll retrieval. 
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Table 1. Model parameters assumed to be constant in inverting the radiance model. Parameters are listed in column 
1, units in column 2, and values for each spectral band in columns 3-7. 

I I I I 
S nm -1 0.0145 0.0145 0.0145 0.0145 0.0145 

Table 2. Average error statistics: M, RMSE, Mlog, and RMSElog after perturbing each IOP submodel separately, 
and after perturbing all three IOP submodels (“combined”) for spectrally-independent case and spectrally-equal 
case(bold numbers). The averages of M, RMSE, Mlog, 
steps 2 and 3 are repeated. 

and RMSElog are shown here for the 100 simulations where 

Table 2b. Case of medium chloro 
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IN-SITU DATA NEEDED TO SUPPORT THE DEVELOPMENT OF 

ALGORITHMS FOR OCEAN COLOR REMOTE SENSING IN COASTAL 

REGIONS: A PROPOSED PILOT PROJECT FOR C-GOOS 

Sinjae Yoo and Janet Campbell 

August 12,1998 

INTRODUCTION 

The ultimate goal is to develop a network of laboratories supplying the in-situ data needed 
to parameter& optical properties of coastal waters. This information will become the basis 
for algorithms applied to satellite ocean color data as part of the Coastal Global Ocean 
Observing System (C-COOS). This capability will facilitate the operational use of remote 
sensing as part of a continuing, long-term monitoring program of the coastal ocean 
environment. 

A C-GOOS pilot project is proposed to initiate the development of this network, and to 
demonstrate the use of in-situ data for constructing site-specific algorithms for coastal 
regions. It is proposed to conduct the pilot project in two coastal regions: (1) the Yellow 
and East China Seas Region where turbid waters from the Huang He (Yellow) and Yangtse 
rivers mix with oceanic waters west of the Korean peninsula; and (2) the Chesapeake Bay 
Region where programs of coastal monitoring involving remote sensing have recently been 
established. Techniques for making the relevant in-situ measurements will be developed 
and protocols carefully documented. The data will be used to parametrize reflectance 
models which will become the basis for the regional algorithms. Laboratories in each 
region will be invited to participate in collecting data that will be put into a shared data base. 
The network and data base will be expanded in future years to include coastal regions 
worldwide. 

BACKGROUND 

Ocean color remote sensing techniques have been successfully applied to estimate algal 
pigment concentrations in the open ocean. Optical properties of these so-called “Case 1 
waters” am relatively well-characterized because the only materials affecting ocean color are 
the phytoplankton cells or their decay products. Optical properties of coastal and estuarine 
waters are generally more complex. In these “Case 2 waters,” mixtures of organic and 
inorganic materials affect the color of the water, and this complexity calls for more 
sophisticated algorithms for sorting out the various constituents found in proximity to land. 

Present or near-future ocean color sensors (Table 1) should be capable of quantifying up to 
two additional constituents, in addition to algal pigments, which are found in coastal regions. 
Spectral bands have been selected to quantify concentrations of phytoplankton chlorophyll 
(CHL), total suspended sediment (TSS), and colored dissolved organic matter (CDOM). 
However, the optical properties of these materials (particularly TSS) are not universal. Site- 
specific algorithms must be developed to account for the unique optical characteristics of the 
materials found in each region. 

In many respects, the coastal oceans remain as a frontier for future ocean color technology 
development. Present-day sensors listed in Table 1 lack the spatial and temporal resolutions 
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needed to resolve space scales of order 100 m associated with nearshore and estuarine 
features, and time scales dictated by the diurnal and semi-diurnal tides. Furthermore, 
improved spectral resolution may be needed to distinguish more complex mixtures in “Case 
2” waters. Two emerging technologies are aimed at solving these limitations. 

A hyperspectral imager, the Coastal Ocean Imaging Spectrometer (COIS), will be flown on 
the U.S. Navy’s NEMO satellite to be launched in 2000. This sensor will collect data only 
at about 50 specific coastal sites. Its spatial resolution will be 30-60 meters depending on 
the mode of operation, and typical scenes will be about 30 km by 300 km. The sensor will 
have 200 2-nm-wide spectral bands covering the visible and near-infrared spectral region. 

To address the need for high temporal resolution, a “Special Events Imager” is proposed to 
be flown on a geostationary satellite. The present design calls for lo-12 spectral bands with 
300 m resolution. The area viewed in any image would be about 300 km x 300 km. 
Images of an event can be refreshed every 10 minutes allowing high temporal resolution of 
rapidly changing conditions. Coastal ocean applications would include oil spills, river 
plumes, storm flooding, hurricanes, and support of process-oriented field work. 

CASE 2 ALGORlTHMS 

A general framework for developing coastal or “Case 2” algorithms is described by 
Campbell and Yoo (1998). This framework can serve as the basis for the C-GOOS pilot 
project. The algorithms described are called “semi-analytic algorithms” because they are 
based on principles of radiative transfer (hence analytic), but involve empirical 
parameterizations. Radiative transfer theory has been used to derive a robust (though 
approximate) relationship between the “remote sensing reflectance” (derived from satellite 
measurements) and the water’s inherent optical properties (IOPs). Inherent optical 
properties (absorption and backscattering coefficients) are related to the water constituents 
through empirically derived relationships based on in-situ data. 

Semi-analytic algorithms invert the reflectance model to derive constituent concentrations 
(chlorophyll, CDOM, and total suspended sediment). The spectral absorption and 
backscattering coefficients may also be derived in an intermediate step. In the following 
section, we describe the data needed to parameterize semi-analytic algorithms. 

IN-SITU DATA: RETRIEVED VARIABLES 

The goal of a semi-analytic algorithm is to “retrieve” variable properties of the water related 
the constituents which affect water color. These properties are called “retrieval variables.” 
The remote-sensing reflectance is related to materials in the upper optical depth (or secchi 
depth). Water samples collected and profiles measured should provide an adequate 
representation of this layer. The number of samples and the depth of profiles will depend 
on the vertical structure or stratification. 

There can be some flexibility in deciding what in-water chemical or biological properties are 
to be retrieved by the algorithm. The only requirement is that the material have a distinctive 
effect on the color of the water. In some cases, the retrieval variables will depend on the 
application or the analytical methods available to measure them. Here we describe three 
substances which we categorize heuristically according to color: “blue absorbing” CDOM, 
“green” chlorophyll, and “brown” sediment. 

Colored dissolved organic matter (CDOM). Also known as “yellow substance” or 
“gelbstoff’, CDOM includes any dissolved material affecting the water color after particles 
are removed by filtration. The actual chemical composition of CDOM is poorly defined 
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(often it includes tannins and lignins leached from the soil but may also include materials 
excreted by the phytoplankton cells). Although its chemical makeup is not well-defmed, the 
optical properties of CDOM are relatively stable. Rather than use a mass concentration, 
CDOM is usually measured in terms of its absorption at a reference wavelength, a&,). 
Thus it is determined by optical measurements as described below. 

Chlorophyll co centration (CHL) Chlorophyll-a in extracted pigments measured either by 
HPLC, fluororrky, or spectrophotometry. Details of the method used should be specified. 

Total mnended matter (TSM). The dry weight (mass) of material collected on a filter. The 
same pore size filter should be used as that used for the optical measurements (e.g., particle 
absorption). 

Total suspended sediment (TSS1 The dry weight (mass) left on the same filter after 
combustion to remove organic matter. 

The retrieval variable will be either TSM or TSS. Compared with TSM (which includes 
phytoplankton and organic detritus), the inorganic TSS should have an optical signature that 
is more distinguishable from chlorophyll, and hence might be a better retrieval variable. 
However, in some regions, mineral particles are coated with an organic film, in which case 
optical properties may be better correlated with TSM. 

The variables listed above represent the “retrieved” constituents and hence are a minimum 
set of measurements needed for algorithm development. Other standard oceanographic 
measurements such as sea surface temperature and salinity should also be included in the 
data base if available. These properties may prove useful in deciding between algorithms, or 
there may be indirect relationships (e.g., between CDOM and salinity) which can be 
exploited. 

Properties that have a direct effect on the optics should be measured and included in the data 
if possible (though not essential). These include: particle size spectra, or size-fractionated 
chlorophyll and TSM; dominant phytoplankton species and/or accessory pigments. Other 
information such as nutrients, tidal stage, and primary productivity, may prove useful in 
subsequent applications after the retrieved variables are obtained from remote sensing 
measurements. 

IN-SITU OPTICAL, MEASUREMENTS 

All of the optical properties are spectral measurements. That is, they are made at discrete 
spectral wavelengths or within spectral bands. Measurements made with high spectral 
resolution can be integrated to simulate the response of a variety of sensors. The 
disadvangate is that the required instruments tend to be expensive, and there is more data to 
deal with initially. Less expensive instruments are available which simulate the spectral 
bands of specific sensors. Whether one begins with full spectral data or data collected in 
discrete bands, the optical data used for algorithm development should be representative of 
the spectral response of the ocean color sensor to which the algorithm will be applied. 

wellmgsnect al radiance Profile of upwelling spectral radiance measured below the 
water surface w&n the up&r optical depth. 

Downwell- Profile of downwelling spectral n-radiance measured at the pectral ib. 
same depths and same wavelengths as the upwelling radiance. 
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Particle~rption Particles collected on a filter (same pore size as used for TSM) and 
measured with a spktrophotometer. Unless the samples are analyzed immediately, the 
water should be filtered and samples preserved by freezing (e.g., in liquid N2). 

Pigment absorption. After measuring the particle absorption, pigments are extracted and the 
remaining material reanalyzed with the spectrophotometer. The difference is the pigment 
absorption. 

CDOM &sorption This is the absorption measured on the filtrate in a cuvette as 
referenced to distilled water. The spectrum should follow a negative exponential: a&) = 
a&,) exp[-S(h-&,)I where S is a positive constant usually between 0.01 and 0.02 nm-1 
and b is a reference wavelength (usually I 400 nm). The concentration of CDOM is 
indexed by a&), which is the retrieval variable “CDOM.” 

Particle backscattering. Whereas measurements of the total scattering coefficient (b) 
derived from transmissometer measurements are relatively common, measurements of the 
backscattering coefficient (bb) are rare. Campbell and Yoo (1998) describe a method for 
deriving an “estimated” backscattering coefficient using the other optical properties 
described above, when backscattering is missing, but ideally the data set should include the 
spectral backscattering coefficient. This is obtained from a light scattering meter which 
measures light scattered at discrete angles. A volume scattering function fitted to the 
scattering data is then integrated over angles 2 90 degrees to obtain the backscattering 
coefficient. New instruments are now becoming available for making the appropriate 
scattering measurements. 

With the above suite of data, semi-analytical algorithms can be parameterized as described 
in Campbell and Yoo (1998). 

PROTOCOL TESTING AND DOCUMENTATION 

Standard protocols do not exist for many of the measurements listed above. The 
laboratories participating in the pilot project will test various methods and decide upon a 
prescribed set of protocols. These will be fully documented and reviewed by members of 
NASA’s SIMBIOS Science Team before being published. The trade-off between the need 
for expensive optical instruments versus simple standard techniques will be considered. 
Our goal will be to develop methods and protocols that can be readily implemented with a 
minimum cost by many laboratories worldwide. 

TRAINING 

Once protocols are tested and documented, we propose that a series of training courses be 
offered to instruct scientists and technicians in making the measurements, and in applying 
their in-situ data to pararneterize algorithms for their own region. In exchange for training 
funded through IOC, participants will be required to provide data to the C-GOOS data base. 
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Table 1. Ocean Color Sensors 

SeaStar USA Aug. ‘97 - 1100m 8 

ROCSAT- 1 Taiwan Dec. ‘98 - 800 6 

OCM IRS P4 
(Oceansat- 1) 

India 
I 

Late ‘98 - 
I 

360m 
I 

8 

MODIS EOS AM-I 
EOS PM-1 USA 1999 - 

2ooo- 1OOOm 9 

OSMI KOMPSAT- 1 S. Korea 

C-OCTS IIY-1 China 2ooo- 1lOOm 10 

Comments 

Proof-of-concept instrument I 

Requires ground receiving station 
I 

Plus 4 thermal IR bands for SST 
I 

Full-resolution (LAC) data requires 
ground receiving station 

A 7th band is redundant 5%nm band; 
35deg. inclined orbit. 

Scanning multifrequency microwave tc 
provide SST 

Plus 27 other bands for land, 
atmosphere, and ocean SST 

Selec::; 1 

LAC data reception requires receiving 
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