
NAS5-31362 JUNE 1992 PAGE 1

MODIS SEMIANNUAL REPORT
- JUNE 1992 -

UNIVERSITY OF MIAMI
RSMAS/MPO

DR. ROBERT H. EVANS

NAS5-31362

===
Due to the interlocking nature of a number of projects, this and
subsequent reports will contain coding to reflect the funding source.
Modis funded activities are designated with an M , SeaWIFS with an
 S , Pathfinder with a P , and Headquarters with an H . There are
several major sections within this report; Database, client/server,
matchup database, and DSP support.

A. NEAR TERM OBJECTIVES
B. OVERVIEW OF CURRENT PROGRESS
C. FUTURE ACTIVITIES
D. PROBLEMS

A. NEAR TERM OBJECTIVES
A.1 Modis Objectives (M)

1. Continue to develop and expand the processing environment
2. Begin extensive testing using global CZCS and AVHRR GAC
data with database processing to test the following:

a. algorithm capability
b. machine and operating system stability
c. the functionality required for the processing and
 analysis environment

A.2 SeaWIFS Objectives (S)
1. Continue testing of processing methodology.
2. Continue to develop relationship between database and in-
situ environment.

A.3 Pathfinder Objectives (P)
1. Expand matchup database as applicable.

NAS5-31362 JUNE 1992 PAGE 2

2. Continue testing of methodology.
A.4 DSP Objectives (H)

1. Continue testing of processing methodology.
2. Continue to expand sites supported.
3. Expand the supported hardware/software platforms

B. OVERVIEW OF CURRENT PROGRESS

B.1 Automatic Processing Database (S)

B.1.1 Early 1992 Status

During the previous six months, substantial changes have occurred in
the database processing. Both the FORTRAN interface to the
automatic processing database and the schema for the database itself
(here named AUTOPROC) have undergone extensive changes,
including, but not limited to, streamlining and enhancing the
database, eliminating inefficiencies in the interface and adding
functionality.

In January, 1992, the automatic processing had been adapted for
use with Version 5 VMS, and the programs and subroutines were
working similarly to the CZCS processing project several years ago.
The record-addition process had been modified, but the basic
methodology and execution of the FORTRAN interface had undergone
only minor changes. Many of the non-source elements (file used for
database creation and definition, etc.) had changed in format, but not
substantially in content. During January, the system was tested using
AVHRR data. MAIN and PROCESS_CONTROL records were added
using an adaptation of the TIROS ingest program, and these records
were automatically processed, using 2CHAN for atmospheric
correction, and REMAP for the space bin program. The source files
were consolidated and the database creation and definition files were
organized. In the first part of February, work was begun to
generalize database methods to an IN_SITU database, but only
preliminary work was completed. This work is explained further in
Section B.3.

In late February, Teresa Larsen (SeaWIFS, GSFC) visited RSMAS.
During her visit, a plan was developed to reorganize the database
schema. Extensive use of look-up tables in the old schema had been
intended to conserve disk space at the expense of processing

NAS5-31362 JUNE 1992 PAGE 3

efficiency. Realizing that this would require extensive changes in the
FORTRAN interface, we nevertheless decided that the changes were
warranted. We also decided to convert the database definition files
from DEC's proprietary database language, RDO into the more flexible
SQL, allowing the files to be used in non-DEC database management
systems (RDBMS's).

As an example of this change, the MAIN table (used to track satellite
scenes) previously contained a field called SENSOR_CODE that
contained a 2-byte integer which pointed to the correct satellite
sensor in a SENSOR table. When sensor information was needed, the
SENSOR_CODE would be extracted from the MAIN record, then a
separate query performed to retrieve the character name from the
SENSOR table. The previous schema (for both satellite and in-situ
data) made use of approximately 40 look up tables.

Nearly all of these codes have been eliminated from the present
schema. When a code was 'merged' into a table, the FORTRAN
interface that referenced that code also needed to be changed. All
references to the code had to be replaced with the character variable.
This merging was performed during March and April. The database
tables needed for the satellite processing contained approximately 17
of these codes, which were individually changed and tested. To
insure that changes were made correctly, all software was
recompiled, relinked and a test was run on the automatic processing.
By the end of April, the FORTRAN interface had regained its former
functionality, albeit with the new schema.

In May, several substantial changes and enhancements were made to
the interface, including the addition of a client/server capability.
The client/server is covered in Section II, and will be assumed to be
a transparent information pipeline between programs and the
FORTRAN interface. All changes discussed in this section are within
the database interface itself, although some were made to facilitate
the use of the client/server.

The most significant change was the breakup of the db_control
subroutine, into two subroutines. This resulted in routines that
performed the tasks more efficiently. The subroutine had been
called repeatedly during the progress of a batch automatic processing
job that magnifies the increased efficiency. The major functions of
the old db_control subroutine were to:

NAS5-31362 JUNE 1992 PAGE 4

1) when requested, supply the next processing step for an
automatic processing batch job
2) report back the end status of automatic processing jobs
3) keeping the database updated on the progress of the first
two.

First, the major functions were split into two subroutines: db_request
supplying the processing steps and parameters at the beginning of a
autoprocessing job, and db_report notifying and updating the
database at the end of a job. (These two subroutines serve as a
touch-point between the client/server and the interface; that is to
say, the client/server contacts the interface through calls to these
subroutines, and another to add records under current development.)

The db_request function has been changed substantially. Previously,
a batch job repeatedly called db_control, obtaining only one
process_step and the associated workspace variables at a time. Each
time, the calling program had to invoke (i.e., attach to) the database,
and db_control updated the database after each process_step. In
addition, all procedure names and workspace variables had been
passed back to the calling program, which would have made the
client/server connection quite complicated. Db_request avoids all of
these problems by retrieving all process steps and associated
parameters, and using them to construct a DSP command file that is
applied to the input file. Very few parameters are passed back to
the caller. The use of an NFS-mounted disk (that is to say, a disk that
can share ASCII files between UNIX and VMS computers) permits the
database interface to reside on VMS, while allowing UNIX processing
of the data.

The second major function, performed by db_report, occurs at the
end of a batch job to notify the database of the final status of the job.
When db_request creates its DSP procedure file, the last line calls a
program to return status. First, db_report evaluates the status
variable and error message (if any) to determine the success or
failure of the job, then updates the database accordingly. As you will
see later, some very specialized functionality has been added to this
subroutine.

Both db_request and db_report are fully functional in the
client/server; using a VMS Server (currently required by the
FORTRAN interface), either a UNIX client or a VMS client can perform
requests and make reports. We are currently working on a similar

NAS5-31362 JUNE 1992 PAGE 5

client/server function that adds MAIN and PROCESS_CONTROL
records to a database. The 'touch-point' here is a subroutine called
add_main_pcr (to add main and process control record). It is
currently called by a version of the CZCS ingester, which extracts
needed data from the raw input file, formats the information, and
calls add_main_pcr to store the data in the database. The process
will be extended to programs that extract the data from other types
of raw files (such as TIROS or SCRIPP format tapes) as well as DSP
image files.

B.1.2 Progress on the Automatic Processing Database

Specialized fields have been added to the MAIN and
PROCESS_CONTROL tables to allow jobs to affect and even trigger
other jobs. The first two functions that have been added are the
parent/child records, and the daily mosaic process.

Each input source file has one associated MAIN record in the
database. However, the data file may be too large for convenient
processing. The ingesters have the capability to ingest only part of a
file, e.g., a range of scan lines. The database schema and record
addition process have been adapted to account for this. We term this
a parent/child relationship, where one input source file (the parent)
may have multiple ingested files (the children). When notified that a
parent/child condition exists (as explained later), the ingester adds a
MAIN record for the parent source file (if none exists), adds one
PROCESS_CONTROL record (PCR) corresponding to a job to 'put the
pieces back together,' marking this PCR 'HOLD," and then creates one
PROCESS_CONTROL record for each piece of a pass to be ingested.
The database tracks the range of scan lines for each piece, and how
many 'child' records have been created for each input parent file. As
each PCR is processed, part of the reporting procedure (db_report,
mentioned earlier) is to increment the 'process_done' field in the
MAIN relation, and to release the 'put it back together' job when all
child records have finished.

There are also situations where multiple source files may be
required for a particular reason; global daily mosaics are examples
of this. There will be many source files that must be processed
before the full mosaic is created. In this case, there will be one
MAIN and process_control record for each source file submitted for
processing, and there will be one MAIN and PCR, marked 'HOLD' for
the mosaic task. RELEASE_LINKS tie the jobs together that process

NAS5-31362 JUNE 1992 PAGE 6

the individual passes and the global mosaicing. As with the
parent/child case, these links are checked and updated as part of the
db_report process, and when all individual source files have
completed processing, the mosaic job is automatically released and
submitted for processing.

In May, major improvements were made the method of assigning job
priorities. Each process_control record is assigned a processing
priority, and when the database is asked for the next job (the
db_request function, discussed earlier), process control records with
a lower priority are selected first. (Hence, a priority of 1 is the most
urgent.) This functionality has been expanded and made more
flexible. In addition to selecting the next job on the priority, an
additional sorting key, record number, was added. Thus, among jobs
of equal priority, the earliest record would be selected for processing.
Further, the method of assigning the priority has greatly changed.
Previously, a processing priority had been hard-coded into the
ingester used to create the MAIN and process_control records.
Currently as a process_control record is added, it is assigned a
PROCEDURE (which represents a set of processing steps). Thus, a
default priority is stored in the database for each procedure that has
been defined, and this default value will be used unless overridden.
If a different priority is desired for a particular file or set of files, it
is easily defined in the ingest setup process used to define other
database information.

For example, consider three procedures, one that is to be used on
AVHRR GAC data, one to process CZCS data, and one to create a daily
mosaic of CZCS data. The database procedure definitions would be:

PROCEDURE_NAME PROCESS_MODE PRIORITY

GAC_PROCESS BATCH 3000
CZCS_PROCESS BATCH 2500
CZCS_MOSAIC BATCH 2000

In this case, CZCS processing is considered 'more important' than GAC
processing, and the mosaic process takes precedence over the
individual files. That is, once one day's worth of CZCS is processed,
the mosaic would run next to allow the individual files to be
removed from the disk. If, however, you needed a particular GAC
pass processed immediately, a simple logical assignment of the

NAS5-31362 JUNE 1992 PAGE 7

desired priority prior to record addition would be used to insure the
'rush' job would be the next queued up for processing.

One additional enhancement to how the job priority is handled occurs
during the job-reporting process. In those cases where jobs are held
until other jobs finish (the parent/child or mosaic jobs), the number
of jobs remaining before the release is checked. If there are two or
fewer, the priority of the remaining jobs is adjusted so they will be
selected before others of their class. This allows the 'put together' or
mosaic job (as the case may be) to run and the permits earlier
removal of the constituent files.

B.2 Client/Server Status (S)

B.2.1 Early Client/Server Model

B.2.1.1 Client/Server Concept
�
The most commonly used paradigm in constructing distributed
applications is the client/server model. In this scheme, client
applications request services from a server process. Nominally, a
server provides network services; a network service is a collection of
one or more remote programs. These remote programs implement
one or more remote procedures. The client/server operation is based
on a known set of conventions that must be implemented at both
ends of a connection before service may be rendered (and/or
accepted). This set of conventions comprises a protocol that may be
symmetric or asymmetric.

RPC, Remote Procedure Call, is used to implement the client/server
model. RPC is a high-level communications program that allows
network applications to be developed using specialized procedure
calls, providing a degree of independence from the underlying
networking mechanisms. The RPC model is similar to a local
procedure call model in that one thread of control logically winds
through two processes -- the client's process (the caller) and the
server's process (the procedure called). The reliability of an RPC
model depends on the reliability of the transport protocol
underneath it. For this reason, this implementation RPC is running
on top of TCP/IP.

NAS5-31362 JUNE 1992 PAGE 8

The caller sends a message containing the required parameters for
the requested procedure to the server process and awaits the results.
On the server side, a process is dormant waiting the arrival of a call
message; upon arrival, the server process activates, extracts the
procedures' parameters, computes the results, sends a reply message,
and is deactivated. Thus the server process activates, services the
client request, and performs whatever appropriate actions the client
requested. Once the reply message is received, the caller's
execution resumes and the results are processed.

B.2.1.2 Early Client/Server Model

The early mcp model consisted of a database and its attendant
FORTRAN programs, a server (on VMS), an mcp program, a dbbat,
and a client (on UNIX). It was designed to work as follows:

When mcp starts, it enters an endless loop. In this loop, it will
periodically call resource monitor to determine the current
system resource status. If there are enough resources
available, a new dbbat process is started to process a new data
file. If resources are not available, the mcp process will
suspend until its new activation cycle.

(The monitor is part of the future implementation; a dummy routine
is in place that will always return sufficient resources.)

The dbbat process will request, using the client/server mechanism,
the next available task, if any, in the database. The request is sent to
the VAX through a client process. The parameters coded in the
request message include server's name and service type.

Service type specified the service expected from the server. The
two main services were retrieving the job steps from the database
and updating the database after job termination. When a server is
activated, it provides the requested service to the client by running
the procedure that contacts the database.

The client/server was tested on the RDO defined database as well as
the newly SQL defined database. When a client requests a task, the
server will invoke the database and then fetch all the steps that are
to be done and pass them to the client in the reply message. The
client then will decode the message and write the job steps into a
.dsp file. This .dsp file will serve as a command procedure for dbbat

NAS5-31362 JUNE 1992 PAGE 9

process. Dbbat requests a job through client and gets a command
procedure to be executed.

Our early tests used a CZCS data file and three command procedures,
processanly.dsp, processnewbin.dsp and processmosaic.dsp. Some
appropriate steps reflecting these three command procedures had
been loaded into database. dbbat requested and received these job
steps from database through client/server. These steps were then
manually executed.

B.2.2 Current State

Our mcp client/server model continues to be a distributed
application over a VAX/VMS and UNIX network. The database is
currently VAX resident; the remainder of the mcp system resides on
UNIX. The connection between these two parts is accomplished with
client/server mechanism. Although there has been some redesign
since the initial implementation, the basic concept of the hybrid
model for the interim system has not changed. The most significant
changes in the mcp structure have been made for simplicity and
reliability. dbbat has been eliminated; mcp will perform dbbat's
function in a more direct manner. From a functional perspective, the
main changes are additions to the automated processing; these
additions include the addition of records to the database and
ingesting.

The current mcp model has the following parts:

a. database.
b. database supporting FORTRAN programs.
c. server on VMS.
d. MCP (includes client(s)) on UNIX.
e. client(s) on VMS.

The system will function with a single server and multiple clients
where clients can be either UNIX or VMS resident. Some care has
been exercised to ensure that while executing multiple mcps with
multiple clients there is no duplication of file names.

When mcp starts, it will enter an endless loop. In each loop, MCP will
carry out the following:

NAS5-31362 JUNE 1992 PAGE 10

1. It first will create a client to request a job from a specified
database on a specified server.

 2. If no jobs are pending, MCP will suspend for a period, the
client is deleted, and the process begins when mcp is activated
the next cycle.

3. mcp will invoke the shell script whose name is passed back
from the server to the client (and to mcp).

 4. The shell script invokes the DSP command procedure from
inbound NFS disk.

5. At the completion of the steps contained in the DSP
command procedures, the last step calls db_report that
creates a file containing information for updating the VAX
database. Control passes to the shell script that returns a
status to MCP.

 6. MCP reads the information file created by db_report. This
file contains status and information about the execution of the
DSP command file; i.e, database name, server name, record, job
status, steps, completion, etc. Using this information MCP
connects to the VAX server to update the database.

 7. MCP returns to the beginning of the loop.

During execution, the server will wait for a request from a client.
When a request is received, the server unpacks the data structure
passed over from client and uses the information to call dbconnect.
The result and status returned from dbconnect are checked and
returned to the calling client. Depending on SVCTYPE [SVCTYPE is a
parameter defining the type of service the client is requesting from
the server], different programs are called from the FORTRAN
supporting programs. dbconnect calls db_request to get new job
steps, db_report to update the database, and db_add to add new
records to the database.

Some of the significant modifications that have been made to the
client/server implementation are:

1. The client has been separated from dsp. It was
unnecessary to maintain this relationship.

NAS5-31362 JUNE 1992 PAGE 11

2. The server fetches all steps required to process the input in
the form of a single .dsp file to shared memory.

3. Two steps have been added to the automatic processing;
add records and ingesting. The ability to add records has been
added by the creation of an additional client to manage an
automated process from the jukebox to the auto process.
Ingest is a separate process consisting of several programs.
The entire process begins by fetching file from the jukebox and
ends with the final mosaic image.

4. Error handling is being enhanced; a dummy error_handler
has been added that merely echoes the message received and
may exit if necessary. At this stage there is no corrective
action taken; a more complete error handler can be added to
take these corrective actions in the future. The error handler is
modular in nature so that its extension to additional functions
is clear and concise.

5. Both batch and job queues were tried and rejected due to
the complications in message passing. In the current
implementation, the simplicity of direct communication was
selected. When a task completes, a status is returned directly
to mcp. Based upon the results of the status message, mcp will
either perform the next step (successful completion) or evoke
an error handler.

6. As part of the testing process, three and ten day CZCS data
runs have been made.

B.3 Matchup Database (P)

The purpose of this section is not to restate the details of the
construction of the satellite and in situ sea surface temperature (SST)
matchup database. Such details have been provided in the previous
reports. Instead, this write-up will concentrate on a critical
evaluation of the progress made in the last six months, and of the
lessons learned during this period. Briefly, the objective of this part
of the project is to build a co-temporal database of satellite and in
situ measurements, to be used in the development and validation of

NAS5-31362 JUNE 1992 PAGE 12

SST algorithms. The main steps involved in this process are shown
in Figure 1.

Ingestion and quality
control of in situ SSTs

Conversion to Pathfinder
continuous time

coordinates

Time of closest approach
(TCAP) filter

Final matchup of satellite
and in situ SSTs

Satellite data extraction

FIGURE 1. Major steps involved in the compilation of a matchup
database. Emphasis is placed on the collection of in situ data. Details
on the satellite data extraction process will be provided elsewhere.

The first step was the acquisition of in situ SST measurements from
various sources. Our present effort is concentrated in the production
of a matchup database for 1988. Nevertheless, the collection of
environmental data was more encompassing, and we have compiled
in situ SST data from November 1981 to the end of 1990. Two main
types of in situ SST observations were used: data from moored or
“fixed” buoys, and from drifting buoys. A brief description of the
various data types is given below.

 Moored Buoys:

NAS5-31362 JUNE 1992 PAGE 13

NDBC Buoys: Moored buoys deployed by the US National Data Buoy
Center (NDBC). Buoys are located off the Atlantic and Pacific coasts of
the continental US, in the Gulf of Mexico, in the Gulf of Alaska,
around the Hawaiian Islands and off the coast of Peru. The NDBC
buoy data were provided by the National Oceanographic Data Center
(NODC) and were pre-processed at NASA's Goddard Space Flight
Center by Dr. Chuck McClain's research group.

Japanese Meteorological Agency Buoys: Data provided by the
Japanese Meteorological Agency (JMA). Data correspond to a small
number of buoys (3-4) around Japan.

TOGA/TAO Buoys: Data correspond to an array of moored buoys
located in the Equatorial Pacific. Data were provided by NOAA's
Pacific Environmental and Meteorological Laboratory (PMEL).

The moored buoy data from the various sources include different
environmental variables. A list of the variables archived for each
data source as part of the Pathfinder effort is shown in the following
table. In some cases, variables other than the ones listed exist in the
original data files, but they were considered of limited relevance for
the Pathfinder objectives. For instance, a great deal of information is
available for some of the NDBC buoys on wave spectra, but these data
were not extracted from the original tapes.

{SUBSCRIBER @EditionMgr @EditionClient @02EE20E8 \a *
MERGEFORMAT}

Variable NDBC JMA TOGA/TAO

Sea surface temperature ✓ ✓ ✓
Air temperature ✓ ✓ ✓
Wet bulb temperature ✓ ✓
Wind speed ✓ ✓
Wind direction ✓ ✓
Significant wave height ✓ ✓
Wave period ✓

NAS5-31362 JUNE 1992 PAGE 14

Surface atmospheric
pressure

✓

 Drifting Buoys:

AOML Drifting Buoys: This data set was provided by NOAA's
Atlantic Oceanographic and Meteorological Laboratory (AOML). The
drifting buoys are mostly distributed in the equatorial Pacific Ocean,
although there are some in the Atlantic.

MEDS Drifting Buoys: This data set was originally obtained from
Canada's Marine Environmental Data Service (MEDS) by Dr. McClain's
group at NASA-GSFC. The data set includes all satellite-tracked
buoys worldwide.

In both cases, the drifting buoy data included only latitude, longitude
(derived from the ARGOS tracking system onboard the NOAA polar
orbiters) and SST.

Problems with data sets

Even though the various in situ SST data sets were supposed to be
fairly “clean” (i.e., no erroneous data or other problems because they
were obtained from the primary archival locations for each data set),
we determined that some problems existed. The problems originated
either on the original data sets or during the reproduction of data.
For instance, an unreadable data tape from MEDS resulted in a low
number of in situ SST observations for the second half of 1988. This
was easily apparent when listing the number of SST reports per
month. In another case, some of the moored buoys in the TOGA/TAO
array became “drifting buoys," as their location changed. Details on
these location changes had to be obtained from NOAA/PMEL and
corrected in the original data set. In some cases, the problems were
fairly subtle and difficult to detect. An example of this is the
discrepancies between drifter data in the MEDS and AOML data sets
(detailed in a previous report), due to a change in the calibration of
the SST sensors on some buoys, which was not corrected in the MEDS
data.

The main lesson learned during the data compilation stage is that
each data set has its own peculiarities. Therefore, there is always a
need for quality checks, however simple. In our case, the quality

NAS5-31362 JUNE 1992 PAGE 15

checks were limited to eliminating records without valid SST
measurements, or records with SST values outside reasonable
boundaries (-4 to 32°C). We made no attempt to check variables
other than SST, or to perform more complicated checks on SST values
(e.g., a spatial or temporal consistency check). This may be
acceptable in this case, because quality control had already been
performed by the archival sites. Nevertheless, the simple checks are
always advisable.

The number of records with valid SST observations during 1988 is
summarized in Table 2 for the moored buoys and Table 3 for the
drifting buoys.

Conversion to Pathfinder time coordinates

The purpose of this step was to facilitate the temporal matchups by
converting all the dates and times in the in situ records to a
continuous time coordinate. The system coordinate chosen was
“seconds since January 1, 1981” to accommodate the complete
Pathfinder period. One aspect that may be considered is whether the
fine temporal resolution (seconds) is really necessary, or if minutes
may be acceptable.

Time of closest approach filter

The global matchup database requires that satellite data be extracted
from the AVHRR/GAC passes for the times and locations for which
we have in situ SST observations. Logistically, this requires that GAC
data (archived as individual orbits) be restored to magnetic disk so
that extractions could proceed. To increase the efficiency of the
extraction process, we tried to avoid restoring passes for which no in
situ SSTs are available. This required that we identify whether any
in situ SSTs (from any of the data sources mentioned above) were
included within the selected time/space matchup window for a given
GAC pass. To accomplish this, we implemented a “time of closest
approach” (TCAP) filter. All the in situ records were processed
through the TCAP filter. If the location of a report was viewed by
the AVHRR within the specified matchup time window around the
time of the in situ observation, then the in situ SST passed the filter
and a pointer to the appropriate AVHRR orbit was added to the
record. The TCAP filter has two main advantages. First, the filter
identifies which AVHRR orbits must be used in the extraction
process, eliminating the need to restore every GAC orbit. Second, the

NAS5-31362 JUNE 1992 PAGE 16

TCAP process eliminates a substantial portion of the in situ records,
which are not viewed by the AVHRR. This reduces the amount of
data to process.

Tables 2 and 3 show the number of in situ SST records that passed
the TCAP filter. The tables show that the number of in situ
observations decreases considerably once they have been filtered by
the TCAP routine, which is to be expected. For instance, a fixed buoy
which typically reports hourly data will be viewed by the AVHRR 2-
3 times a day, so only 2 or 3 out of the 24 observations pass the
filter for a given day. Data from the TOGA/TAO array are an
exception. SST observations for all other data sources are
instantaneous, whereas the values reported by the TOGA/TAO buoys
are averaged over the reporting interval. For that reason, the
matchup time window we chose for these data is considerably wider
than the one used for the others (typically one hour). The
consequence is that, if the matchup window is, say, plus or minus
four hours, the chances of having an AVHRR orbit that views the area
is much higher.

Final matchup of satellite and in situ SSTs

This part of the process is underway but has not yet been completed
for the global GAC data. Nevertheless, all the methodologies
involved, i.e., the satellite data extraction and the construction of the
final matchup database, have been developed and tested by building
the prototype US east coast and Gulf of Mexico matchup database
described in previous reports. The prototype database not only
served to test the matchup methodology from end to end, but it is
also being actively used in the development of new SST algorithms.
The prototype matchup database was built using only the NDBC
moored buoys and AVHRR/HRPT data archived at the University of
Miami.

NAS5-31362 JUNE 1992 PAGE 17

NAS5-31362 JUNE 1992 PAGE 18

NAS5-31362 JUNE 1992 PAGE 19

B.4 DSP Support (H)

The following section provides summary of DSP support activities for
1992. These activities are performed primarily by Sue Walsh.

January 92

During January, there were numerous DSP activities that included
testing, program modification, travel, and problem correction (fixes).
The primary testing effort focused on REMAP to determine why
combinations of input and output projections (and which specific
combinations) fail near the date line. Three major modifications to
the system were developed. First, the addition was the ability to
ingest SeaSpace and Ocean Imaging raw data formats. Second,
TCAP, a program to match a buoy location and data time with a
satellite pass was added. Third, the ability to merge just part of
graphics into an image was added. Sue spent two days at Goddard
discussing DSP with the Pathfinder group.

A number of problems were corrected during January:
 Fixed PIXRD systems to output proper dim file format.
 Fixed FRNTEDG to output proper dim file format.
 Fixed TRACE to report input file open errors properly.
 Standardized the use of trig functions in the workstation source.
 Fixed MAKCAL to update the proper band of an image.

February, 92
During February, there were numerous DSP activities that included
testing, program modification, and problem correction (fixes). DSP
testing efforts included testing DSP's cursor handling on five
different machines (DECstation, Silicon Graphics, Sun, VAXstation,
and Adage). Additional testing was begun on SCRIPP ingester and
SECTOR routine on Unix. DSP system modifications included
checking the workstation DSP source into a repository managed by
CVS; this is being done to all system routines as part of the source
control effort. Additional capability was added to allow the use of
NEWIMAGE to change the navigation information for an existing
image.

A number of problems were corrected during February:

NAS5-31362 JUNE 1992 PAGE 20

Fixed DFLOC in ORBIT, which fixed SECTOR.
Fixed DSP to update the proper header file for the modified image
plane.
Fixed the ALIASSORT command procedure to work on Unix.

Problems corrected:
 Fixed handling of calibration information in multi-band images.
 Fixed ANLY command procedure to parse the filename properly on
Unix.
 Fixed MACE2 to make sure the cursor is within the data space.
 Fixed some more command procedures to work on Unix.
 Fixed COLORSHR to only access the CAL_INP directory when actually
needed.
 Fixed some problems with image plane (frame buffer) handling.
 Fixed MIA2CDF on VMS.
 Check into the source control some more of the VMS only source (e.g.
WRKSPC).
 Clean up many source files so they compile nicely on all systems.
 Fix RLOCK to work on work on Unix.
 Fixed WMEAN to check "logical" variables properly.
 Fixed MAKE-BSD for Sun4.
 Fix ANLY7D, CALEPS7, and MAPEPS7: La(n) from Lass(670) was
wrong.
 Fix the "get command line" routines.
 Modify SSTBIN and SSTMOSAIC to use a different pixel quality
algorithm; and
 fixed the mean and standard deviation calculations (for linear
calibration
 equations, it won't work for other calibration equations); bin the
conc band
 instead of the ndvi band.

March, 92
During March, there were a number of DSP activities including
testing, program modification, and problem correction (fixes). DSP
testing efforts included more testing of SCRIPP and SECTOR on a
DECstation. There were a significant number of modifications during
March. Support was added to DSP for BSDI 386. MIA2TIFF was
modified to only read the palette if there is an XFBD active. GRID
was changed to output up to 60 lines instead of 40, and to print

NAS5-31362 JUNE 1992 PAGE 21

labels along the whole width and height of an image instead of just
512 by 512. Further capability expansion included the ability to
modify part of a palette, the ability for COMPOS to use a mask file,
and modification of ANLY7D, CALEPS7 and MAPEPS7 to apply Wang
coefficient to 670 La when using epsilons. A number of additional
routines were added including: ANLY7D, CALEPS7, MAPEPS2,
MAPEPS5, MAPEPS7, the MAKE-BSD utility, SSTBIN and SSTMOSAIC
(bin sst data using the 18 km binning algorithm).

Problems corrected in March:
Fixed handling of calibration information in multi-band images.
Fixed the use of an error message routine.
Fixed MIA2TIFF to only read the palette if there is an XFBD active.
Fixed ANLY command procedure to parse the filename properly
on Unix.
Fixed MACE2 to make sure the cursor is within the data space.
Fixed some more command procedures to work on Unix.
Fixed COLORSHR to only access the CAL_INP directory when
actually needed.
Fixed some problems with image plane (frame buffer) handling.
Fixed MIA2CDF on VMS.
Check into the source control some more of the VMS only source
(e.g. WRKSPC).
Clean up many source files so they compile nicely on all systems.
Fix RLOCK to work on work on Unix.
Fixed WMEAN to check "logical" variables properly.
Fixed MAKE-BSD for Sun4.
Fix ANLY7D, CALEPS7, and MAPEPS7: La(n) from Lass(670) was
wrong.
Fix the "get command line" routines.
Modify SSTBIN and SSTMOSAIC to use a different pixel quality
algorithm; and fixed the mean and standard deviation calculations
(for linear calibration equations, it won't work for other
calibration equations); bin the conc band instead of the ndvi band.

During April, DSP activities included testing, modifications, and
problem resolution. Test� efforts included testing the scripp
ingester and sector on all 5 systems (DECstation, Silicon Graphics,
Sun, VAXstation, and Adage). In addition, testing began for the new
PATHSST atmospheric correction program, as well as PATHBIN,
PATHTIME, and PATHMOS the new programs that bin sst data using
9 km bins. System modifications included the addition of an option

NAS5-31362 JUNE 1992 PAGE 22

to have dsp menus displayed in a separate X window, a new version
of the TABLE library that works on VMS, support for Motif on VMS
and new geometry packers from Finland in the tk library.

Problems corrected:
 Changed MACE2 to only read the cursor location when necessary.
 Ensured the workstation ingesters to compile and link on VMS.
 Misc. fixes to XFBD for VMS and Unix.
 Install and fix usage of netcdf for VMS and Unix.
 Misc. fixes to libraries and utilities for VMS and Unix.
 Fix MIA2HDF for VMS.
 Misc. modifications to the ingesters for VMS.
 Misc. modifications to make ANSI compilers and Multinet happy.
 Fix CALLER for Sun.
 Fix EXIST for VMS.

May, 92
During May, DSP activities included testing, modifications, and
problem resolution. Testing concentrated on additional examination
of SCRIPP and SECTOR on the 5 machines and on testing of PATHSST,
PATHBIN, PATHTIME, and PATHMOS on SGI. Modifications covered
additions to PATHBIN, PATHTIME, PATHMOS that added associated
data blocks to pass the grid size from the binner to mosaic, added
mask and ch4mmm bands and added ascend, cloud, and sat zenith
angle options to the command line. Further modifications included
the ability to merge graphics with the PRINT XFBD command;
programs to convert tbus data to ppt7 format, and to append new
lines
 to the satellite ephemeris files; support for VT300 terminals;
support for multiple default directory paths on VMS; and, finally, the
ability to read old style DSP image files on Unix.

Problems corrected:
More misc. fixes to XFBD and libraries.
Misc. fixes to DSP for VMS.
Fixed array zeroing in stats.
Misc. fixes to CALLER.
Misc. changes to Ratfor.
Fix error in usage of ESTANG result in COLORSHR and COLORSHR5.

NAS5-31362 JUNE 1992 PAGE 23

June, 92
During June, DSP efforts included testing, modification and fixes.
Testing continued on PATHSST, PATHBIN, PATHTIME, and PATHMOS.
The SST equation in PATHSST was modified. PATHMOS has had
mask1 and mask2 output bands added. PATHTIME was changed to
create the output image, instead of requiring an existing image.
edgemask was modified to work with any size/subsampled image.
The library routine Dsp_IsPlane was added so programs can check
input for file vs image plane. Finally, the UNWARN utility was
added to support the VMS system.

Problems corrected:
 Fixed error messages in spacetime, and mosaic.
 Misc. modifications to CALLER.
 Fix use of merge in GSFCBIN.
 Palette fixes in XFBD.
 Fix navigation near the poles.
 Multiple changes to the PATH programs.
 Fixes to MAPEPS7 and ANLY7D.
 Correct handling of image plane header files.

B.5 Team Interactions

B.51 Spring Team Meeting (14-16 April 1992)

Bob Evans and Otis Brown participated in the April Team meeting;
Otis acted as Ocean Team Leader. A 'straw-man' peer review
proposal was prepared and used as a basis for MODIS Team
model. During the meeting an Ocean Team position on Hughes-
Santa Barbara proposed performance modifications for MODIS-N.

B.5.2 Ocean Team Meeting (20-22 May 1992)

Bob Evans and Otis Brown acted as joint hosts for the meeting in
Miami. This meeting provided input into peer review and
algorithm description documents. Discussions among Team
members were held concerning MODIS-N performance trade-offs.

C. FUTURE ACTIVITIES

NAS5-31362 JUNE 1992 PAGE 24

C.1 Database Future Work

C.1.1. Change the database language from RDML to SQL as
Database Language

C.1.2. Change VMS system calls (lib$delete, lib$find_file, etc.) into
operating-system independent RATFOR functions.

C.1.3. Change the interface itself from VMS-specific FORTRAN to
operating-system independent RATFOR.

C.1.4. Further streamline and normalize the schema, particularly
the MAIN and PROCESS_CONTROL tables.

C.1.5. Develop simple, easy to adapt, special Client/Server
Functions

C.1.6. Change the Ingester Function Control

C.1.7. Formalize Processing History Storage

C.1.8. Enter interface source, client/server source and associated
database files into the CVS Source Control System

C.2 Client/Server Future Work

C.2.1. Creation of a resource manager and a performance
monitor.

C.2.2. Expansion of the error handler to provide broader
coverage and to integrate into the overall system error
recovery scheme.

C.2.3. Cleanup of the errors which prevent unattended
operation and test of the new code.

C.2.4. Continue testing the client/server with CZCS and AVHRR
data. This would include the acquisition of a UNIX resident
database to run parallel tests.

NAS5-31362 JUNE 1992 PAGE 25

Short term tests would include additional runs with the
complete CZCS framework modified such that the TIMEBIN and
MOSAIC steps are run as separate jobs. This verification will
be made using several additional 10 day selections of CZCS
data.

C.3 Pathfinder (P)
C.3.1. Continue development of linking processes between in-situ
and processed satellite data.
C.3.2. Expand the validation dataset.

C.4 Headquarters (H)
C.4.1. Create tools to assist in results interpolation.
C.4.2. DSP - Fix programs that access the graphics plane to use the
navigation from the input image and not the graphics plane.
C.4.3 Refine PATH binning and mosaic pixel quality algorithm to
eliminate clouds.
C.4.4 Verify workstation DSP (SGI, SUN, DECstation, VAXstation)
by comparing each program's output with the Adage system.

C.5 Modis (M)
1. Hold discussions with terabyte storage system
developers/vendors during the summer. Information obtained
during the discussions will be available to interested parties.

D. PROBLEMS

D.1 Database Problems

None listed separately

D.2 Client/Server Problems

1. NSF Disks - There have been instances of NSF disks not
being available when needed. This appears to be a problem at
the system level rather than with this implementation.

D.3 Matchup Database Problems

None listed separately

NAS5-31362 JUNE 1992 PAGE 26

D.4 DSP And Headquarters Related Problems

None listed.

NAS5-31362 JUNE 1992 PAGE 27

APPENDIX A. PREVIOUS MATCHUP DATABASE
 SUBMISSION

The following section has been reproduced from the March 1992
Quarterly Report on contract NAS5-31362 as background material
for Section B3.

III. DATA MATCHUP (P)

III.a NEAR TERM OBJECTIVES

Adding additional matchups to the database is clearly a near term
objective. Examining ancillary datasets to determine their
applicability within the matchup concept will continue.

III.b OVERVIEW OF CURRENT PROGRESS

A MATCHUP database includes various in situ and satellite
quantities, coincident (or nearly coincident) in space and time. The
MATCHUP database can be used to monitor sensor calibration and to
test and improve geophysical algorithms. We have been developing
a general methodology for doing matchups. There are four main
steps:

a. Compilation of in situ sea surface temperature (SST) and
other environmental data.

b. Development of a generic methodology for the identification
of NOAA spacecraft orbits that coincide (within a specified
time-space window) with in situ observations.

c. Extraction of AVHRR data corresponding to times and
locations where in situ data exist.

d. Matchup of in situ and AVHRR data.

Step One involves compiling and reformatting the in situ data,
primarily fixed and drifting buoy data. Reformatting is mainly a
redating; it is easier to do matchups if the time coordinates are
continuous. The date is converted into seconds relative to a
reference data.

NAS5-31362 JUNE 1992 PAGE 28

Step Two is the generation of a reduced list of in situ data. We have
chosen to use orbit routines in DSP to generate a list of "times of
closest approach" (TCAP). The TCAP methodology is generic in
nature and can be used for any spacecraft, provided an orbital model
is available. Its advantages are: (a) it reduces the volume of in situ
data to consider further, (b) it provides a limited list of satellite
orbits from which data are to be extracted.

Two checks are made; the first ensures that the observations fall
within a specified temporal window and the second check ensures
that the in situ location falls within the area scanned by the sensor.
These steps produce a series of times, lats and lons of in situ
observations, which will be fed to the extraction routines (the
following step). This step excludes a significant amount of the in
situ data.

Step Three extracts satellite data for the times and locations specified
above. This step is sensor-specific and a decision must be made
what data to extract. For example, using AVHRR, we extract data for
a 3x3 pixel box centered at the in situ location for all 5 channels,
plus geometric and sensor info (sat zenith angle, solar zenith angle,
baseplate temperature).

Step Four merges the in situ and satellite extractions, building the
MATCHUP data set. This step involves a further verification that the
data fall within the specified time/space windows. The MATCHUP
database can then be used for calibration and algorithm development
and validation.

The experimental MATCHUP database is now being used to test new
SST algorithms and criteria for cloud identification

III.c FUTURE ACTIVITIES

The MATCHUP database will be expanded and testing using the
database will continue.

III.d PROBLEMS ENCOUNTERED

III.d.1 The GSFC group will no longer participate in the compilation
of moored buoy data. We will need support to continue this activity
(and we have already received some 1981 buoy data from NODC).

NAS5-31362 JUNE 1992 PAGE 29

III.d.2 Similar to Problem 1, it involves lack of programming
support for the compilation and processing of drifter data sets.

III.d.3 There was an error in our TCAP routines that results in lack
of prediction for some locations.

Jim Brown has examined the prediction problem and, as a result,
acquired a new set of TCAP routines from D. Baldwin (U. Colorado).
After evaluating the implementation of the new TCAP program, it
was determined that the improvement overcame many of the known
problems. At this point, lists of global extractions can be generated.

