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MODIS Enhanced Land Cover and Land Cover Change Product

Algorithm Theoretical Basis Document

Version 2.0

1. Introduction

Three enhanced land cover and land cover change products are generated
by the MODIS research team at University of Maryland (UMD).  They are: the
global 1km land cover classification at-launch product, the global 250m land
cover change indicator product, and the global 500m global Vegetation
Continuous Fields (VCF) product.  The land cover indicator product is also
called Vegetation Cover Conversion (VCC) product.  Identifications of these
products are listed in Table 1.1

Table 1.1   MODIS Land Cover and Land Cover Change Products by UMD

Product Name Product Type Product
Number

Spatial
Resolution

Temporal
Resolution

Land Cover
Classification Product

At-launch N/A 1 km Annual

Land Cover Change
Indicator Product (VCC)

At-launch &
Post-launch

MOD44A 250 m Quarterly&
annual

Vegetation Continuous
Fields Product (VCF)

Post-launch MOD44B 500 m Annual

The global 1km land cover classification at-launch product is generated
using NOAA’s Advanced Very High Resolution Radiometer (AVHRR) data.  It
is created for other MODIS science team members to use as input of their
MODIS products before a global land cover product based on MODIS data can
be available.

The global land cover change indicator product at the 250m resolution is
designed to provide early warning that land cover change is occurring.  The
limited spectral characteristics of the 250m bands will limit identification of the
type of change that is occurring but the high spatial resolution should
substantially improve the timeliness by which the existence of change is flagged
compared with data at 1 km resolution.
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The global vegetation continuous fields product is designed to overcome the
arbitrariness of abrupt distinctions between land cover classes by representing
land cover in each pixel with a proportion of basic cover components such as
percentage woody tree cover or percentage herbaceous vegetation.

This document presents details about the input data, algorithms, and contents
of these products.  Considering the differences between these products in the
aspects of input data, algorithm and product contents, this document is
organized into three parts with each part describes one of the three products.
Each of these three parts is further organized into four broad sections.  Section 1
introduces the rationale of generating the product.  Section 2 provides an
overview and the technical background information.  Section 3 presents the
details of the algorithms employed in the generation of the product.  Section 4
describes the constraints, limitations and assumptions of the product.  This
document represents a revision of the Section 5, “Additional Post-launch
Products”, of the MODIS land cover product (MOD12) ATBD Version 4.2, and
is now named as Version 2.0 of UMD MODIS Enhanced Land Cover and Land
Cover Change Products ATBD.

The following publications are related to the development of the above
MODIS products and fully or partially supported by MODIS funding to the PI
of the MODIS research team at University of Maryland:

1)  M. Hansen, R. DeFries, J.R.G. Townshend, R. Sohlberg, 1999. Global
Land Cover Classification at 1km Spatial Resolution Using a Classification
Tree Approach.  International Journal of Remote Sensing.  In press.

2) M. Hansen and B. Reed. 1999.  A Comparison of the IGBP DISCover and
University of Maryland 1km Land Cover Classifications. International Journal
of Remote Sensing.  In press.

3) X. Zhan, R. DeFries, J.R.G. Townshend, C. DiMiceli, M. Hansen, C.
Huang, R. Sohlberg. 1999.  The 250m Global Land Cover Change Product from
the Moderate Resolution Imaging Spectroradiometer of NASA's Earth
Observing System. Journal of Remote Sensing.  In press.

4) R. DeFries, M. Hansen, J.R.G. Townshend.  1999. Global Continuous
Fields of Vegetation Characteristics: A Linear Mixture Model Applied to
Multiyear 8km AVHRR Data. Journal of Remote Sensing.  In press.

5) R. DeFries, J.R.G. Townshend, M. Hansen.  1999. Continuous Fields of
Vegetation Characteristics at the Global Scale.  Journal of Geographic
Research. In pres.
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2. The MODIS At-launch Product of Global Land Cover Classification
at 1 km Resolution

2.1 Introduction

The generation of several MODIS products, such as the MODIS LAI and
FPAR products, the MODIS Land Surface Temperature product and the
MODIS/MISR BRDF/Albedo products, needs land cover classes data as their
input.  For this purpose , the MODIS science team has recommended two
different versions of global 1km resolution land cover classification data
product and called them as the two layers of the MODIS at-launch product of
global 1km resolution land cover classification.  These two layers are: the
International Geosphere Biosphere Programme (IGBP) Data and Information
System Land Cover product generated by Eros Data Center (EDC) and the
global 1km land cover classification product generated by University of
Maryland (UMD).  This document describes the details of the UMD land cover
product.  Details of the EDC product are presented by Loveland et al. (1999).
An inter-comparison of these two land cover product is provided in Section 2.4
of this document.

2.2 Overview and Technical Background

Vegetative land cover is an important variable in many earth system
processes.  Many general circulation and carbon exchange models require
vegetative cover as a boundary layer necessary to run the model (Sellers et al.
1997).  Vegetation also represents an important natural resource for humans and
other species, and quantifying the types and extent of vegetation is important to
resource management and issues regarding land cover change (Townshend
1992).

With increasing frequency, remotely sensed data sets have been used to
classify global vegetative land cover.  The primary goals in developing these
products are to meet the needs of the modeling community and to attempt to
better understand the role of human impacts on earth systems through land
cover conversions. Recent work in classifying regional, continental and global
land cover has seen the application of multi-temporal remotely sensed data sets,
which describe vegetation dynamics by viewing their phenological variation
throughout the course of a year (Verhoef et al. 1996).  Tucker et al. (1985),
Townshend et al. (1987) and Stone et al. (1990) have produced continental-
scale classifications of land cover using this approach. For global land cover
products, DeFries and Townshend have derived a one by one degree map
(DeFries and Townshend 1994b) and more recently an 8km map using AVHRR
data (DeFries et al. 1998).  The current global land cover products are much
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finer in resolution than traditional climate modelers require, although there are
some who have begun to take advantage of the added information which finer
resolutions provide in the depiction of landscape heterogeneity (Dickinson
1995).  As the resolutions of global data sets become finer, the ability to
monitor short-term anthropogenically-induced land cover changes has
increased.  Sensors such as the Moderate Resolution Imaging
Spectroradiometer (MODIS) have resolutions sufficient enough to allow for
global depictions of land cover change.  Establishing a global baseline for land
cover at 1km is an important step to understand how change can be depicted
with  newer sensors such as MODIS.

A 1 km resolution data set employing AVHRR data has been developed
based on the recommendations from the International Geosphere Biosphere
Programme (IGBP) for use in global change research (Townshend 1992).
Loveland et al. (1999) have produced a 1km resolution global land cover layer,
named the IGBP DISCover product, where each continent was classified
separately and then stitched together.  They used 12 monthly NDVI
(Normalized Difference Vegetation Index) values in an unsupervised clustering
algorithm that was supplemented with ancillary data analysis.  The DISCover
product has also been included as an at-launch land cover product for the
MODIS sensor.

This document describes the development of the University of Maryland
1km data product to be included as another layer within the MODIS at-launch
product.  Building on the 8 km map and methodology of DeFries et al. (1998),
this product provides an alternative 1km land cover data set based on the
individual spectral bands as well as NDVI values.  The approach  involves a
supervised method where the entire globe is classified using a classification tree
algorithm. The tree predicts class memberships from metrics derived from the
same AVHRR data employed by Loveland et al. (1999), except here all 5
spectral bands as well as NDVI are used.  The application of the tree classifier
utilizes an imposed hierarchy of vegetation form similar to that proposed and
implemented by Running et al. (1994 and 1995), except that the relationships
between multi-spectral data and vegetation type are empirically derived.

Maps produced using satellite data have advantages over traditional ground-
based maps due to the continuous coverage and internal consistency of remotely
sensed data sets.  A primary reason for attempting to create maps from these
data sets is the potential for creating more accurate products, where the areas of
disagreement between products are less than past efforts compiled from ground-
based maps (DeFries and Townshend 1994a).  Classifying the entire globe at
once allows for the consistent extrapolation of spectral signatures in order to
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improve the consistency of global land cover characterization.  In the end, a
limited amount of regional relabeling of pixels is required and reflects the
limitations of the present method while pointing the way for improved
iterations.  In the absence of independent validation data, a comparison between
the University of Maryland (UMd) land cover layer with other digital land
cover maps is made later in this section, as well as with forest statistics
produced by the United Nations Food and Agriculture Organization.  These
comparisons help identify potential strengths and weaknesses of the UMd
product and also raise a number of issues which may help future efforts in
creating improved products.

2.3 Algorithm Description

The MODIS at-launch land cover product is created using NOAA’s
Advanced Very High Resolution Radiometer (AVHRR) data when MODIS
data are not available yet.  This section describes the data used for creating the
product first, then the classification algorithm is detailed.  The third subsection
presents the classification results followed by the product validation subsection.
The fourth subsection compares the two existing MODIS at-launch products
with each other.

2.3.1     Data

2.3.1.1   Training data

The majority of the training data were derived via the method described in
DeFries et al. (1998), using an overlay of co-registered coarse resolution and
interpreted high-resolution data sets.  Previous work for the 1984 8km product
consisted of interpreting 156 images, the great majority of which were Landsat
Multispectral Scanner System (MSS) data sets.  Interpretations were aided
using ancillary data sets, a list of which is available, along with the 8km data
plane at the following web site:

http://www.geog.umd.edu/landcover/global-cover.html.

After overlaying the 1km global data grid with the high-resolution data, only
those 1km grid cells which were interpreted from the MSS as consisting of 100
percent of the cover type of interest were included in this training set.
However, manipulating and analyzing the 1km data set at full resolution proved
to be beyond the available computing resources, so a subset of the entire data
set, including the training data, was then derived.  Roughly every 5th pixel was
sampled across each row and line of the data set in order to create a
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much-reduced, but viewable and usable subset of 7205 pixels by 3122 lines.
From this subset, 27,031 pixels were taken from the high-resolution scenes as
training sites.

Additional MSS scenes outside of the 156 original images were needed to
address some shortcomings seen in the 8km land cover product.  The original
scenes were selected from areas where three largely ground-based global land
cover characterizations agreed (Matthews 1983; Olson et al. 1983; Wilson and
Henderson-Sellers 1985).  For some classes, this greatly limited the successful
depiction of land cover across all latitudes.  For example, the wooded grassland
class, better described by its definition of 10-40 percent tall woody canopy
cover, had training sites only within the tropical regions of the globe.  Thus, the
depiction of areas with 10-40 percent tall woody canopy within temperate and
boreal zones was limited.  Clearly, there are large areas outside of the tropics
which have land cover fitting the description of this class.  To address this issue
and others like it, MSS thumbnail images were downloaded using the Global
Land Information System (GLIS) from the EROS Data Center
(http://edcwww.cr.usgs.gov/webglis/) and physical features were identified
using the same ancillary data as was used to create the original training sites.
This procedure added 10,218 pixels to the database, yielding a total of 37,249
training pixels.

The entire exercise of augmenting the training data was based on
interpretative analysis of the 8km product as well as some preliminary work
with 1km data.  The goal of adding to the training sites was to improve upon the
limitations of the 8km map.  No quantitative sampling procedure was available
in order to guide the acquisition of the training data, as no reliable a priori
knowledge of their global distributions exists.

2.3.1.2   AVHRR Data

The data used in this classification come from the Advanced Very High
Resolution Radiometer (AVHRR) 1km data set processed at the EROS Data
Center under the guidance of the International Geosphere Biosphere
Programme (Eidenshink and Faudeen 1994; Townshend et al. 1994).  For this
project, data are radiometrically calibrated, geo-registered to the 1km Goode's
Interrupted Homolosine equal area projection, composited over a ten-day period
using maximum Normalized Difference Vegetation Index (NDVI), and then
atmospherically corrected for ozone and Rayleigh scattering and solar zenith
angle to yield surface reflectances.   From a set of 12 data layers, the following
were included in this study:  channel 1 (visible red reflectance, 0.58-0.68
microns), channel 2 (near infrared reflectance, 0.725-1.1 microns), channel 3
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(thermal infrared, 3.55-3.93 microns), channel 4 (thermal, 10.3-11.3 microns),
channel 5 (thermal, 11.5-12.5 microns) and the NDVI (channel 2- channel
1)/(channel 2 + channel 1).  The first twelve months produced for this data set
were used in this classification beginning April 1, 1992 and ending March 31,
1993.

To reduce data volumes and cloud contamination, a maximum NDVI
composite was created for every month, along with all 5 associated channel
values.  This, however, did not remove all noise from the data set, and a
filtering of the data was performed in the context of a time series by identifying
and removing data spikes (DeFries et al. 1998).  Since there is no quality
control flag for the 1km data, each monthly value of each band was viewed in
isolation and compared to the standard deviation of the remaining monthly
values.  Those monthly values which were greater than seven standard
deviations away from the mean of the remaining eleven months were removed.
The value of seven standard deviations was chosen through visual inspection of
the data and found to be a conservative level which removed the most obvious
spikes.  The metrics calculated from the AVHRR time series are very sensitive
to noisy data, including maximum and minimum annual metrics (see section
3.3), and the removal of inordinately extreme values preserves their utility.
Other AVHRR processing techniques note the presence of digital counts of
extreme low and high values which are not readily detectable, even in a data set
production mode (Agbu and James 1994).  The attempt here was to find a
simple remedy which reduced the problem of noise without removing useful
data.

Preliminary work on the 1km data revealed a number of characteristics
which dictated some modifications to the classification methodology used for
the 8km product.  In general, the 1km data set appears to have more artifacts
and cloud contamination than the 8km Pathfinder data set.   The 8km data set is
derived from Global Area Coverage (GAC) 4km data (James and Kalluri,
1994), which is continuously recorded on board the NOAA platforms, while the
1km data set uses Local Area Coverage (LAC) 1km data, which must be
recorded by regional receiving stations.  The result for the 1km data set is a less
continuous product temporally, as receiving stations are not always operating.
This yields a more cloud contaminated composite.  Also, the geo-referencing
for the 8km uses on-board navigation to bin pixels, while the 1km uses ground
control points.  For any data scan at 1km, the swath was divided into areas
corresponding to the sections in the Goode projection.  Any section not having
a minimum number of ground control points was excluded, unlike the 8km
product, which retained all data.  This also results in a less clean composite as
the number of samples entered into the compositing scheme is substantially
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reduced.  Both compositing schemes used maximum NDVI, and then applied an
atmospheric correction.  Binning on NDVI results in composites being biased in
the forward scatter direction due to bidirectional reflectance distribution
function (BRDF) effects (Cihlar et al. 1994; Holben 1986), resulting in less
clean time series, particularly for channels 1 and 2.  This also increases the
presence of pixels with distorted view geometries.  Misplaced scans are also
present due to poor header information on the input data (Eidenshink, pers.
comm.).  While both the 8km and 1km data sets have many common problems,
such as no BRDF correction, the aforementioned differences can have a
significant effect on the production of like products, and lead to a need for
somewhat different treatments of the data in producing land cover maps.

2.3.2     Classification scheme

2.3.2.1   Algorithm

A decision tree was used to classify the dependent variable of class
membership using the independent variables of AVHRR metrics.  Decision tree
theory (Breiman et al. 1984; Quinlan 1993; Venables and Ripley 1994) has
previously been used to classify remotely sensed data sets (DeFries et al. 1998;
Freidl and Brodley 1997; Hansen et al. 1996), and offers some advantages over
other classification methods.  Trees are a non-parametric, hierarchical classifier
which predicts class membership by recursively partitioning a data set into
more homogeneous subsets.  This procedure is followed until a perfect tree (one
in which every pixel is discriminated from pixels of other classes, if possible) is
created with all pure terminal nodes or until preset conditions are met for
terminating the tree's growth.  The method used here is that of the Splus
statistical package (Clark and Pergibon 1992), which employs a deviance
measure to split data into  nodes which are more homogeneous with respect to
class membership than the parent node.  The reduction in deviance, (D) is
calculated as:

D-D-D=D uts (2.1)

where s is the parent node, and t and u are the splits from s.   Right and left
splits along the digital counts for all metrics are examined.  When D is
maximized, the best split has been found, and the data are divided at that digital
count and the process repeated on the two new nodes of the tree.  The deviance
for nodes is calculated from the following:

pn-2=D ikiki logΣ (2.2)
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where nik is the number of pixels in class k in node i and p is the probability
distribution of class k in node i.

Trees usually overfit the training data and a pruning procedure is needed to
better generalize the relationships between the dependent and independent
variables.  In other words, the tree can fit the training data too well by growing
on noise and errors.  To avoid this, a pruning procedure is employed to better
generalize the predictive ability of the tree.  Pruning is performed by splitting
the data into two sets and using one to grow the tree and another to prune it by
eliminating nodes which increase errors within the pruning data set.  In this
study, pruning was performed by visual interpretation due to problems inherent
in both the training and the AVHRR data, as will be discussed shortly.

Because trees are non-parametric and non-linear, multiple terminal nodes
are created for classes which have multi-modal distributions in spectral space.
This allows for the clearer depiction of the intraclass variability which exists at
the global scale.  Trees are also useful for identifying classes which represent
subsets of a continuous parameter, such as tree canopy for wooded grasslands,
woodlands and forests.  Trees operate not on statistics of central tendency, but
along the thresholds in multi-spectral space which best characterize boundaries
between classes.  Hansen et al. (1996) found that a single classification tree
threshold was superior to a maximum likelihood classifier in identify tall from
short global vegetation.  However, since the training pixel counts are used to
estimate probabilities, larger classes can be overemphasized in optimizing the
splits and in the assignments of terminal nodes.  Smaller classes are easily
identified within trees if they are dominant in any part of the multi-spectral
space.  But, if smaller classes are mixed with larger classes, the smaller class
can be lost via the assignment of terminal nodes to the classes with a dominant
proportional representation.

The hierarchical nature of trees yields explicit relationships between the
dependent variable, class membership, and the independent variables of multi-
temporal metrics.  In so doing, it allows for a readier biophysical interpretation
through the description of vegetation characteristics such as height of
vegetation and canopy closure.  This ease of interpretation is unique among
popular remote sensing classifiers and allows for the input of an expert analyst
in correcting splits associated with faulty or contradictory training data.
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Table 2.1  Comparison of University of Maryland class definitions to the IGBP-DIS definitions.

University of Maryland vegetation classes

Cover types in common with IGBP

Evergreen Needleleaf Forests:  Lands dominated by trees with a percent
canopy  cover >60% and height exceeding 5 meters. Almost all trees
remain green all year. Canopy is never without green foliage.

Evergreen Broadleaf Forests:   Lands dominated by trees with a percent
canopy cover >60% and height exceeding 5 meters.  Almost all trees
remain green all year. Canopy is never without green foliage.

Deciduous Needleleaf Forests:  Lands dominated by trees with a percent
canopy cover >60% and height exceeding 5 meters.  Trees shed their leaves
simultaneously in response to cold seasons.

Deciduous Broadleaf Forests:  Lands dominated by trees with a percent
canopy cover >60% and height exceeding 5 meters.  Trees shed their leaves
simultaneously in response to dry or cold seasons.

Mixed Forests:   Lands dominated by trees with a percent canopy cover
>60% and height exceeding 5 meters.  Consists of tree communities with
interspersed mixtures or mosaics of needleleaf and broadleaf forest types.
Neither type has <25% or >75% landscape coverage.

Woodlands:  Lands with herbaceous or woody understories and tree
canopy cover of >40% and <60%.  Trees exceed 5 meters in height and can
be either evergreen or deciduous.

Wooded Grasslands/Shrublands:  Lands with herbaceous or woody
understories and tree canopy cover of >10% and <40%.  Trees exceed 5
meters in height can be either evergreen or deciduous.

Closed Bushlands or Shrublands:  Lands dominated by bushes or shrubs.
Bush and shrub percent canopy cover is >40%.  Bushes do not exceed 5
meters in height.  Shrubs or bushes can be either evergreen or deciduous.
Tree canopy cover is <10%.  The remaining cover is either barren or
herbaceous.

Open Shrublands:   Lands dominated by shrubs.  Shrub percent canopy
cover is >10% and <40%.  Shrubs do not exceed 2 meters in height can be
either evergreen or deciduous.  The remaining cover is either barren or of
annual herbaceous type.

Grasslands:  Lands with continuous herbaceous cover and <10% tree or
shrub canopy cover.

Croplands:  Lands with >80% of the landscape covered in crop-producing
fields.  Note that perennial woody crops will be classified as the
appropriate forest or shrubs land cover type.

Barren:  Lands of exposed soil, sand, rocks, snow or ice which never have
more than 10% vegetated cover during any time of the year.

Urban and Built-up:  Land covered by buildings and other man-made
structures.  Note that this class will not be mapped from the AVHRR
imagery but will be developed from the populated places layer that is part
of the Digital Chart of the World (Danko, 1992).

Water Bodies:  Oceans, seas, lakes, reservoirs, and rivers.  Can be either
fresh or salt water.

IGBP-DIS Land Cover Working Group vegetation classes

Cover types in common with UMd

Evergreen Needleleaf Forests: Lands dominated by trees with a percent
canopy cover >60% and height exceeding 2 meters.  Almost all trees
remain green all year. Canopy is never without green foliage.

Evergreen Broadleaf Forests:  Lands dominated by trees with a percent
canopy cover >60% and height exceeding 2 meters.  Almost all trees
remain green all year. Canopy is never without green foliage.

Deciduous Needleleaf Forests:   Lands dominated by trees with a percent
canopy cover >60% and height exceeding 2 meters.  Consists of  seasonal
needleleaf tree communities with an annual cycle of leaf-on and leaf-off
periods.

Deciduous Broadleaf Forests:   Lands dominated by trees with a percent
canopy cover >60% and height exceeding 2 meters.  Consists of  seasonal
broadleaf tree communities with an annual cycle of leaf-on and leaf-off
periods.

Mixed Forests:  Lands dominated by trees with a percent canopy cover
>60% and height exceeding 2 meters.  Consists of tree communities with
interspersed mixtures or mosaics of the other four forest cover types.  None
of the forest types exceeds 60% of the landscape.

Woody Savannas:  Lands with herbaceous and other understory systems,
and with forest canopy between 30-60%.  The  forest cover height exceeds
2 meters.

Savannas:   Lands with herbaceous and other understory systems, and with
forest canopy between 10-30%.  The forest cover height exceeds 2 meters.

Closed Shrublands:  Lands with woody vegetation less than 2 meters tall
and with shrub canopy cover >60%.  The shrub foliage can be either
evergreen or deciduous.

Open shrublands:  Lands with woody vegetation less than 2 meters tall
and with shrub canopy cover between 10-60%.  The shrub foliage can be
either evergreen or deciduous.

Grasslands:  Lands with herbaceous types of cover.  Tree and shrub cover
is less than 10%.

Croplands:  Lands covered with temporary crops followed by harvest and
a bare soil period (e.g., single and multiple cropping systems).  Note that
perennial woody crops will be classified as the appropriate forest or shrubs
land cover type.

Barren:   Lands of exposed soil, sand, rocks or snow and never has more
than 10% vegetated cover during any time of the year.

Urban and Built-up:  Land covered by buildings and other man-made
structures.  Note that this class will not be mapped from the AVHRR
imagery but will be developed from the populated places layer that is part
of the Digital Chart of the World (Danko, 1992).

Water Bodies:  Oceans, seas, lakes, reservoirs, and rivers.  Can be either
fresh or salt water.



12

Covers not in common with UMd.

Permanent Wetlands:  Lands with a permanent mixture of water and
herbaceous or woody vegetation that cover extensive areas. The vegetation
can be present in either salt, brackish, or fresh water.

Cropland/Natural Vegetation Mosaics:  Lands with a mosaic of
croplands, forest, shrublands, and grasslands in which no one component
comprises more than 60% of the landscape.

Snow and Ice:  Lands under snow and/or ice cover throughout the year.



Table 2.2   Metrics employed in the production of the University of Maryland 1km product
using AVHRR data from April 1992 to March 1993
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2.3.2.2   Classes

The IGBP has developed a list of classes for use within global change research
and to which the 1km MODIS at-launch product and post-launch products will
conform (Rasool 1992).  The UMd class definitions closely fit this scheme and are
listed along with corresponding IGBP classes in Table 2.1.  The 1km training areas
are derived from 156 high-resolution scenes. These were originally interpreted for
the 8km map which employed a classification scheme for use with the Simple
Biosphere (SiB) general circulation model (Sellers 1997).  The SiB scheme does
not have agricultural mosaic, wetlands or snow and ice classes.  As a result, the
mosaic and wetlands classes are absent from this classification, while the IGBP
snow and ice cover class is included in the bare ground class.  The urban and
built-up class was taken directly from the EDC 1km IGBP classification by
Loveland (1999), which was in turn obtained from the Digital Chart of the World
(Danko 1992).  The water layer was taken from a preliminary water mask made for
the MODIS sensor in a sinusiodal projection and reprojected into the Interrupted
Goode Homolosine projection for use with this project.  The SiB mosses and
lichens class does not exist within the IGBP scheme, and scenes from this class
were reinterpreted to extract other covers where possible.  More subtle differences
between the UMd and the IGBP schemes, such as height of trees, are irreconcilable
and differ largely because of the definitions used by the ancillary sources in
interpreting the high-resolution data.

2.3.2.3   AVHRR metrics

A set of 41 metrics was created for input into the decision tree.  The first 29
metrics were created from values associated with the 8 greenest months of the
year.  These metrics differ from the ones used to derive the 8km map.  The 8km
metrics used all 12 months of 1984 Pathfinder 8km data in the classification, and
this produced a number of nodes associated with snow cover.  Snow cover,
especially relating to the distribution and number of training pixels within and
without the snow area, can produce undesired results.   By binning all metrics on
only the 8 greenest months, snow effects are largely limited to those places with
perpetual snow and ice cover and very high-latitudes, while still retaining most of
the seasonal variability associated with vegetation phenology.   The 8 greenest
months are not necessarily consecutive, but represent the 8 months with the
clearest view of green vegetation.  In this manner, globally applicable, timing
insensitive metrics with minimized cloud presence are created.  The metrics used
included maximum, minimum, mean and amplitudes for all bands associated with
the eight greenest months.  Individual band values associated with peak greenness
were also derived.
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Using only 8 months of data means that for areas like the tropics and much of
the temperate zone, 4 months of useful data were thrown away.  To try and
recapture some of this information, metrics were binned on the 4 warmest months,
as measured by channel 4, and two additional metrics per band and for NDVI were
calculated.  These were means associated with the four warmest months and
individual values occurring at maximum channel 4 temperature.  The four warmest
months were found to be associated with the dry season, or senescent phase of
much tropical vegetation.  By compositing on these values, data not used in the 8
greenest months can be included for some areas without introducing snow values
at high latitudes and elevations.  The metrics derived from the 1992-93 year for
bands 1-5 and NDVI are listed in Table 2.2.

2.3.2.4   Procedure

The classification procedure followed that of the 8km product except for the
use of a cascading two-class hierarchy of trees in implementing the classification
tree algorithm.   An initial attempt at using the previous methodology revealed the
inability to create a single simplified tree such as the 8km tree which described the
globe in 57 nodes.  One potential reason is the increased heterogeneity of the
Earth's surface at 1km which precludes the creation of a single, simple global tree.
Secondly, the 1km data is  more cloud contaminated than the 8km data set, as
mentioned previously, due to different recording procedures, geo-registering and
compositing techniques.   This results in a more complex tree structure than the
one derived for the relatively cleaner 8km data.  Thus, the decision was taken to
create an imposed tree hierarchy, shown in Figure 2.1, somewhat similar to the one
used by Running et al. (1995).  In this manner, only two classes are depicted within
any single tree, allowing for a simplified, structured approach and easier
interpretation of the results.  The original training pixels were run through the
successive trees and a preliminary result was obtained.  Pruning based on visual
interpretation of this preliminary global map was then applied where nodes were
accepted or rejected based on their global geographic distributions.  From this, a
subset of pixels associated with approved nodes was created.  These pixels were
then rerun through the tree structure and a final tree was derived.  These trees were
again pruned based on visual interpretation to produce the final map.

For the both the UMd 1km and 8km maps, an automated classification
algorithm is employed to depict land cover, but obvious errors in the product make
it necessary to apply an interpretive step.  Figure 2.2 outlines the steps in the
procedure along with some of the sources of error within this product which
mandate that an interpretative pruning be applied.  Cloud contamination, bad scan
lines, missing data, geometric misregistration, and incorrect ancillary data can lead
to the production of anomalous nodes which cannot be eliminated except by a
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subjective step.  For this study, pruning was performed through manually clipping
nodes, relabeling nodes, and finding alternative splits for nodes which yielded
depictions of land cover not consistent with known global distributions.  Although
the derivation of the trees cannot be duplicated, the application of these trees will
result in the same map product.  In this sense, the procedure is reproducible given
the metrics and the trees, but the product reproduced represents a mix of
objectively and subjectively derived relationships. Efforts are underway to improve
the ability to derive land cover products more objectively by applying more
sophisticated algorithms for growing and pruning trees (Quinlan 1993). Upon
application of the final trees, a regional relabeling is performed on pixels which do
not agree with known global geographic distributions.

2.3.3    Results

After the initial run of the training data through the tree hierarchy and pruning
procedure, a subset of 26,208 pixels was taken to create the final classification tree
structure.   All trees were created using the 7205 by 3122 pixel subset of the 1km
data.  The final trees were then run on the entire 1km data set.  No sieve was
applied.

Among the most frequently used metrics for all trees were minimum annual red
reflectance and maximum annual NDVI.  Figure 2.3 shows subsets of boreal,
temperate and tropical areas for these metrics with the same spectral
enhancements.  These subset windows will be used to illustrate certain qualities of
the product as the discussion of the tree hierarchy is developed.

2.3.3.1   Hierarchical classification tree

2.3.3.1.1   Vegetated/bare ground tree
The first tree was a vegetated/non-vegetated tree used to classify bare ground

(Figure 2.4).  For all trees depicted, only the dominant nodes accounting for over
5% of the respective class' land areas are shown.  A simple maximum annual
NDVI threshold provides greatest initial discrimination for the
vegetated/non-vegetated tree. In Figure 2.5a, the land areas associated with the
dominant nodes for the tree are highlighted.  Areas such as volcanic features in the
Sahara Desert are not easily discriminated with a single split (shown in black as
lesser nodes), and extra nodes were required that largely accounted for these barren
ground subtypes.  Barren areas with a maximum NDVI greater than 0.155 are
associated with a misplaced AVHRR 1km data set swath in the Atacama desert.
The rest of the black area is associated with places having a peak NDVI less than
0.155.  Outcrops in the Sahara and other places are confused with sparse grasslands
in China, and additional splits are needed to depict them.  Volcanic outcrops of the
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Sahara have been analyzed before in efforts to account for background soil
reflectances which make certain areas spectrally similar to sparsely vegetated ones
(Huete and Tucker, 1991).  The results here reflect the difficulty in separating these
areas using NDVI alone, and different spectral information through the use of
additional splits is needed to characterize them.

2.3.3.1.2   Tall/short vegetation tree
This tree was meant to separate woodlands and forests with nearly closed tall

canopies from open parklands, shrublands, croplands and herbaceous covers.
Figure 2.6 shows the tree's structure and Figure 2.5b where the dominant nodes
map globally.  In general, low minimum annual visible red values (<5.3%
reflectance) successfully discriminated woodlands and forests.  Exceptions to this
relationship included non-woody areas with water present, such as inundated
grasslands, areas of rice production and other wetland formations. Commission
errors of woody classes are associated with some non-woody areas for these types
of land cover.  Many tropical inundated grasslands were confused with needleleaf
evergreen stands in the visible and near-infrared, and temperature values were used
to separate the two.  This, however, did not resolve the characterization of similar
wetlands at higher latitudes.

Some croplands, particularly in the midwest of the United States, also had very
dark minimum red values and created confusion between croplands and
woodlands.  Part of this problem may be due to bad data in the 1km data set.  For
example, Figure 2.3b shows the minimum annual channel 1 metric for the Midwest
USA.  The line in the image is the Mollweide/Sinusoidal boundary of the Goode
projection.  The dark northern portion creates a node in the woody/non-woody tree
specific to itself, indicating a possible problem with the data set.  Figure 2.5b
shows this area in black as one of the lesser nodes not easily discriminated along
with the rest of the woody and non-woody types.  This type of problem is hard to
isolate in a global approach and can create undesirable results.

In general, along forest/non-forest boundaries it is apparent that the extent of
forest stands is exaggerated.  For example, clearings of grasslands within the
Amazon basin are reduced in size as if a buffer of forest were added to the
boundary.  This is the result of binning on maximum NDVI, retaining data from
low scan angles and georegistration inaccuracies.  When combining these effects,
the greener class along any class boundary usually is overemphasized. This loss of
heterogeneity and bias of dominant classes has been discussed by others (Moody
and Woodcock 1994; Cushnie 1987) and users should be aware of this problem.
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One noticeable area lacking in woodlands in this product is West Africa. While
woodlands are mapped, they are not present in this product as much as ancillary
data indicate they should be

http://www.geog.umd.edu/landcover/global-cover/global-resources.html

Figure 2.3c shows a two band composite of an area in West Africa.  In general,
West African woodlands are considerably brighter than other woody areas, such as
the miombo woodlands of Southern Africa, or the Gran Chaco of Argentina,
possibly reflecting a longer history of anthropogenic disturbance in the region.
Low minimum annual red reflectance for tall woody areas represents the combined
effects of canopy shadowing and chlorophyll absorption.  For most of West Africa,
high minimum annual red reflectance values limit the areal extent of forests and
woodlands.   Figure 2.3c also shows the problem of persistent cloud cover along
the coast of West Africa in affecting the minimum channel 1 metric.  The
classification of grasslands along the western coast of the image is suspected of
being largely the cause of cloud presence in all monthly composites.  This area,
according to ancillary information, has considerably more forested land.

It is of interest that the first woody/non-woody split of minimum annual red
reflectance was nearly the same as that derived for our 8km land cover
classification using 1984 Pathfinder data, 5.35 percent compared to 5.38 percent.
The potential reproducibility of tree splits between data sets and over time has
implications for not only land cover mapping, but also change detection.  A
reproducible tree structure over time would allow for the depiction of spectral
migration and change.

2.3.3.1.3   Forest/woodland tree
Woodlands were also distinguished from forests based on minimum visible red

values.  Figure 2.7 shows the forest/woodland tree while Figure 2.5c shows the
spatial extent of the dominant nodes.  Some tropical woodlands were as dark and
green as tropical forests and temperature bands, such as the mean of the four
channel 5 values associated with the warmest 4 months of the year, were used to
stratify these areas.  This metric helped create a fairly clear forest/woodland
boundary in Central Africa, but may have increased confusion between some more
seasonal tropical forests and adjacent woodlands.  Ancillary data from Asia
referring to deciduous forests and African sources for miombo woodlands are not
reconciled in the metrics used here and errors between tropical seasonal forest and
woodlands are suspected to exist in areas such as Asia and West Africa.  The
depiction of woodlands revealed the heterogeneity of areas such as the boreal
forest, and within fragmented forest/agricultural mosaics such as the southeastern
United States.  The global approach of applying a set of universal splits revealed a
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lack of true forest in a number of areas such as the Atlas Mountains and the hills of
east-central India in contradiction to ancillary sources which depict extensive
forest stands.

2.3.3.1.4   Remaining trees
Descriptions of the remaining trees can be found in the metadata of the 1km

product at the aforementioned website.  Important aspects include:

• Mixed/pure leaf type forest tree
m mixed forests defined within 45-60 degrees latitude are separated

largely by the mean channel 4 of the 8 greenest months metric and
maximum NDVI

m maximum NDVI is repeatedly used
m many high-latitude broadleaf forests are classified as mixed forest due

to lower maximum NDVI values
m broadleaf forests mixed with non-forest covers are often labeled

mixed forest, creating a buffering affect around core broadleaf areas
(see Figure 2.3a)

• Broadleaf/needleleaf forest tree
m minimum channel 3 separates tropical broadleaf from extratropical

needleleaf forest
m maximum NDVI separates temperate broadleaf from needleleaf forest
m lush evergreen needleleaf areas, such as that found in the Pacific

Northwest, and Araucaria forests in South America, are confused with
broadleaf evergreen forest

m Eucalyptus forests in Australia and elsewhere map as needleleaf
evergreen forests

• Needleleaf evergreen/deciduous forest tree
m amplitude of NDVI largely separates these leaf types
m needleleaf deciduous forests confused with mixed forests

• Broadleaf evergreen/deciduous forest tree
m minimum channel 3 separates temperate from tropical broadleaf

forests
m mean of the four channel 5 values associated with the four warmest

months separates tropical deciduous from tropical broadleaf forests
m amplitude of NDVI separates temperate deciduous forests from other

evergreen forests not separated by the channel 3 split
• Sparse trees (wooded grassland)/croplands, grass or shrubs tree

m high intraclass spectral variability, largest wooded grassland node
accounts for only 17 percent of class total

m minimum red reflectance, infrared reflectance at peak greenness and
minimum channel 3 are the metrics of the first three splits
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m most difficult class to map since it represents wide range of partial
woody covers, for example: scrub savannas, boreal transitional
woodlands, and crop/forest mosaics

• Croplands/shrubs and grass tree
m NDVI and near-infrared metrics are first two used in this tree
m mechanized agriculture is in general agreement with ancillary data
m agriculture in developing nations poorly depicted, as is all low

biomass agriculture, due to the difficulty in separating cropping from
natural background phenologies and errors of omission and
commission exist for many areas

• Grass/shrubs tree
m mean red reflectance and channel 5 and NDVI means for the warmest

four months are used in the first three splits
m pastures within temperate cropping areas are not depicted
m semi-arid and very high-latitude grasslands not well depicted

• Open/closed shrubs tree
m temperature and NDVI metrics separate shrub classes
m confusion between these two classes and grasslands suspected to exist

as background soil reflectances make discrimination difficult (Huete
and Tucker 1991)

2.3.3.2   Regional relabeling

The last step was a regionally-based reassignment of obvious inaccuracies
which were performed to remove clearly erroneous results.  This modification of
the product changed only 0.67 percent of the total land area, and represents areas
spectrally inseparable within the present training data signatures.  The following is
a summary of classes which were remapped for this purpose:  above boreal zone
agriculture mapped to grassland, exterior to Siberia deciduous needleleaf forest
mapped to mixed forest, needleleaf evergreen forest in Australia mapped to
broadleaf evergreen forest, needleleaf forest in humid tropical basins such as the
Amazon and the Congo mapped to woodland, shrub classes on volcanic outcrops
in the Sahara mapped to bare ground, evergreen broadleaf forest in temperate
latitudes mapped to evergreen needleleaf forest, extensive agriculture on the
Tibetan plateau mapped to grassland, broadleaf evergreen forest in the miombo
belt of southern Africa mapped to woodland and two reassignments of classes due
to misplaced AVHRR swaths.  Table 2.3 shows the number of pixels per class
changed in this manner.  Needleleaf deciduous forest is by far the most affected.
Most of the pixels changed for this class represent mixed forest pixels.  One
possible explanation for the inability of this approach to cleanly delineate
needleleaf deciduous forest may be the possible presence of broadleaf forest within
the needleleaf deciduous training sites.  When viewing maximum NDVI values for
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the deciduous versus evergreen needleleaf forests, deciduous forest has a median
value of .64 compared with an evergreen value of .61. Higher peak greenness may
be an indicator of the presence of broadleaf types within this class.

Table 2.3   Re-mapping of likely misclassifications based on application of regional rules.
Shown are re-mapped area and remapped area as a percent of total class area as predicted

by the classification tree.

Class Remapped area in
sq. km

% remapped/
class total

Needleleaf evergreen forest 309747 5.54

Broadleaf evergreen forest 121271 1.08
Needleleaf deciduous forest 174047 23.41
Broadleaf deciduous forest 51238 2.84

Mixed forest 53988 1.62
Woodland 27240 0.16

Wooded grasslands 31993 0.14
Closed shrublands 0 0.00
Open shrublands 37400 0.21

Grassland 224 0.00
Cropland 150404 1.33

Bare ground 11747 0.04
Urban and built-up 0 0.00

Global totals 969299 0.67

2.3.3.3   Final global land cover classification

The areal extent of each class is shown in Table 2.4 and the final product in
Figure 2.8.  The comparison of these totals to the 1984 8km product can be seen in
Figure 2.9.  Note the marked increase in wooded grassland in the 1km product and
a corresponding decrease in more forests and woodlands.  Beyond the addition of
more intermediately woody training sites, the nature of the resampling in
producing the GAC and 8km Pathfinder data would also make an 8km product
more forested.  The resampling of GAC data has been studied and shown to be
biased towards the greenest covers and reducing spatial heterogeneity (Justice et al.
1989).  This would tend to smooth mosaic areas and reduce the expression of
intermediate woody covers.  The most greatly reduced forest in terms of area is the
needleleaf evergreen class.  This is the result of the addition of more open canopy
needleleaf training areas delineated in order to reduce the dominance of this class
in certain regions of the 8km product.  The shrub classes appear to disagree



22

because the 8km product includes a class for mosses and lichens (tundra), and this
area is mapped mostly as shrublands in the 1km map.

Table 2.4   Total class areas for the University of Maryland 1 km product

Class Area in sq. km %
Needleleaf evergreen forest 5277925 3.67

Broadleaf evergreen forest 11138639 7.74
Needleleaf deciduous forest 569299 0.40
Broadleaf deciduous forest 1752105 1.22

Mixed forest 3272545 2.28
Woodland 16533042 11.50

Wooded grasslands 22653618 15.75
Closed shrublands 7436875 5.17
Open shrublands 17938741 12.47

Grassland 12382238 6.61
Cropland 11126625 7.74

Bare ground 33583362 23.28
Urban and built-up 260092 0.18

Total 143825106 100.00

2.3.3.4   Reproduction of training data

All of the training data were used in the production of the trees.  Since no
independent data yet exist for validating global data sets, it is useful to examine the
results of the product compared to the training pixels. The majority of the
confusion within the training data relates to physiognomically similar class types
and classes representing mixed assemblages.  There is relatively little confusion
between core classes representing dominant vegetation forms and forest types.  For
example, the training agreement when viewing the confusion between only the
classes of evergreen needleleaf and broadleaf forests, deciduous needleleaf and
broadleaf forests, shrubland, grassland, cropland and bare ground is 88 percent
(positively identified pixels of these classes/(positively identified pixels of these
classes + errors only across these classes)).  By adding the mixed forest class,
woodlands, wooded grasslands, and open and closed shrublands, significant
additional confusion results.  The total training accuracy for all classes is reduced
to 69 percent (total positively identified pixels for all classes/total number of
training pixels).  The accuracies for all classes are shown in Figure 2.10.  The best
training accuracies are for the most homogeneous cover types such as bare ground
(99 percent = positively identified bare ground pixels/total number of bare ground
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training pixels), open shrubs (84 percent) and broadleaf evergreen forest (80
percent).  However, nearly one-third (32 percent) of  mislabeled pixels are errors of
commission or omission for the woodland class.  Over one-half (55 percent) of
training errors are associated with either woodland or wooded grassland pixels.
Only one-third (33 percent) of all errors represent confusion between the
aforementioned core classes.

The mixed class types are particularly problematic due to the reliance on
ancillary data sets in delineating training sites.  An example of forest/woodland
confusion can be taken from a set of pixels interpreted from an MSS scene
covering part of eastern India.   All of the pixels from the Chota Nagpur Plateau
area were characterized as broadleaf deciduous forest but were classified as
woodland in the final product due to the fact that within the metrics they are
spectrally most similar to other woodland training sites.  The original interpretation
of the MSS scene was based on ancillary map data depicting the area as forest, but
pixels from this scene have a mean minimum annual red reflectance of 5.1%
compared to 3.8% for other global forest training pixels.  Thus, within the tree
structures, these pixels were labeled as woodland and not forest.  A single
misclassified scene such as this one can greatly reduce training accuracies.  The
pixels from this Indian scene represent 17% of all deciduous broadleaf forest
training pixels and are counted as training errors.

The training accuracy numbers are less than that achieved in our 8km effort,
which had an overall training accuracy, for a set-aside data set, of 81 percent.  This
reflects the increased heterogeneity of the earth surface at 1km, the greater
presence of noise and other data problems within the 1km data set, and a
proportional increase of mixed classes within the 1km training pixels.

2.3.4   Validation

A global validation data set does not exist with which to measure the accuracy
of this land cover product, although an effort is underway to develop such a
database at 1km resolution (Belward 1996).  Many researchers have stressed the
need for statistically rigorous validation efforts for maps being used for scientific
investigations and policy decisions (Stehman and Czaplewski 1998).  However, the
validation of this 1km data product is beyond available resources at this time.  In
order to evaluate this map, a few comparisons were made with other existing
regional data sets which employed high-resolution data sources.  Although these
cannot be used as validation data, they do help characterize the map by yielding a
measure of concurrency between products which were derived entirely
independently from one another.
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2.3.4.1   Environmental Protection Agency Region 3 Characterization

The United States Environmental Protection Agency has begun an effort to
classify the 10 Federal Standard Regions as part of an effort called the Multi-
Resolution Land Characteristics Consortium National Land Cover Data Base
(MRLC) (Vogelman et al. 1998).  To date only region three, consisting of
Delaware, the District of Columbia, Maryland, Pennsylvania, Virginia and West
Virginia, has been finished.  It is a 30 meter map product derived from Landsat
Thematic Mapper data and characterizes some classes in common with the UMd
product.  By reprojecting and resampling the classes to their proportional
representation at 1km, an evaluation of the agreement between the two can be
undertaken.

Much of this area is taken up by the Appalachian chain of mountains, which
are largely forested, while the valley bottoms and the eastern coastal plain consist
of a mosaic of remnant forests and agriculture.  By taking the most frequently
occurring land cover at the 30 meter spatial resolution within geo-registered 1km
squares, a map of the EPA's product aggregated to 1km was produced.  Both land
cover products, as aggregated to the UMd scheme, are shown in Figure 2.11a and
2.11b.  This area is dominated by broadleaf deciduous forest, and many valleys
present at fine resolutions are not captured at 1km resolution.  The overall
agreement per pixel is 65 percent.  When examining homogeneous, or core area,
1km pixels which consist of greater than 90 percent one cover type within the
high-resolution map layer, the agreement increases to 81 percent.  The
corresponding forest/non-forest numbers are 83 percent and 92 percent.  In all
comparisons, forest includes all 5 forest types and non-forest includes the
remaining 8 classes.

The percent agreement numbers should not be confused with accuracies, but
are reported only in order to aid in the visual interpretation of the graphics and to
reflect a measure of general thematic agreement.  Although viewing core areas can
yield overly optimistic results (Hammond and Verbyla 1996), it is worth
examining here for a number of reasons.  First, some mosaiced areas for the
MRLC data do not have a single cover which is dominant at 1km.  For EPA
Region 3, these areas are  most likely to be represented in the 1km map as a partial
tree cover class such as woodlands or wooded grassland.  These intermediate
classes were not included in the MRLC classification scheme and a straightforward
comparison cannot be made.  Also, AVHRR data reduces the heterogeneity present
in mosaiced areas while this spatial complexity remains even in the resampled
MRLC data.   Evaluating core areas yields a measure of thematic agreement while
minimizing problems associated with this inherent incompatability.
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Grasslands in the MRLC map are confused with croplands and wooded
grassland in the UMd map.  Pastures occurring within intensive agricultural areas
were not trained on for the 1km data set and this could lead to errors of omission
for the grassland class.  Areal comparisons of all regional data sets with the UMd
map are shown in Figure 2.12.

2.3.4.2   European Coordination of Information on the Environment data

Digital maps for much of western Europe are now available in the European
Coordination of Information on the Environment  (CORINE) data set produced by
the European Topic Center on Land Cover (CEC, 1993).  Germany was used  for
comparison as a large country for which the classes aggregated reasonably well to
the UMd scheme.  A graphic comparison of the UMd and CORINE Germany
products can be seen in Figure 2.11c and 2.11d.  The agreement between the maps
at 1km, using a resampling of dominant cover type for the CORINE data into the
1km grid, is 65 percent for all pixels and 83 percent for those 1km grid cells with
greater than 90 percent of one land cover type, showing that the core areas for the
respective cover types have good agreement.  Forest/non-forest comparisons agree
81% for the entire country and 92% when viewing only the 90% pure CORINE
pixels.  The agreement of needleleaf forests increases from 56 percent to 80
percent going from all pixels to just the 90 percent pure ones, while there is great
confusion between mixed and broadleaf forests.  Grasslands are poorly depicted in
the north, revealing once again the limited ability to depict pasture within areas of
intensive cropping. However, one-quarter of the CORINE grassland is labeled
wooded grassland, mostly within areas of forest/grasslands mosaics in the south
and west of the country.

2.3.4.3  NASA Landsat Humid Tropical Deforestation Pathfinder Project data
at the University of Maryland

The University of Maryland's Pathfinder (Townshend et al. 1995) data sets for
Colombia, Peru, Bolivia and the Democratic Republic of the Congo were
examined in order to test the success of the UMd product in mapping tropical
forest boundaries. The NASA Landsat Humid Tropical Deforestation Project
depicts only a forest and non-forest layer, where forest represents humid tropical
closed canopy forest and all other land covers are grouped as non-forest.  The
results for the South American data are shown in Figure 13a.  The UMd product
misses small clearings within the forest boundary and some montane forests,
possibly due to the presence of clouds.   One area of interest is southeast Bolivia
where extensive tropical deciduous woodlands and forests are found.  The UMd
product has significant areas of this forest to the south trending into the Gran
Chaco, where the Pathfinder product has none as these woodlands/forest are no
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longer a humid type formation. The agreements of 89.0, 91.8 and 82.0 percent for
Colombia, Peru and Bolivia show the general success of the UMd product for this
area in classifying tropical forest.

The Landsat Pathfinder data for the Democratic Republic of the Congo
(Townshend et al. 1995) was examined in a similar fashion.  Figure 2.13b shows
this comparison.  The overall agreement is 85.7 percent.  The largest source of
error is found within the forest boundary and in the eastern highlands.  As stated
earlier, depicting areas with persistence haze was found to be problematic.
Training data from Equatorial Guinea and the Republic of the Congo created splits
associated with cloud cover.  However, these splits created problems in other areas
of the globe, where cloudy signals were being mapped as broadleaf evergreen
forest.  As such, these splits were dropped from the trees, as the signals are not
representative of a characteristic land cover.  The result is a spotty depiction of
forest cover within the central forest with problems increasing towards the Atlantic
coast and Gabon.  Within the context of Central Africa, these cloudy splits could
be used for delineating likely forest in the central basin, along the Atlantic coast,
and in the eastern highlands abutting the western rift valley.

2.3.4.4   Evaluation Summary

A number of conclusions can be drawn based on the comparisons made
between the regional databases and the UMd product.  The basic distinction
between forest and non-forest shows good agreement with other sources, ranging
from 81 to 92 percent.  One area of possible improvement for the UMd map is the
mapping of pastures within heavily agricultural areas.  Future iterations of this
product must include better training for this cover sub-type.  Atmospheric
degradation of the remote sensing signal in central Africa is difficult to handle in
the global context and suggests the possible value of fusing other data sources such
as radar in these areas.

Landscape heterogeneity found in high-resolution data sets is reduced in the
1km multi-temporal UMd product.  Favoring the dominant classes when using
coarser resolution data, especially the greener classes due to multi-temporal NDVI
compositing, is in agreement with other findings (Moody and Woodcock 1994)
and possible ways to reduce the loss of information for coarse scale maps are
needed (Moody 1998).  Using high-resolution data as a surrogate for ground truth
may be a cost-effective way to characterize errors present in coarse scale maps
(Kloditz et al. 1998).
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2.3.4.5   Comparison with ground-based Food and Agriculture Organization
forest statistics

United Nations Food and Agricultural Organization country forest statistics
were compared with the UMd country totals for the three levels of canopy closure
mapped in the classification system.  The FAO statistics are provided by the
individual countries and date from different years.  An adjustment function was
then used to estimate 1995 totals for all countries (FAO 1997).  For developed
countries, the FAO definition of forest describes areas with a minimum of 20%
tree crown cover and for developing countries, a minimum of 10% tree crown
cover.   Although the definitions forest for FAO and the UMd data differ slightly,
some conclusions can be made by comparing the internally consistent global 1km
UMd product to statistics generated by individual countries.

Figure 2.14 shows plots of FAO forest versus UMd aggregate classes of forest
(>60% canopy cover), forest plus woodland (>40%), and forest plus woodland plus
wooded grassland (>10%).  Overall the UMd aggregate class which best agrees
with the FAO numbers globally is forest plus woodland, or areas with 40 percent
and greater canopy closure.  The UMd global totals for this aggregate are 11
percent higher than the FAO numbers, compared with being 80% higher when
using all three woody classes combined and 37% lower using forest classed pixels
alone.

However, it is clear that different definitions of forest are being applied in
different countries.  Others examining the FAO data set have found discrepancies
due to different forest definitions, data sources and data processing (Mayaux et al.
1998).  For example, many regional subsets of countries such as the those of the
humid tropical Pan-Amazon, including Venezuela, Columbia, Peru and Bolivia,
have FAO numbers which best agree with the forest numbers from the UMd map.
On the other hand, many semi-arid nations of central Asia best agree with the
aggregate of all woody classes, though their areas are too small to show in Figure
2.14.  By taking the one UMd class aggregate which is closest to the FAO number
(Figure 2.14d), the overall agreement between FAO global forest estimates and
UMd estimates is reduced to a 7.0 percent lower figure for the UMd map compared
to the FAO.

The continent with the highest disagreement between the two sources is Africa.
By breaking the African countries into regional groupings, some disagreements can
be reconciled when viewing the different canopy threshold aggregates.  For a
subset of humid tropical countries including Liberia, Sierra Leone, Cameroon,
Equatorial Guinea, the Republic of the Congo, the Democratic Republic of the
Congo, and Rwanda, the total disagreement, when comparing FAO forest (>10%
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crown cover) to UMd forest (>60% canopy cover), is less than 1 percent:
1,562,270 kilometers squared to 1,577,816 kms2.  For these countries the FAO
statistics do not appear to reflect the FAO definition of forest for developing
nations, but are closer to measuring the UMd-defined forest subset of that
definition.  The disagreement jumps to 48 percent and then to 93 percent
overestimations of forest cover when adding woodland and then wooded grassland
totals to the UMd forest numbers.  In general, it appears that countries with
significant proportions of tall, dense forest are more likely to map this type of
formation as the forested land, and not other less dense formations which still meet
the FAO definition of 10% tree crown cover.  On the other hand, countries such as
Namibia, Botswana, Senegal, Mali and Niger appear to include sparser stands of
trees such as that from the UMd wooded grassland class.  For these countries,
forest plus woodland UMd totals underestimate the FAO total by 97%, but by
adding wooded grassland, the total disagreement is reduced to a 24%
overestimation.  This variable standard of woodiness can be discerned through the
use of the global UMd land cover characterization.

The generation of internally consistent global classifications using remotely
sensed data could be of help to users of data sets such as the one generated by
FAO.  The FAO's ground-based forest statistics represent a combination of various
sources which could be brought into greater harmony through the use of remote
sensing.  For modelers and researchers interested in the human impacts of global
change, an internally consistent approach to mapping land cover should prove
valuable in standardizing the depiction of natural resources across regions,
continents and the globe.

2.3.5   Constraints, Limitations and Assumptions

Performing global classifications of remotely sensed data provides for an
internally consistent product which allows for the comparison of land cover
between regions and continents.  In this study, a 1km global land cover
classification conforming largely to the IGBP class definitions has been made.  A
set of classification trees were created to map land cover using AVHRR 1km data
from 1992-93.  The minimum annual red reflectance metric proved very useful in
delineating woody areas, while peak annual greenness was useful in describing leaf
type.  Temperature metrics were also used in discriminating tropical woodlands
from forest, drought deciduous broadleaf forest from evergreen broadleaf forest,
and in stratifying the tropics from temperate and boreal zones.   Temperature also
helped in separating shrublands from grasses and agriculture. Near-infrared metrics
were helpful in separating crops from grass and shrub covers, and tropical
inundated grasslands from woodlands.  Many of the splits lend themselves to ready
biophysical interpretations and point to the possibility of using the same tree for
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separate years in order to test the method’s repeatability and for eventual use in
detecting land cover change.

The classification trees also revealed the relatively few steps it takes to
characterize most of the globe.  However, many of the trees featured subtrees of
considerable complexity, possibly related to the quality of the data.  Future efforts
using sensors such as MODIS will reveal the possibility of creating decision trees
where a handful of splits successfully describes the entire globe.   For the data used
here, this was not possible.

All compositing methods available should be assessed for their utility in
mapping land cover at coarse resolutions.  NDVI compositing has been shown to
be biased towards high view zenith angles in the forward scatter direction,
preferentially binning on  BRDF affected pixels.  This has the effect of introducing
geometrically distorted pixels, as well as making the derivation of true at-nadir
reflectances difficult.  The geometric distortions of pixels due to compositing
methods was evident in the comparisons with high-resolution derived map
products.  Preliminary examinations of the UMd map to other AVHRR-derived
maps using single date imagery (Zhu and Evans 1991 and Mayeaux et al. 1997)
also show an increased blurring of the landscape due to the multi-temporal signals
and maximum NDVI compositing.  These characteristics of multi-temporal
compositing imply that the map would more appropriately be made at a resolution
greater than 1km, as the footprints of many pixels are actually considerably larger
than the at-nadir size of 1.1km.  Also, red and especially near-infrared values from
the 1km data set are suspected to be greatly affected by BRDF effects and this
limits the utility of these bands for certain areas and  land covers.  The resulting
noisy time series for channels 1 and 2 complicates the use of these bands in
classification.  More robust approaches relying on one or more different
compositing criteria should be used (Cihlar 1994; Lambin and Ehrlich 1996), along
with corrective procedures (Cihlar et al. 1997), in order to avoid the typical
problems associated with maximum NDVI compositing.  Additionally, adding
corrections for water vapor and aerosols will help create less noisy time series
(Ouaidrari et al. 1997) and should allow for the creation of simpler classification
trees.

2.4 Comparison of the IGBP DISCover and University of Maryland
1 km global land cover products

There are currently two global 1km resolution land cover products available
derived from data from the Advanced Very High Resolution Radiometer, the first
produced by the U.S. Geological Survey for the International Geosphere Biosphere
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Programme and the second by the University of Maryland.  This subsection is to
compare the characteristics of these maps, the global IGBP Data and Information
System DISCover and University of Maryland 1km land cover products.  The
reason for comparing these maps is to clarify the similarities and differences in the
development of each product.  A preliminary numerical comparison is also
included to illuminate areas of agreement and disagreement.   Both data sets were
created for the same fundamental purpose of providing improved global land cover
information for environmental modelers.  The DISCover product was designed to
meet the various global land cover needs of the IGBP core science projects (Rasool
1992; IGBP 1992).  The IGBP-DIS Land Cover Working Group (LCWG)
developed a program to create a global land cover product based on 1-km AVHRR
data which culminated in the DISCover land cover product (Loveland et al., 1999).
At the University of Maryland, global land cover maps have been produced for the
modeling community and, as finer resolution global data sets have become
available, for researchers working on a variety of applications requiring land cover
information. Recent research has included the generation of one degree (DeFries
and Townshend, 1994), 8 kilometer (DeFries et al. 1998) and 1 kilometer (Hansen
et al., 1999) global land cover maps.    As described by Merchant and others
(1993), evaluating large area land cover products is very difficult.  The primary
reason for this difficulty is a lack of corroborating evidence and the relatively high
cost of conducting a statistically meaningful validation.  Existing regional land
cover data that may be available for comparison are often of undocumented
accuracy, developed with non-standardized classification legends, and developed
with unknown methodologies.  Using such information often only compounds the
evaluation of global products.  In lieu of a rigorous statistical validation, a
comparative overview of the methodologies, along with areal and per pixel
comparisons, is offered here to help users understand the differences between the
products and allow them to make better informed decisions on how to use these
data sets.

2.4.1   Methodological Similarities and Differences

Table 2.5 illustrates a number of similarities and differences between the two
products.  They each use data from the National Oceanic and Atmospheric
Administration's (NOAA) AVHRR satellite sensor.  The data derived from the
AVHRR that were used in the two classification sequences were collected based
on monthly maximum normalized difference vegetation index (NDVI) composites
dating from April 1992 to March 1993 inclusive.  The DISCover project used the
12 monthly NDVI data while the University of Maryland used all 5 AVHRR
channels as well as the NDVI in deriving 41 multi-temporal metrics from the 12
monthly composites.   The IGBP-DISCover product was created using the 12
monthly maximum NDVI values, representing the annual phenology of vegetation,



31

as inputs into an unsupervised clustering program.  The clusters resulting from the
algorithm were then labeled and refined at the continental scale according to
available ancillary digital and map-based information.  Over 250 maps and atlases
of ecoregions, soils, vegetation, land use, and land cover were used in the
interpretation phase of the study and served as reference data to guide class
labeling.  This approach provided a highly flexible methodology in creating a
product which best reproduced the thematic information in the ancillary maps
while adding the spatial detail inherent in the remotely sensed data.  For more
information on the cluster refinement and labeling techniques see Loveland and
others (1999).

The DISCover classes are of the IGBP classification scheme.  A tabular
comparison of the DISCover and UMd class lists can be found in Hansen et al.
(1999).  The processing sequence for the IGBP-DISCover product was continent-
by-continent as the data became available through the IGBP-DIS global 1-km
project (Eidenshink and Faudeen 1994).  The DISCover product was released via
the World Wide Web

http://edcwww.cr.usgs.gov/landdaac/glcc/glcc_na.html

free of charge to all potential users in July, 1997 and is scheduled to be improved
twice yearly based on peer-review, user feedback, and results from the validation
study.

Table 2.5   Similarities and Differences of the IGBP-DISCover and University of Maryland
Global Land Cover Products

Product Characteristics IGBD DISCover University ofMaryland
Sensor AVHRR AVHRR

Time of Data Collection April 1992 –March 1993 April 1992 – March 1993

Input Data 12 monthly NDVI
composites

41 metrics derived from
NDVI and Bands 1-5

Classification Technique Unsupervised clustering Supervised classification tree
Processing sequence Continent-by-continent Global

Classification Scheme IGBP (17 classes) Simplified IGBP (14 classes)
Refinement/Update

schedule
Twice yearly Currently being updated

Validation September 1998 Evaluated using other digital
data sets

The University of Maryland (UMd) used a supervised classification tree based
on 41 temporal metrics calculated to represent the phenology of global vegetation.
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Training sites were derived from over 150 interpreted Landsat scenes distributed
throughout the world.  A complete list of the Landsat training scenes, along with
ancillary data  used to interpret them, can be found at the University of Maryland
web site

http://www.geog.umd.edu/landcover/global-cover.html

The UMd classes largely conform to the IGBP scheme.  Not included in the
UMd product are the permanent wetlands, cropland/natural vegetation mosaic and
ice and snow IGBP classes.   Signatures derived by the classification tree algorithm
were extrapolated worldwide.  Most signatures act globally, while others represent
unique regional characterizations of a single class or subclass.  The University of
Maryland product is available at the previously mentioned website, and an
improved future version will be generated based on evaluations using ancillary
data and user feedback.   The IGBP LCWG established a validation working group
who developed a strategy and methodology for validating the DISCover land cover
product (Belward 1996).  The strategy is based on a stratified random sample of
the DISCover land cover classes.  The random samples were taken from higher
resolution satellite imagery (mainly Landsat and SPOT).  There is no formal
validation program of comparable statistical rigor established for the University of
Maryland product due to the considerable cost involved.  As an alternative,
comparisons with other regional digital data sets are being used to evaluate the
map.  The DISCover validation sites will also be used in this fashion. While these
sites will not provide accuracy statements with known confidence levels due to the
IGBP DISCover based sampling strategy, it will certainly provide valuable
information.

2.4.2   Areal and per Pixel Comparisons

Figure 2.15 shows the areal totals for classes as aggregated into
physiognomically similar groupings.  The totals are quite similar, the only
exception being the apparent disagreement in grass/shrub cover totals.  This
difference is explained by the absence of the agriculture mosaic class in the UMd
classification.  However, when comparing the per pixel accuracies for these
groupings, it is clear that the internal arrangement of the classes as represented on
the globe is quite different between the maps.  The percent per pixel agreement for
these groupings, excluding the agricultural mosaic and wetlands classes which do
not nest into the UMd classes, is 74 percent.

Per pixel agreement and disagreement can be seen in Figure 2.16, which
displays the agreement between the two maps for tall (forest and woody
savanna/woodlands) and short/no vegetation (all other classes).  As shown in
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Figure 2.15, the overall areas for these classes differ very little.  The global totals
for tall vegetation differ by less than 1.6 million square kilometers or less than 4
percent of the total tall woody land cover as expressed in each map.  However, the
per pixel agreement for tall versus short vegetation is 84 percent.  Figure 2.16
shows how most core forested areas are mapped similarly, while disagreements
occur mostly along the edges of these areas and constitute wide regional
variability.  For example, West Africa in the DISCover map is woodier than in the
UMd map, while the opposite is true in Southern Africa.  Users whose models are
sensitive to regional variability should be aware of these disagreements between
the two products.

Figure 2.17 shows the areal totals for all classes and reveals two significant
differences between the maps. First, while the aggregate forest/woody savanna and
woodlands totals may be similar, the DISCover map has more forest, of all types,
than the UMd map.  The woody savanna/woodland class, conversely, has greater
presence in the UMd map.  Also, the wooded grassland class for the UMd map is
over two times the size of its savanna counterpart in the DISCover map. Much of
this disagreement is related to the mosaic class used in the DISCover product.  The
overall result from these two differences is the increased presence of intermediate
woody classes such as woody savannas/woodlands and savannas/wooded
grasslands in the UMd map than in the DISCover map.  Excluding the three classes
not present in the UMd map, the per pixel agreement for the remaining classes
equals 48 percent.  The fact that the agreements diminish greatly when viewing all
of the classes versus aggregates is not surprising, but users who need this level of
detail should examine the data themselves in order to judge which map is most
useful for their purposes.

Three snapshots of local areas at full-resolution have been included to reflect
the level of concurrency between the two maps.  Figure 2.18a shows an area near
Perth, Australia where both maps exhibit general thematic agreement with the
consistent delineation of forest/woodlands and crops.  Figure 4b is of an area along
the United States/Canada border in the Pacific northwest where there is general
agreement for the class aggregates of Figure 2.15, but confusion within the
aggregates themselves.  There is disagreement within the forested area between
evergreen needleleaf and mixed forests and between the open shrublands and
grasslands of the Columbia River basin.  The increased presence of forest in the
DISCover map and of intermediate tree cover classes within the UMd map can also
be seen along the forest/non-forest boundaries.  Figure 2.18c is an example in
France of the identification of the same geographic entity, the Massif- Central, but
of two different thematic depictions due to the use of different classification
schemes.  The absence of the cropland mosaic class in the UMd map creates a
significant divergence in the portrayal of this area for both maps.  The DISCover
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map characterizes the area as an agricultural mosaic, while the UMd map has
forests, woodlands, wooded grasslands and croplands present. At coarse
resolutions, mixed pixels dominate in many areas such as Europe, and a consistent
characterization between maps can be difficult to realize.  Not having a common
classification scheme assures dissimilar depictions and creates problems for
evaluators and users.

2.4.3   Comparison to ground-based maps

One of the primary reasons for developing remotely sensed derived land cover
maps is the ability to improve upon traditional ground-based mapping methods.
DeFries and Townshend (1993) revealed the level of disagreement present among
traditional ground-based land cover maps and advocated the use of remote sensing
to map global land cover as a way to create more consistent map products.  A
comparison of the agreement between the remotely sensed derived DISCover and
UMd maps with two land cover maps derived from ground-based data revealed a
gain in thematic agreement.  Two maps, the "Global Distribution of Vegetation at
1øX1ø" compiled by Matthews (1983) and "Carbon in Live Vegetation of Major
World Ecosystems" by Olson et al. (1983) were examined to make this
comparison.  The nesting of the data sets into individual classes allowed for a
number of possible permutations, so each ground-based map was aggregated into
the classes present in Figure 2.15.  Of these classes, the forest/woodland,
grass/shrubs, crops, and barren classes are common to all four maps.  The Olson
and Matthews maps were reprojected into the Interrupted Goode Homolosine
projection and the 1km data sets were resampled to this coarser grid.  The results
comparing the Matthews/Olson and DISCover/UMd agreement are shown in Table
2.6.

The ground based maps have an average class disagreement of 33.7%, while
the same number for the remotely sensed derived maps is 18.1%, indicating a
reduction in the areas of disagreement by 46%.  The overall disagreement is
reduced by 38%.  However, these are not measures of accuracy.  In fact, two maps
could have 100 percent agreement and be entirely wrong.  It is posited here that the
synoptic view provided by remote sensing allows for a more consistent depiction
of the earth surface than do traditional approaches, even when given the greatly
disparate classification approaches used in the making of the DISCover and UMd
maps.
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Table 2.6  Comparison of thematic agreement at nominal 0.5 degree resolution grid of remotely
sensed derived DISCover and UMd maps and ground-based "Global Distribution of Vegetation

at 1º x 1º" compiled by Matthews (1983) and "Carbon in Live Vegetation of Major World
Ecosystems" by Olson et al. (1983).

DISCover/ UMd Forest/
woodland

Grass/shrubs Crops Bare ground

Forest/woodland 88.6% 9.0 2.4 0.0
Grass/shrubs 15.8 69.0 10.0 5.2

Crops 8.6 12.2 79.2 0.0
Bare ground 0.0 9.3 0.0 90.7

Average class agreement = 81.87%
Overall agreement = 80.32%

Olson/Matthews Forest/
woodland

Grass/shrubs Crops Bare ground

Forest/woodland 70.2% 22.0 71. 0.7
Grass/shrubs 14.9 60.0 6.7 18.5

Crops 16.1 29.5 51.1 3.2
Bare ground 0.5 14.6 1.0 83.9

Average class agreement = 66.3%
Overall agreement = 68.35

2.4.4  Discussion and Conclusions on the Comparison

The approaches each research group has taken to complete the task of
characterizing the globe into a set of similar classes are very different.  From the
algorithms to the input variables, there is little in common between the two
methods. However, while many differences do exist, there is an amount of
thematic agreement present, especially at the class aggregate level  Aside from the
input variables, algorithms and classification schemes, a number of external factors
create variability which make it difficult to clearly compare the methodologies.

One  important variable is the reliance on a wide and varying set of ancillary
data sources within both techniques (DeFries et al. 1998).  For the DISCover
product, ancillary sources were used to label clusters resulting from the
unsupervised classification algorithm.  For the UMd map, ancillary sources were
used to aid in interpretation of the original high-resolution data sets which, in turn,
were used to create the 1km training data set.  Regional variability in the quality
and reliability of these data sources is very high and introduces variability in the
output map products.  The IGBP LCWG validation workshop is a first step in
attempting to generate a standardized global validation data set for use with coarse
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resolution maps.  The production of such data sets makes it possible to test the
differences between the methodologies by providing a global reference standard.

Another variable is the 1km data set, which is also a first generation product.
Artifacts exist within these data due to a variety of factors which, in turn, can
differentially affect the map outputs.  The presence of clouds, data gaps,
misregistrations, and other anomalies increase the probability of errors being
portrayed in the final land cover products.  The extent to which noisy data are
manifested or ignored within the two mapping approaches and, thus, in the final
maps is currently unknown.  A more rigorous comparison of the two maps would
include a discussion of the degree to which the two approaches handle noisy data.
Future production of global data sets will employ new techniques for generating
global satellite composites which will reduce many of the undesired effects
associated with past approaches (El Saleous et al. 1999), and allow for
comparisons relating classification methodologies directly to multi-spectral
information.

The IGBP DISCover and the University of Maryland 1km land cover products
represent the first ventures into mapping global land cover at a moderate spatial
resolution.  Questions regarding appropriate methodologies, data sources, and
evaluation techniques are still under investigation.  The future task is to discern
areas of weakness within the present set of products and identify ways to produce
improved iterations of these maps.  This first review shows general agreement  for
broad vegetation categories, with low per pixel agreement for individual classes
and significant regional variability.  Answering why the disagreements exist and
how to improve correlation between maps is an important research topic and might
include the identification of core areas for major land covers, areas of mixed
pixels, and the identification of multi-spectral information which bests
discriminates global land covers.
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3. The MODIS Global Land Cover Change Indicator Product at 250m
Resolution

3.1 Introduction

The earth’s land cover exerts an important control on the planet’s
environment.  Land cover influences surface roughness and albedo which
consequently affect exchanges of sensible heat, water vapor (latent heat), and
carbon dioxide and other greenhouse gases between land surface and the
atmosphere.   In addition, the vegetation plays a physiological role in these
exchange processes through stomatal resistance and photosynthetic capacity
(Sellers et al., 1996).  These exchanges of energy and materials are major
components of the hydrologic cycle, the carbon cycle, and the global climate
system.  Consequently, many hydrological, ecological, and climatological models
use geographically referenced land cover information as an essential input (Asrar
et al, 1994; Denning et al, 1996).  Reliable land cover information is thus
increasingly recognized as having crucial relevance for understanding many
aspects of earth system science (Townshend et al., 1991, 1994).  The significant
effects of hypothetical land cover changes on the climate (Dickinson and
Henderson-Sellers, 1988; Nobre et al., 1991; Yukuan et al, 1994; O’Brien, 1996;
Xue, 1996) indicate that land cover change information is also important for global
change studies.  As earth system models become more sophisticated, it will be
necessary to incorporate land cover change as a variable.  In addition, monitoring
land cover change is increasingly important for natural resource management,
biodiversity assessments, and inventories for implementing international
agreements on greenhouse gas emissions.

3.2 Overview and Technical Background

Several static global land cover products derived from remotely sensed data
are available or under production (Loveland et al., 1991, 1997; DeFries et al.,
1994, 1995, in press;  Hansen et al., 1999).  These products were created primarily
with remote sensing data from NOAA’s Advanced Very High Resolution
Radiometer (AVHRR).  The Moderate Resolution Imaging Spectroradiometer
(MODIS) of NASA’s Earth Observing System (EOS) will provide an improved
source of global information for the study of land surfaces with spatial resolutions
of 250 to 1000 meters depending on the bandwidth.  As one of the efforts of the
MODIS Land Science Team, a global land cover change product at 1 km
resolution will be created by Boston University to depict broad-scale land cover
changes attributable, for example, to interannual variability in climate (Lambin &
Strahler, 1994).  The University of Maryland will provide a product at 250m
resolution to depict land cover changes due to anthropogenic activities which
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generally occur at finer resolutions than 1 km (Townshend et al., 1991).  This
document describes the 250m resolution land cover change product developed by
the University of Maryland.  Specifically, this section presents the generation
procedure, the change detection algorithms and the associated look up tables
(LUTs) required for their implementation, the data sets used for creating the LUTs
and testing the change detection algorithms, and finally the results of the algorithm
testing.

The MODIS instrument onboard the EOS AM-1 platform is a scanning
radiometer system with 36 spectral bands extending from the visible to the thermal
infrared wavelengths (Running et al, 1994).  The first seven bands are designed
primarily for remote sensing of the land surface with spatial resolutions of 250m
for bands 1 (red, 620-670 nm), and band 2 (near infrared, 841-876 nm), and 500m
for bands 3 to 7 (459-479nm, 545-565nm, 1230-1250nm, 1628-1652nm, 2105-
2155nm, respectively).  Its orbital configuration and its viewing geometry produce
full global coverage every two days.  Because a very high proportion of land cover
changes due to human activities occur at spatial scales around or less than 250
meters (Townshend et al, 1991), the land cover change product described in this
document is derived from the only two bands available at 250m resolution.
Although the number of the available bands is limited, the two bands are in the red
and near infrared wavelengths, the most important spectral regions for remote
sensing of vegetation (Townshend and Justice, 1988).

Considering that both the information available in the two 250m bands of
MODIS and the current scientific knowledge in global scale land cover change
detection are limited,  the MODIS 250m global land cover change product is
designed to serve as an alarm system rather than a comprehensive global scale land
cover change monitoring system.  This alarm system would provide users with
indicators for where the major land cover changes might have occurred and then
users can use higher resolution remote sensing data of the indicated areas to
examine the exact locations and types of the changes.  One of the direct
applications of the alarm product is to help the data acquisition strategy of the
Landsat 7 satellite.  With this alarm system, we aim to identify those changes that
are caused by human activities, such as deforestation, urbanization, agricultural
expansion or contraction, as well as by extreme natural events, such as flooding
and fire (burn scars).  Specifically, the types of land cover change to be detected in
this at-launch version of the product are conversions between the following land
cover types:  Forest (tall woody vegetation with greater than 40 percent canopy
cover), Non-forest (short herbaceous vegetation or woody vegetation with less than
40 percent canopy cover), Bare ground, Water bodies, and Burn scars (Table 3.1).
These simplifications are associated with the conservative goal of the current at-
launch version of the product.  Once experience of detecting global scale land
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cover change with real MODIS data is gained, other detailed types of land cover
change, such as conversions between non-forest land cover types will be included
in the post-launch version of the product.

Table 3.1  Types of land cover change to be detected by the MODIS 250m land
cover change product. The empty boxes indicate that the conversion is not of

interest or is not likely to occur.

Time 2 Cover TypeTime 1
Cover Type

Forest Non-forest Bare Water Burn

Forest - Deforest. Deforest. Flooding Burn

Non-Forest Regrowth - Urban. Flooding Burn

Bare Regrowth Agricul. - Flooding -

Water Flood
retreat

Flood retreat Flood
retreat

- -

Burn Regrowth Regrowth - - -

Figure 3.1 shows the data processing scheme for the 250m global land cover
change product.  The processing procedure takes advantage of the gridded level 2
(L2G) products of surface reflectance for the two 250m bands.  The L2G surface
reflectance product used as input in the processing chain has been atmospherically
corrected for molecular scattering or absorption of atmospheric gases (such as
water vapor, carbon dioxide, ozone, and other trace gases), aerosols, and thin cirrus
clouds (Vermote et al., 1995, 1997).  We chose to use a surface reflectance product
that does not employ a bidirectional reflectance distribution function to correct for
sensor geometry in order to avoid assumptions about land cover type.

The first step in the processing chain involves compositing the surface
reflectance for each 32 day period to maximize the availability of cloud-free,
snow-free, good quality and close-to-nadir surface reflectance data.  The
compositing procedure we have chosen is shown in Figure 3.2.  After the 32-day
surface reflectance data for the red and NIR bands have been generated for the two
dates to be considered, they are used as input to five change detection algorithms.
In the absence of MODIS data for developing and testing the algorithms, we use
multiple algorithms to build confidence in the result.  The change results from the
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five algorithms are then integrated with an “algorithm integration rule” to
determine whether to label the pixel as “change” or “no change.”  The five change
detection algorithms and the algorithm integration rule are described in section 3.

The 250m global land cover change product detects changes between images
acquired at both three month and annual intervals.  For the three month interval,
which is confounded by phenological changes that do not represent a change in
cover type, we apply the algorithms to three pairs--a one month interval, two
month interval, and three month interval--in order to build confidence in the result
(see Figure 3.3).  These three results are then integrated into a final result for the
three month period using the time integration rules that combine the various
outcomes for the three time intervals.

3.3 Algorithm Description

3.3.1 Theoretical Description of Change detection Methods

Detection of land cover changes has been a major application of remote
sensing for more than a decade.  During this time period, the role of remote sensing
in monitoring the earth’s environment became emphasized (Townshend, 1977).
Several change detection techniques have been developed and applied.  These
techniques fall into two categories:  analysis of differences in classification results
between two dates, and analysis of radiometric differences between dates.  In the
absence of very high accuracies in classification results, the classification approach
must be used cautiously in order that misclassified pixels in either of the two dates
are not erroneously labeled as change.  Radiometric methods include band
differencing, band ratioing, transformed band differencing, principal component
analysis, and multispectral or multitemporal change vector analysis (see Singh,
1989 for a review and Johnson and Kasischke, 1998 for examples).  Although
these methods have been successful with the local-scale samples to which they
have been applied, none of them have been tested at a global scale.  Because
MODIS data will not be available until the EOS-AM1 platform is launched,  it is
only possible to develop and test the algorithms with simulated data.  For this
reason, we employ multiple change detection methods in the 250m MODIS land
cover change product in order to have a reasonable level of confidence in the
result.

Specifically, the change detection methods used in the 250m MODIS land
cover change product are:  the red-NIR space partitioning method, the red-NIR
space change vector method, the modified delta space thresholding method,
changes in the coefficient of variation, and changes in linear features.  The first
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three methods exploit the spectral information from MODIS bands 1 and 2 for the
two 32-day composites being compared.  The other two methods exploit changes
in spatial texture.  We describe the theoretical basis for each of the methods in the
following sections.

3.3.1.1   The red-NIR space partitioning method

Most land cover changes caused by human activities, flood or fire are
associated with changes in the surface brightness and greenness.  Therefore, the
locations of a pixel in the two dimensional space of brightness and greenness at
different times should indicate whether and what type of change has occurred.
Because the brightness can be represented by albedo (approximately the mean of
MODIS bands 1 (red) and 2 (near infrared) reflectances), and the greenness can be
represented by the difference between MODIS bands 2 and 1, the brightness-
greenness space is just a 45 degree clockwise rotation of the red and NIR space
(Figure 3.4).  In addition, the value of the Normalized Difference Vegetation Index
(NDVI) of a point in the Red-NIR space is associated with the slope of the line
connecting the origin and the point. All points on one line going through the origin
have the same value of NDVI.   For a given geographic region and time of year,
the spectral signatures of various land cover types have characteristic ranges in the
red-NIR space.  The red-NIR space partitioning method exploits these
characteristic land cover signatures to detect change (Hansen et al., 1998).

The method partitions the red-NIR space into five classes: forest (tall woody
vegetation with greater than 40 percent canopy cover), non-forest (short
herbaceous and woody vegetation with less than 40 percent canopy cover), bare
ground, water bodies, and burn scars.  By comparing the locations of the pixel in
the red-NIR space at time 1 (the composite derived from 32 daily observations for
the first month being considered) and time 2 (the composite derived from 32 daily
observations for the second month being considered), we can determine whether
conversions between the five cover types have occurred.  Though similar to the
classic classification difference method, this method differs in the following
important ways: 1) it distinguishes only five classes which are spectrally distinct
compared with more detailed land cover classifications, and 2) it labels pixels as
changed only when it migrates in spectral space from the core area for one cover
type in time 1 (the spectral space with no confusion between classes, see section
5.1 for further explanation) to the core area for another cover type in time 2.
Migration between a core area and an area in spectral space that represents
mixtures of cover types are not labeled as change.  This avoids the problem of
overestimating pixels that have changed, a problem with classic classification
differencing methods.  To implement the red-NIR space partitioning method for
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the 250m land cover change product, a set of look up tables (LUTs) to define the
core areas are needed.  Section 5 describes the generation of these LUTs.

3.3.1.2   The red-NIR space change vector method

The red-NIR space change vector method is based on the presumption that
land cover conversions can be characterized by a vector indicating a pixel’s change
in location in the red-NIR space from time 1 to time 2.  The starting and ending
positions, direction, and magnitude of the change vector are used to determine if
and what type of change has occurred.  In other words, the change vector method
uses both the state and dynamic information of location in the red-NIR space
compared with known spectral signatures of the five cover types (Figure 3.5).  For
example, if a forest does not undergo conversion between time 1 and time 2 and
the seasonal change is not significant, the spectral signature does not change
substantially and the change vector has a magnitude of zero or close to zero.  If the
forest is cleared for agriculture or urban development and becomes bare ground,
then the change vector would generally move from low brightness and high
greenness to high brightness and low greenness, in other words parallel with the
red axis in the red-NIR space.  If the forest is burned, both the greenness and
brightness decrease and the corresponding change vector moves parallel but in the
negative direction to the NIR axis in the red-NIR space.  These examples illustrate
the utility of the dynamics of the change vector, the magnitude and direction, for
identifying land cover change.  However, the change vectors associated with
different types of change may have similar values for magnitude and direction, as
shown in Figure 3.5 for changes from forest to bare ground and non-forest
vegetation to bare ground.  In this case, the state information, i.e. the starting and
ending positions of the change vector, can indicate the type of change (Huang et
al., 1998; Zhan et al., 1998).

The red-NIR change vector method differs from the traditional multispectral
or multitemporal change vector methods (e.g., Malila, 1980; Colwell & Weber,
1981; Lambin & Strahler, 1994; Johnson & Kasischke, 1998) in that the former:
1) uses the starting or ending position of the vector in addition to magnitude and
direction, and 2) distinguishes the characteristic signatures for different types of
change using a decision tree approach (see section 5.2) rather than simply setting a
threshold for the change magnitude and/or direction.

The magnitude A  and direction θ of the red-NIR space change vector are
computed from the reflectance values of Band 1 and Band 2 at time 1 and time 2
with the following equations:
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A = (∆ρRe d )2 + (∆ρNIR )2 . (3.1)

θ0 , if ∆ρRe d  ≥  0 and ∆ρNIR > 0;
90°, if ∆ρRe d  > 0 and ∆ρNIR = 0;

θ   = 180°-θ0 ,  if ∆ρRe d  > 0 and ∆ρNIR < 0; (3.2)
180°+θ0 , if ∆ρRe d  ≤  0 and ∆ρNIR < 0;
270° , if ∆ρRe d  < 0 and ∆ρNIR = 0;
360°-θ0 , if ∆ρRe d  < 0 and ∆ρNIR > 0;

where

θ0 = arctan
∆ρ Re d

∆ρ NIR

; (3.3)

∆ρRe d = ρRe d
T 2 − ρRe d

T 1; (3.4)
∆ρNIR = ρ NIR

T 2 − ρ NIR
T1 ; (3.5)

and ρRed
T1, ρNIR

T1, ρRed
T1, and ρNIR

T1 are  the surface reflectance values of the
MODIS band 1 (red) and band 2 (NIR) at time 1 (T1) and time 2 (T2),
respectively.  When the values of ρRed

T1, ρNIR
T1, ρRed

T1, and ρNIR
T1 are available and

the values of A and θ  are computed, the red-NIR space change vector method is
implemented with a set of LUTs.  The LUTs provide the ranges for values of A, θ ,
ρRed

T1 or ρRed
T2, and ρNIR

T1 or ρNIR
T2 associated with the various types of land cover

change.  The generation of these LUTs is described in section 5.

3.3.1.3   The modified delta space thresholding method

Because the seasonal changes of vegetation are not among the types of land
cover change we are interested in, we apply the modified delta space thresholding
method to compensate for seasonal differences in order to avoid flagging
phenological variations as real change (Zhan et al., 1998).  The change vector in
the red-NIR space can be converted to the delta_red (∆ρRe d ) and delta_NIR (∆ρNIR )
space (called the delta space for short) where delta represents the difference in
reflectance between time 1 and time 2.  With this conversion, the change vectors
for all pixels start at the origin (Figure 3.6).  The delta_brightness and
delta_greenness space can be overlain with the delta_red and delta_NIR space,
which aids the interpretation of the change vectors in terms of the types of changes
they represent.  The modified delta space is measured in the coordinate system of
δρRe d  and δρNIR  which are the ∆ρRe d  and ∆ρNIR  modified to account for the expected
seasonal variability in the reflectances.  Mathematically, if the time 1 and time 2
averages of the red and NIR reflectance for the cover type of the pixel are MRed

T1,
MRed

T2 , MNIR
T1, and MNIR

T2, respectively,  then



44

δρRe d  = ∆ρRe d  - (MRed
T2 -MRed

T1 );
= ρRed

T2 - ρRed
T1 -(MRed

T2 -MRed
T1 ); (3.6)

δρNIR = ∆ρ NIR - (MNIR
T2 -MNIR

T1 );
= ρNIR

T2 - ρNIR
T1 - (MNIR

T2 -MNIR
T1 ). (3.7)

With this seasonality compensation, the effects of fluctuations in reflectance
associated with the seasonal changes are theoretically eliminated.  Values of δρRe d

and δρNIR  significantly larger than zero indicate real land cover changes.

For the MODIS 250m land cover change product, the modified delta space
thresholding method is employed to label whether and what type of change has
occurred with the following steps:  1) determine the cover type for each pixel using
bands 1 and 2 reflectances with a set of “cover type” LUTs which are the ranges of
the Band 1 and Band 2 reflectance values at the time 1 for each of the five cover
types; 2) compute the values of δρRe d  and δρNIR  with equations (3.6) and (3.7); 3)
compute A and θ  by substituting the ∆ρRe d  and ∆ρ NIR in Eqs. (3.1)-(3.3) with δρRe d

and δρNIR , and 4) determine whether change has occurred and type of change from
the computed A and θ  in conjunction with the “change” LUTs for the cover type
determined in step 1.  The “cover type” LUTs and the “change” LUTs are
described in section 5.

3.3.1.4   The texture change detection method

Texture features describe the spatial distribution, or heterogeneity, of the
reflectances within one or in a combination of multiple bands.  Information about
the spatial distribution complements information available from spectral features
(Strahler, 1981).  Most land cover changes that we aim to detect with this product
correspond to a change in texture features.  For example, deforestation caused by
logging or farming generally increase heterogeneity of the deforested areas along
the boundaries of the deforested areas.  Agricultural expansion in the desert also
increases the heterogeneity of the landscape.

Many measures of texture features have been proposed (Wulder et al, 1998;
Lambin, 1996; Mayaux and Lambin, 1996; Haralick, 1979).  After applying some
of these measures to the test data sets, we find that the coefficient of variation (CV:
standard deviation divided by the mean) using NDVI values of neighboring pixels
in a 3 by 3 pixel kernel to be an effective texture measure for change detection.
For the at-launch version of the 250m MODIS land cover change product, we use
the following criteria to label changed pixels:  If |CVT2 - CV T1| >= 4, then label the
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pixel as changed, where CV T1 and CV T2 are the values of CV for NDVI in a 3 by 3
pixel kernel surrounding the pixel at time 1 (T1) and time 2 (T2), respectively.

3.3.1.5   The linear feature change detection method

The linear feature change detection method is based on the observation that
many land cover changes caused by human activities are associated with an
explicit boundary such as roads, power line right-of-ways, or the edges of fields.  If
a linear feature is observed at time 2 but was not present at time 1, it can be
inferred that change has occurred.

The linear feature change detection method has three steps:  1) highlight
linear features by manipulating the gray levels of neighboring pixels with an edge
enhancement method; 2) identify linear features in both the time 1 and time 2
edge-enhanced images; and 3) label the pixel as changed if a linear feature is
identified in time 2 but not time 1.

Exploratory analysis identified band 1 (red) reflectance as better at
discriminating linear features than either band 2, or metrics based on combinations
of bands 1 and 2.  The step 1 edge enhancement of band 1 reflectance computes the
mean of the absolute difference between the gray level value at each pixel and at
each neighbor in a 3 by 3 image kernel surrounding the pixel.  In Step 2 a
continuous indicator of the presence of a linear feature is derived using the
following rule:  in each of the four directions through the center pixel in a 3 by 3
image kernel, find the minimum edge enhanced value, then save the maximum of
these four minimum values.  Step 3 identifies the pixel as containing an edge if the
result of step 2 is greater than or equal to 3.7, and then labels the pixel as changed
if an edge exists in time 2 but not time 1.

3.3.2 Data Sets for Implementing and Testing Change Detection Methods

The 250m MODIS land cover change product will be generated from data
acquired by MODIS bands 1 and 2 using the change detection algorithms
described above.  However, to derive the LUTs required by the algorithms to
develop this at-launch product, a global data set of the red and NIR surface
reflectances are needed before real MODIS data are available.  Also, to test the
performance of the change detection methods, simulated MODIS data for test sites
are needed.  For these purposes, we use two types of existing remotely sensed data.
First, the LUTs for the three spectral methods (the red-NIR space partitioning
method, the change vector method, and the modified delta space thresholding
method) were generated mainly using data from the Advanced Very High
Resolution Radiometer (AVHRR) together with spectral data from Landsat
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Thematic Mapper (TM).  Second, the testing of the five change detection methods
was conducted with data sets simulated from Landsat TM image pairs.  The
following sections describe these data sets.

3.3.2.1   AVHRR data sets

The AVHRR sensor is a relatively simple scanning radiometer with five
bands in the red, NIR, and thermal spectral regions (Kidwell, 1988).  It is a
“heritage instrument” of MODIS with an orbital configuration and viewing
geometry producing daily full earth coverage.  The AVHRR red (channel 1: 580-
680 nm) and NIR (channel 2: 725-1100 nm) bands overlap the MODIS red (band
1: 620-670 nm) and NIR (band 2: 841-876) bands but have larger bandwidths than
the MODIS bands.  Similar AVHRR sensors on board NOAA’s satellite series
have been continuously observing the earth’s surface since 1981.  The historical
record has been preserved in an archive to produce continuity needed for land
surface studies.  Many efforts have been made to calibrate and atmospherically
correct the data, such as NASA’s AVHRR Land Pathfinder project (Agbu and
James, 1994; James and Kalluri, 1994).  The AVHRR Pathfinder data are
calibrated and corrected for the atmospheric effects of molecular, aerosol, trace gas
absorption and scattering.  However, they were not corrected for water vapor
absorption.  Because no other remotely sensed and atmospherically corrected red
and NIR surface reflectance data are available globally, we used the AVHRR Land
Pathfinder data for generating the LUTs of the change detection algorithms.

Two sets of AVHRR data were used for generating the LUTs:  the 8km data
for 12 years from 1982 to 1993 (Agbu and James, 1994) and the 1km AVHRR data
for 1992-93 (Eidenshink and Faudeen, 1994).  The 1km data set has closer spatial
resolution as MODIS and a 1km pixel should have better purity than an 8km pixel.
However, the 1km data set has more cloud contamination than the 8km data sets.
Since each of the two data sets has  advantages and disadvantages, we use both for
the prototypes of the LUTs needed for the change detection method at this stage
when we do not have better data available.  We composited the decadal 8km and
1km data to monthly values based on maximum NDVI values (Holben, 1986).  In
order to derive representative red and NIR reflectances from the 12 years of the
8km data, for each month we ranked the values from low to high near-infrared
reflectances.  Then, the value least likely affected by both atmospheric and
bidirectional effects (the one gave the composite image with the least speckles)
was chosen for each month.  The corresponding red and NIR reflectance values for
that year were then extracted to construct a representative monthly data set of red
and NIR reflectances.



47

Pixels sampled from the 8km and 1km AVHRR data were subsequently used
as training data to construct the LUTs.  This will be described in section 3.3.3.

3.3.2.2   Landsat Thematic Mapper (TM) data

Landsat TM data were used for two purposes: 1) to extract sample
reflectance values in the red and NIR bands for water bodies and burned areas and
2) to test the change detection methods.  Landsat TM has seven spectral bands
ranging from the visible blue-green to the thermal infrared spectral regions.  Band
3 (red: 630-690 nm) and band 4 (NIR: 750-900 nm) of Landsat TM are the
“heritage bands” of the MODIS bands 1 and 2 and can be used to simulate MODIS
data.  The pixel size of the TM images for the red and NIR bands is 28.5 m.
Landsat 4 and 5 have a 705 km near-circular, sun-synchronous orbit with a repeat
period of 16 days.  Global coverage of Landsat data is not available.  However, we
selected cloud-free TM images or image subsets in several locations for use in the
development of the change detection algorithms.

A TM image of an area in northeastern China where a boreal forest had been
burned massively was used to extract the sample values of red and NIR
reflectances for burn scars.  The sample reflectance values for water bodies and
flooding were obtained from TM images of the Washington, DC area; Manaus,
Brazil; and the San Francisco Bay area.  We delineated polygons to identify water
bodies, floods, and burn scars.  The TM images were then degraded to MODIS
250m resolution using a specially designed filter that approximates the point
spread function of MODIS (The computer code for this transformation was
obtained from Dr. Kai Yang and is referred to as TM-MODIS code hereafter).  The
reflectance values of the delineated areas on the simulated MODIS images were
extracted to represent red and NIR values of water and burn scars.  The seasonal
variations of these reflectance values were considered to be negligible.

To validate the change detection methods presented previously, more than a
dozen pairs of cloud-free or near cloud-free Landsat TM images have been
obtained for different locations around the world where various types of land cover
conversions are occurring.  The characteristics of some of these locations are listed
in Table 3.2.  To reduce the size of document, only three pairs of these data sets,
representing agricultural encroachment into desert, agricultural expansion into
tropical rainforest, and temperate urban development, are going to be presented.

To utilize these TM image pairs for testing the performance of the change
detection methods, preliminary data processing is required.  The most important
processing requirements for change detection are the accurate registration and the
radiometric normalization of the images.  As the first step, the original TM image
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pairs were coregistered using ground control points.  A root mean square error
(rms) less than 0.67, corresponding to approximately 20m, was achieved using a
linear or second order polynomial equation.  The TM data were then degraded to
the MODIS spatial resolution of 250m using the TM-MODIS code.  Based on the
rms of 20m for the TM data, the rms of the coregistration of the simulated MODIS
data is less than 0.1 pixel.

Radiometric normalization of the test data is of equal importance to
geometric registration.  We applied a radiometric normalization procedure based
on Hall et. al (1991) to most of the pairs of coregistered, simulated MODIS data.
For each pair of images, black target pixels such as water bodies and bright target
pixels such as bare soil were selected.  If their reflectance values at time 1 and time
2 were significantly different (more than 5 percent of the mean value), we
determined that the pair of data required radiometric normalization and the
procedure was applied.  For the three pairs of data listed in Table 3.1, the
Washington, DC and Egypt pair were normalized.  The Bolivia pair was not
because the dark and bright target reflectance values were comparable.

For each test data pair, we delineated by visual inspection where land cover
change had occurred using the original TM images.  The change bitmaps at TM
resolution were then converted to 250m using the TM-MODIS code.  If the 250m
simulated MODIS pixel included at least 25 percent change based on the TM
resolution change bitmap, the 250m pixel was labeled as change.  These change
bitmaps at MODIS resolution were used to test the performance of the change
detection methods (section 6).
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Table 3.2  Characteristics of the Landsat TM images used for creating test data sets
(* indicate the data set is presented in this document)

Location Dates of TM
images

Main types of land cover change

*Alexandria, Egypt June 7, 1984
June 13, 1992

Agricultural expansion in desert

Charlotte, NC July 8, 1984
July 28, 1997

Temperate mixed woodland to urban
development

Manaus, Brazil Aug. 2, 1989
Sept. 20, 1995

Conversions between forest and non-forest
and between water and land

Orlando, FL Jan. 9, 1985
Jan. 26, 1997

Forest to agricultural fields or Residential
areas

Ontario site 2,
Canada

Aug. 17, 1985
Aug. 20, 1992

Boreal forest deforestation and regrowth

Ontario site 3,
Canada

July 27, 1987
July 3, 1996

Boreal forest deforestation and regrowth

Rondonia, Brazil Aug. 10, 1986
July 20, 1996

Tropical rain forest to agricultural fields

*Santa Cruz, Bolivia July 2, 1986
July 10, 1992

Rain forest to agricultural use

Parana River Basin,
Brazil

Nov. 22, 1986
Nov. 20, 1991

Patches of forest converted into agricultural
fields

*Washington, DC May 26, 1985
May 8, 1990

Temperate mixed woodland to urban
development

Yellowstone, WY Sept. 22, 1987
Oct. 10, 1988

Forest to burn scars

Yucatan, Mexico April 14, 1986
April 4, 1994

Urban growth in arid or semiarid area
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3.3.3 Implementation of the change detection methods

For the generation of the 250m MODIS land cover change product, the five
algorithms are implemented with look up tables (LUTs).  To account for the
seasonality differences between the latitudes, the earth is split into four regions: the
north region (>23.5 degrees N), northern tropical region (0-23.5 degrees N),
southern tropical region (0-23.5 degrees S)  and south region (>23.5 degrees S).
The LUTs associated with each of the five methods were created for each of these
four regions and for each of the 12 months.  Thus, for each of the five methods,
there are 12 x 4 = 48 LUTs.  These LUTs were designed and generated as follows.

3.3.3.1 LUTs for the red-NIR space partitioning method

The LUTs for implementing the red-NIR space partitioning method are a set
of tables which determine the land cover class membership from the red and NIR
reflectance values.  They are used according to the following mathematical
function:

Cover_Type (ρRed , ρNIR) (3.8)

where ρRed  andρNIR are the surface reflectance values of MODIS bands 1 and 2
respectively, and the values of the function is one of the following cover types:
forest, non-forest, bare, water, burn scar and mixtures of each.  These functions are
determined for each of the four latitude regions for each of the 12 months.

To determine the values for the LUTs, we used decision trees, a technique
described by Breiman et. al (1984) and implemented for land cover classification
using remotely sensed data (Hansen, 1999; Hansen et al., 1996; DeFries et al., in
press; Friedl & Brodley, 1997).  Decision trees predict class membership by
recursively partitioning training data into more homogeneous subgroups.  A
deviance measure is calculated for all possible splits in the training data and the
split that yields the greatest overall reduction in deviance is chosen to partition the
data.  The procedure is repeated with the subgroups until a decision tree is created
with terminal nodes with no misclassification errors or until preset conditions are
met for terminating the tree’s growth.  By selecting those terminal nodes with no
misclassification errors (pure nodes), we identified the spectral signature in the
red-NIR space for the “core area” for each cover type.  Terminal nodes with high
classification errors represent spectral signatures of pixels with mixtures of cover
types.  The pixel is labeled as change only when the location of a pixel in the red-
NIR space migrated from a “core area” at time 1 to a different “core area” in time
2.  Otherwise it is labeled as no change.
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The 8km monthly composited AVHRR Pathfinder data were used to train
the decision tree to determine values associated with “core areas” and “mixed
areas” with the following steps: 1) aggregate the UMD 1km land cover product
(Hansen et al., 1999) into the 5 cover types; 2) randomly select 1000 pixels (after
buffering the polygons of contiguous land cover types by 1 pixel to avoid mixed
pixels) for the forest, non-forest vegetation and bare cover types; 3) extract the red
and NIR reflectance values for the selected pixels of the three cover types and the
reflectance values of water bodies and burn scars from the Landsat TM data; and
4) for each region and each  month, generate a decision tree from the 1000 pixels
for each of the five cover types to find the boundaries of the “core areas” and
“mixed areas” (see Hansen et al., 1998).

3.3.3.2   LUTs for the red-NIR space change vector method

The red-NIR space change vector method uses the red and NIR reflectances
in time 1 and time 2 and the change direction and magnitude to distinguish the
different types of change.  The LUTs have the following form:

Change_Type(ρRed 
T1 , ρRed

 T2 , ρNIR
 T1 , ρNIR

 T2 , A, θ  ) (3.9)

where A and θ  were computed with equations (3.1) through (3.5) and ρRed 
T1 , ρRed

T2 , ρNIR
 T1 , ρNIR

 T2 are the red and NIR reflectance values of the beginning and
ending positions of the vector.  To generate this set of LUTs, the 1km AVHRR
data were used to determine the reflectance values for forest, non-forest, and bare
ground.  The values for water bodies and burn scars were obtained from Landsat
TM images as described previously because these types are not identifiable in the
AVHRR data.  For each of the 5 cover types listed in Table 3.1, five hundred
randomly selected pixels in the agreed areas of the UMD’s (Hansen et al., 1999)
and EDC’s (Loveland et al., 1997) 1km land cover classification product were used
to determine values for ρRed 

T1 , ρRed
 T2 , ρNIR

 T1 , ρNIR
 T2 for each month.  For each

possible type of change in Table 3.1, the corresponding values for change direction
θ  and magnitude A were computed with equations (3.1) through (3.5) from the 500
pixels.  Applying the decision tree approach to the data of ρRed 

T1 , ρRed
 T2 , ρNIR

 T1 ,
ρNIR

 T2 and A  and θ  for each possible land cover change, the characteristic ranges
of these variables were determined and entered into the LUTs (Huang et al., 1998).
Examples of these LUTs are listed in Table 3.3 for the regions and months
corresponding to the test data listed in Table 3.2.
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3.3.3..3   LUTs for the modified-delta space thresholding method

To implement the modified-delta space thresholding method, two sets of
LUTs are needed.  One set, “cover type LUTs”, are used to determine the cover
type for time 1 from the red and NIR reflectances.  Mean values of red and NIR
reflectances for each month and region are used to modify the delta values in
equations (3.6) and (3.7) to compensate for seasonal changes in reflectances.
These LUTs are similar to the LUTs represented by equation (3.8) for the red-NIR
space partitioning method, but the latter include only the “core areas” without the

Table 3.3.  The Look-Up Tables used to detect the specific land cover changes in
the test data sets listed in Table 3.2 with the Red-NIR space change vector method

Data set
and

change type

Bolivia
(South Tropical
Region, July)
Forest to non-

forest vegetation

Egypt
(North Region,
June) Bare to

vegetation

Washington, DC
(North Region,
May) Forest to

urban

Criteria for
Change

Type LUT

(1) A > 3.0% &
θ > 318° &

ρRed
T1 < 3.6%  &

ρNIR
T1 >12.6%

or

(2) A > 3.0% &
210<θ≤318 &

ρRed
T1 < 3.6%  &

ρNIR
T1 >12.6%

(1) A > 23.3%

or

(2) 10.8%<A<23.3
% & θ > 106% &
ρRed

T1 < 24.6%.

(1) θ > 172° &
ρRed

T1 < 6.9% &
ρNIR

T1 >27.6%

or

(2) A > 12.3% &
127<θ≤178 &

ρRed
T1 < 4.6% &

ρNIR
T1 >27.6%

“mixed areas.”  The other set of LUTs, the “change type LUTs”, are used to
determine the type of land cover change from the values of direction θ  and
magnitude A.  These LUTs are computed from the modified-delta values (δρRe d  and
δρNIR ) substituting the ∆ρRe d  and ∆ρNIR  in equations (3.1), (3.2), and (3.3).

The randomly selected pixels for forest, non-forest, and bare and the Landsat
TM data for water bodies and burn scars, as described in section 5.2 for deriving
LUTs for the red-NIR space change vector method, are also used to derive the
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LUTs for the modified-delta space thresholding method.  The “cover type” LUTs
were determined with a simple classifier from the randomly selected pixels.  The
“change type” LUTs were determined with the same simple classifier using
equations (6) and (7).  Examples of the two types of LUTs are shown in Table 3.4
for the specific types of land cover changes in the regions and months
corresponding to the test data sets in Table 3.2.

Table 3.4.  The Look-Up Tables used to detect the specific land cover changes in
the test data listed in Table 3.2 with the modified-Delta space thresholding method

Data set
and

change type

Bolivia
(South Tropical
Region, July)
Forest to non-

forest vegetation

Egypt
(North Region,
June) Bare to

vegetation

Washington, DC
(North Region,
May) Forest to

urban

Criteria for
the Cover
Type LUT

0% ≤ρRed
T1 < 6%

& 10% ≤ρNIR
T1 <

100% for Forest

0% ≤ρRed
T1 < 6.0%

for Bare
0% ≤ρRed

T1 < 10%
& 10% ≤ρNIR

T1 <
100% for Forest

Criteria for
the Change
Type LUT

2% ≤A <100% &
0° ≤θ  < 150°

2% ≤A <100% &
0° ≤θ  < 150°

7% ≤A <100% &
0° ≤θ  < 175°

3.3.3.4   LUTs of the coefficient of variation and linear feature methods

The LUTs for the texture and linear feature methods simply identify a
threshold for the difference in texture or linear feature between time 1 and time 2.
Above this threshold, a pixel would be labeled as change.  Because the spatial
resolution of the AVHRR data precludes a possibility of determining texture and
linear features at 250m resolution, the only available data for deriving the threshold
are simulated MODIS data derived from Landsat TM images.  Landsat TM data
for all months in all regions are not available.  Consequently, the threshold values
were based on empirical examination of the available Landsat TM data.



54

3.3.3.5   LUTs for integrating various change detection results

The five change detection methods produce five results of detected changes.
These results may not agree on whether change has occurred.  To integrate the
results and create a final result for the 250m MODIS land cover change product, a
LUT for integrating the results from the different algorithms is needed.  Based on
experiments with different combinations of the results from the five methods on
the three test data sets in Table 3.2, the following rule was found to give an
acceptable result:  if at least any three of the five methods label a pixel as
“change”, then the pixel is labeled as “change”.  This “algorithm integration rule”
is implemented with a LUT.  This LUT can be updated for any other “algorithm
integration rules”.

A simple “time integration rule” for the three month result states that if at
least any one of the time intervals (one month, two months, or three months)
labeled the pixel as “change”, then the pixel is labeled “change” in the three-month
change detection product.  These integration rules require further testing with
additional test sites.

3.3.4 Validation of the change detection methods

We tested the five change detection methods, implemented with the LUTs,
on three pairs of MODIS data simulated from Landsat TM images.  The test data
represent tropical deforestation near Santa Cruz, Bolivia (Figure 3.7), agricultural
expansion into desert areas around Alexandria, Egypt (Figure 3.8), and conversion
of temperate mixed woodland to residential and commercial uses (Figure 3.9).  The
five algorithms were run on each of these test data sets.  The result from the
“algorithm integration rule” applied to the five change detection results and an
integration result was obtained for each of these data sets.  The results from each of
the five methods and the integration were then compared with the validation data
generated from bitmaps of known changed pixels as described in section 4.3 to test
the performance of these methods.  It should be noted that, because the change
bitmaps were generated by visual inspection, false errors can result due to errors in
the change bitmaps themselves.

Errors in the test results can be either of two types, commission errors where
pixels that are not labeled as change by the change bitmap are falsely labeled as
change, or omission errors where pixels labeled as change in change bitmaps are
not labeled as change by the algorithm.  These measures used to evaluate the
performance of the algorithms are:
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Commission _ Error[%] =
Ncommit

Npredict

(3.10)

Omission _ Error[%] =
Nomit

Nbitmap

(3.11)

where Ncommit is the number of pixels where the method labeled change but the
actual change bitmap did not, Npredict is the total number of pixels that the method
labeled as change, Nomit is the number of pixels where the change bitmap labeled
change but the method did not, Nbitmap is the total number of the change pixels in
the change bitmap.  The rate of correctly detected change pixles is the
compensation of the omission error rate, that is,  (100% - omission error).

The performance statistics of each of the five change detection methods and
the integration of them are listed in Tables 3.5, 3.6, and 3.7 for the three test data
sets, respectively.  The spatial distributions of the commission and omission errors
of these change detection results for the three data sets are demonstrated in Figures
3.10, 3.11 and 3.12.  Commission errors were smaller than the omission errors.
There were trade-offs between the commission and omission errors during the
selection of the criteria for growing the decision trees of the change detection
methods.  The criteria were chosen in favor of smaller commission errors which
would make the change detection product more conservative.

Figures 3.10, 3.11, and 3.12 show that the pixels incorrectly identified as no
change are in close proximity to pixels correctly identified as change.  Because the
intent of the product is to flag areas undergoing change for further analysis with
high resolution data rather than to identify change at each 250m pixel, we calculate
the omission error for a 3 by 3 pixel moving window in addition to the error on a
per pixel basis.  For this calcualtion, if a pixel is labeled as change in the bitmap
and any pixel in the 3 by 3 window around the bitmap pixel is identified as change
from the algorithm, we consider the result to be correct.  By this criteria, omission
errors for the integrated results were 6.6 percent, 23.9 percent and 10.4 percent for
the Bolivia, Egypt, and D.C. scenes respectively .  The omission errors computed
on the 3 by 3 window basis are listed in Column 4 of Table 3.5, 3.6 and 3.7.

The commission errors can also be computed on the 3 by 3 window basis.
For this calculation, if a pixel is labeled as change by an algorithm and any pixel in
the 3 by 3 window around the pixel was not labeled as change by the change
bitmap, then we consider the labeling is a commission error.  If there is one or
more pixels labeled as change by the change bitmap around the pixeled label as
change by an algorithm, then we consider the labeling by the algorithm to be
correct.  Based on this 3 by 3 window calculation, the commission errors (listed in
the last columns of Table 3.5, 3.6 and 3.7) are all less than 10 percent.
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For the Bolivia and Egypt data sets, the three spectral methods gave
commission errors around or less than 10 percent while omission errors could go as
low as 20 percent (e.g., the modified-delta space thresholding method) on a per
pixel basis and 1 percent when considering the error in a 3 by 3 window.  The Red-
NIR space partitioning method gave the smallest commission errors (around or less
than 10 percent) for all the three data sets compared with other methods.  However,
the omission errors for the Red-NIR space method were relatively high (from 30
percent to 90 percent on a per pixel basis and from 6 percent to 63 percent on the 3
by 3 window basis) compared to the other two spectral methods.

The CV change detection method labels a pixel as changed when its CV at
time 1 is significantly larger or smaller than its CV at time 2.  This occurred
prevailingly in the Bolivia data set, where the land cover changed mainly from
deciduous forest with higher level heterogeneity to more homogeneous crop lands,
and in the Egypt data set, where the homogeneous desert were converted to
irrigated, small agricultural patches which have higher heterogeneity.
Consequently, the method worked relatively well for the Bolivia data set (35
percent commission error and 30 percent omission error) and the Egypt data set (40
percent commission error and 30 percent omission error).  If the change bitmaps
are buffered by one pixel around the edge to consider the effect of the 3 by 3 kernel
used by the CV method, the commission error of the method can be reduced to 6
percent for the Bolivia data set and 25 percent for the Egypt data set.  On the 3 by
3 window basis, the omission errors of the CV method are less than 5% for all
three data sets.

The linear feature method identifies boundaries present at time 2 but not at
time 1.   In the Bolivia dataset, the vegetation covers are relatively homogeneous.
Thus, the linear feature method had a relatively small commission error (20
percent) for the Bolivia data set compared with other data sets.  The method misses
the central pixels of changed areas,  thus its omission errors are high for all the
three data sets on per pixel basis (45 - 75 percent).  However, if we compute the
omission errors on the 3 by 3 window basis, the 7 to 24%  omission rates are
acceptable.

The Washington DC data set is different from the other two in terms of
heterogeneity of the land cover (see the time 1 and time 2 images in Fig. 9).  In this
temperate urban area, the land cover is characterized with many small patches:
small agricultural fields with different crop types, various kinds of roads and
highways, commercial build-ups, residential areas, power line right-of-ways, etc.
The changed areas marked by the change bitmap are also small patches.  Because
many pixels may consist of different cover types, the spectral difference between
its time 1 and time 2 values may not be significant compared with the signal noises
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retained in the data.  Therefore, the commission and omission error rates of all the
five methods are large on per pixel basis (30 - 90 percent) except the red-NIR
space partitioning method had a 11 percent commission error.  The small patches
especially damage the performance of the texture change detection methods (the
CV and linear feature methods) which detect changes based on the emerging of
border lines.  The commission errors of these texture methods are larger than 80
percent for this data set.  However, all of the five methods correctly identified the
major changed areas (see the green areas in Fig. 12).  The spatial patterns of the
detected change areas by the three spectral methods and of the actual change
bitmap matched reasonably well.  Thus, on the 3 by 3 window basis, the omission
errors for all the methods are reasonable (see the last column of Table 3.7).

The commission and omission errors of the integrated change detection
results from the five methods are reasonable for the Bolivia and Egypt data sets
(commission errors at 3 and 5 percent and omission errors at 49 and 28 percent
respectively).  For the Washington DC data set, the omission error of the integrated
result is 69 percent which is higher than the omission errors of three of the five
change detection methods.  This indicates that the different methods missed
different change pixels, in other words, different methods identified different
pixels as change.  This is the rationale for using multiple methods to gain
confidence in the change detection results.
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Table 3.5.   Commission and omission errors of the five change detection methods
and the integration of them tested against the Bolivia data set (The size of the data

set is 308×342 pixels and change bitmap has 14822 actual change pixels).

Method
Commissio

n Error

(per pixel)

[%]

Omission
Error

(per pixel)

[%]

Commission
Error

(3x3 window)

[%]

Omission
Error

(3x3 window)

[%]

Red-NIR Space
Partitioning

1.1 67.8 0.1 21.3

Red-NIR Space
Change Vector

7.7 42.6 0.7 4.2

Modified-Delta
Space

Thresholding

8.4 17.1 0.8 0.7

CV Texture
Change

Detection

34.7 29.8 1.7 4.4

Linear Feature
Change

Detection

19.6 74.0 0.3 24.1

The Integration
of the Five
Methods

3.0 49.0 0.2 10.4
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Table 3.6.   Commission and omission errors of the five change detection methods
and the integration of them tested against the Egypt data set (The size of the data

set is 137×160 pixels and change bitmap has 5977 actual change pixels).

Method
Commission

Error

(per pixel)

[%]

Omission
Error

(per pixel)

[%]

Commission
Error

(3x3 window)

[%]

Omission
Error

(3x3 window)

[%]

Red-NIR Space
Partitioning

0.8 29.3 0.0 6.6

Red-NIR Space
Change Vector

10.6 34.9 0.3 1.8

Modified-Delta
Space

Thresholding

8.0 20.5 0.2 2.1

CV Texture
Change

Detection

39.8 29.8 8.3 0.5

Linear Feature
Change

Detection

31.8 45.0 2.7 7.4

The Integration
of the Five
Methods

5.2 28.4 0.1 6.6



60

Table 3.7.   Commission and omission errors of the five change detection methods
and the integration of them tested against the Washington, DC data set (The size of
the data set is 342×297 pixels and change bitmap has 4331 actual change pixels).

Method
Commission

Error

(per pixel)

[%]

Omission
Error

(per pixel)

[%]

Commission
Error

(3x3 window)

[%]

Omission
Error

(3x3 window)

[%]

Red-NIR Space
Partitioning

11.2 90.8 0.0 62.5

Red-NIR Space
Change Vector

41.4 54.4 1.2 7.1

Modified-Delta
Space

Thresholding

32.2 59.4 0.7 13.7

CV Texture
Change

Detection

80.6 41.1 7.3 2.1

Linear Feature
Change

Detection

84.5 75.0 4.9 12.6

The Integration
of the Five
Methods

26.8 69.2 0.3 23.9



61

3.4 Constraints, Limitations and Assumptions

The at-launch version of the 250m MODIS land cover change product is
based on an approach using multiple change detection methods to build confidence
in the result.  The methods are implemented with look up tables whose values are
currently determined with reflectance values  from the AVHRR Pathfinder data
sets and Landsat TM images.  The results of the test for a limited number of sites
show the ability of the methods to identify change.  We expect the methods to
become more reliable when data for training the LUTs can be derived from more
advanced sensors such as the Sea-viewing Wide Field-of-view Sensor (SeaWifs)
and the future National Polar-orbiting Operational Environmental Satellite System
(NPOESS), and especially real MODIS data available after launch.

There are several possibilities for improving the change detection algorithms
described in this document  as well as for improving evaluation of results.  First,
the algorithms are based on comparisons between only two dates.  Incorporation of
multi-temporal information would likely improve performance because there are
times of year when different cover types display similar reflectances.  For example,
dense crops in the growing season can appear as green as forest or deciduous
vegetation in the winter can appear as bright as bare ground.  Because of these
limitations, the at-launch version of the product will serve as only an alarm system.
To create a comprehensive global land cover change monitoring system based on
MODIS, more experience and knowledge of global scale change detection and real
MODIS data are needed.

To build more confidence in each of the five methods and their different
integration approaches, more test data sets are required.  Although the three test
data sets used in this document  represents different landscapes in different
geographic areas, we are processing test data sets for boreal forest changes,
urbanization in rapidly developing countries, flooding and flood retreat, forest
burning, irrigation agricultural development and deforestation in different areas.
Especially, the methods were designed to label different type of changes
simutaneously with the LUTs.  Test data sets in which different types of land cover
changes occurred within the same scene will be used to evaluate the capabilities of
the methods in detecting these different types of change.  In addition, more test
data are needed to test the redundancy of the methods and to study the feasibility
for combining the three spectral methods into one integrated, more robust spectral
change detection method.

The compensation for seasonal changes in vegetation were included in the
LUTs for the five change detection methods.  The time 1 and time 2 for the three
test data sets used in this document  are the same month in different years and thus
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do not depict  seasonal changes.  Data sets with both real land cover changes and
seasonal changes are needed to test the capabilities of these methods in
distiguishing them.

The performances of the texture change detection methods are not
satisfactory as shown in the above section.  One inherent reason may be that we
were using globally-uniform thresholds for labeling changes with the texture
measures (CV or edges).  The thresholds identified real change from texture in the
Bolivia data set, but they identified false change in the Washington DC area (see
Fig. 12) and the mountain areas in the north of the Egypt data (see Fig. 11).  If
larger thresholds were used, the commission errors for the Washington DC and
Egypt data sets can be reduced, but the real borders in the Bolivia data set would
be missed.  This indicates that we need more area specific thresholds, rather than
the single one, for the texture change detection methods.  A full set of Look-Up
Tables of the thresholds for the global texture change detection should be obtained
from more remote sensing data available in the near future.

Another test for the performance of the change detection methods is the
effects of misregistration of the time 1 and time 2 images.  The geolocation
accuracies for the MODIS 250m bands are designed to 20 percent of a pixel, i.e.,
50m.  If this level of geolocation accuracy can be actually achieved, then the
maximum georegistration error between the time 1 and time 2 images will be
100m.  A preliminary simulation study on misregistration effects shows that error
due to misregistration is within the noise due to a combination of atmospheric and
bidirectional effects.  Further testing for the effects of the misregistration needs to
be conducted using the test data with simulated misregistration errors.

For the post-launch version of the MODIS land cover change product, in
addition to the outputs of the metrics layers for users to judge changes, we will also
directly output a “Change Probability” measure considering the the uncertainties
associatated with the intensities of various types of land cover change.  Once we
have real MODIS data and more knowledge of global scale land cover change
detection is obtained, the post-launch version of the product is expected to be more
comprehensive and reliable.
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4. The MODIS Vegetation Continuous Fields Product at 500m Resolution

4.1 Introduction

This document describes a simple method based on linear mixture modeling to
derive the global vegetation continuous fields product based on the currently
available satellite data, which served as a prototype of the MODIS global
vegetation continuous fields product.  The computer code for using the MODIS
data to create the MODIS global vegetation continuous fields product has been
developed based on the methodology and experience of this prototype product.
Once the MODIS data will be available, the computer code will be able to generate
automatically the global vegetation continuous fields.

4.2 Overview and Technical Background

4.2.1   Satellite data for subpixel characterization of vegetation

Vegetation mosaics occur at all spatial scales on the earth’s land surface.  At
the landscape scale, patches of trees, grass, and bare ground are distributed
heterogeneously across most of the land surface.  At the local scale, mixtures exist
even within plots of several square meters.   Boundaries between vegetation types
can be fairly abrupt in some locations, such as the boundary between a forest and
an alpine meadow at a tree line. More often, however, boundaries are not so abrupt
and gradients in vegetation occur gradually across the landscape.

Accurate information on the global distribution of vegetation characteristics is
fundamental to many aspects of earth systems science and global change, including
models of water, energy, and trace gas exchanges between the biosphere and
atmosphere, conservation efforts to maintain biodiversity, and other types of
resource management [Townshend et al., 1994].  The existing paradigm to describe
the global distribution of vegetation categorizes the land surface into a discrete
number of vegetation types  [DeFries et al., 1998; DeFries and Townshend, 1994;
Loveland and Belward, 1997; Matthews, 1983; Olson et al., 1983].  Consequently,
vegetation is unrealistically represented in global climate and biogeochemical
models by a small number of cover types with abrupt boundaries between them.

The approach to map vegetation according to a predefined classification
scheme has several disadvantages [DeFries et al., 1995b]:

1) Because each cell is categorized as one of a number of vegetation types, the
approach does not fully utilize the information content of remotely sensed data to
describe gradients and mosaics in the landscape.
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2) Variation in the vegetation’s characteristics within a defined vegetation type
is obscured.  Parameters generated in models utilizing the maps are therefore
homogeneous in areas where heterogeneity in vegetation characteristics exists in
reality.  The loss of information that results when using discrete cover types to
extrapolate land surface parameters is illustrated by reconstruction of albedo, leaf
area index, and biomass from varying the number of land cover types, where
differences among estimates are as high as 50 percent of the mean [DeFries et al.,
1995b].

3) Inevitable semantic differences among classification schemes create
difficulties when comparing vegetation maps based on different schemes.

The disadvantages with traditional classification schemes provide the impetus
for developing alternative approaches to more realistically describe the land
surface as continuous rather than discrete variables [DeFries et al., 1996; DeFries
et al., 1995b].

Several approaches are described in the literature to characterize vegetation at
the subpixel level using remotely sensed data.  Such approaches include:  1) fuzzy
membership functions to estimate subpixel forest cover [Foody, 1994; Foody and
Cox, 1994], 2)  isolines in red and near-infrared scatterplots to estimate subpixel
fractional canopy density, using geometric models of plant cover to infer the
densities associated with the isolines [Jasinski, 1996], 3) empirical relationships
between percent cover derived from high resolution data and attributes of coarser
resolution data, using the relationships to extrapolate proportional forest cover over
larger areas [DeFries et al., 1997; Iverson et al., 1989; Iverson et al., 1994; Zhu
and Evans, 1992; Zhu and Evans, 1994], 4) calibration of areal estimates from
spatial aggregation of classifications derived from coarse resolution data taking
into account the spatial arrangement of land covers at fine resolution [Mayaux and
Lambin, 1997], and 5) linear mixture modeling to deconvolve proportional cover
based on reflectances of “endmembers”, or pixels containing 100 percent of the
vegetation types of interest  [Adams et al., 1995; Bierwirth, 1990; Pech et al.,
1986; Quarmby et al., 1992; Settle and Drake, 1993].

In this document , we use linear mixture modeling to derive global continuous
fields of vegetation characteristics because it can be applied over large areas and
because it is relatively simple.  The linear mixture  model is based on the
assumption that the reflectance is the sum of the reflectances of each component
within the pixel weighted by the respective proportional covers.  It is based on the
relationship:
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                                                 iR = ijr
j = 1

Q
∑ jx + ie                                              (4.1)

where Ri is the reflectance in band I, rij is the reflectance of component j in band I,
xj is the fractional cover of component j, ei is the error term, and Q is the number of
components.  Furthermore, the model is based on the constraint that:

                                                      jx
j = 1

Q
∑ = 1                                                  (4.2)

Bosdiagianni et al [1997b] propose to augment the model to include higher
order moments that describe the distribution of the endmember values about the
mean.  A method that allows the types and number of endmembers to vary on a per
pixel basis, called multiple endmember spectral mixture analysis, has also been
applied [Roberts et al., 1998].

4.2.2   Requirements for global land cover in global change models

Biosphere-atmosphere models currently use land cover classification maps as a
boundary condition to estimate a number of parameters, including fraction of
photosynthetically active radiation (FPAR), leaf area index (LAI), and surface
roughness.  However,  the vegetation characteristics that control  exchanges of
water, energy, and trace gases between the biosphere and atmosphere are
relatively few [DeFries et al., 1995b; Running et al., 1994b; Running et al., 1995].
DeFries et al. [1995b] conclude that the most important vegetation characteristics
in controlling fluxes of water, energy, and carbon dioxide are : 1) growth form
(tree, shrub, herb), 2) seasonality of woody vegetation (deciduous, evergreen), 3)
leaf type (broadleaf, needleleaf), 4) photosynthetic pathway (C3, C4), 5) longevity
(annual, perennial), and 6) type and intensity of disturbance (e.g., cultivation, fire
history).  Running et al [1994b; 1995] conclude that only the most fundamental
characteristics of life form, leaf longevity, and leaf type are required.  Thus,
continuous fields of these vegetation characteristics would satisfy the modeling
requirements as well as permit a more realistic depiction of the vegetation over the
earth’s surface.

Many of these required vegetation characteristics are observable with remotely
sensed data, such as growth form, leaf type, and leaf longevity.  Others, such as the
distribution of C3 and C4 plants and intensity of disturbance are more difficult to
detect.  In this document , we concentrate on the subset of these characteristics that
are amenable to remote sensing as a first effort to derive continuous fields at a
global scale.
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Biosphere-atmosphere models have generally been designed to use thematic
land cover classifications rather than continuous fields as boundary conditions
[Dickinson, 1995; Henderson-Sellers et al., 1993; Sellers et al., 1997; Sellers et al.,
1996].  Although some efforts have been made to capture spatial heterogeneity in
vegetation by using mosaics of vegetation types and statistical measures [Avissar,
1992; Bonan et al., 1993; Dickinson et al., 1993; Thomas and Henderson-Sellers,
1991; Wood et al., 1992], the use of continuous fields requires modifications in the
models for deriving parameters from vegetation characteristics.  For example,
within the SiB2 model, FPAR is calculated from the Normalized Difference
Vegetation Index (a ratio of red to near infrared reflectances that is correlated with
the amount of photosynthetic activity).  Relationships between NDVI and FPAR
vary according to vegetation type [Sellers et al., 1996].  With appropriate
modifications to the model, proportions of woody and herbaceous vegetation from
the continuous fields could be used to calculate FPAR from NDVI more
realistically to avoid discrete boundaries between vegetation types and to allow for
variations in FPAR within vegetation types.

4.2.3   Overview of This Section

This section of the document proposes continuous fields as an alternative
paradigm from traditional classification schemes for describing global vegetation
distributions.   The continuous fields are a series of data layers, each of which
provides an estimate of proportional areal coverage within the cell displaying the
respective vegetation characteristic.  For example, continuous fields describe the
areal proportion of woody vegetation, herbaceous vegetation, and bare ground for
each cell.

We describe a simple technique as an initial attempt to obtain continuous fields
for three vegetation characteristics observable with remotely sensed data: growth
form, leaf type, and leaf longevity.  The fields are derived from the global 1 km
resolution data set from the Advanced Very High Resolution Radiometer
[Eidenshink and Faudeen, 1994], serving as a prototype for continuous fields to be
generated from data collected by MODIS that will be launched on board the EOS
AM1 platform in July, 1999.  MODIS will provide data with improved spatial
resolution (250 m to 1 km depending on the spectral band), spectral resolution, and
atmospheric correction [Running et al., 1994a].

The technique for deriving continuous fields is based on vegetation phenology
measured by a number of multitemporal metrics.  Training data derived from high
resolution imagery for use in classification algorithms [DeFries et al., 1998] are
used to identify pure, endmember pixels in a linear mixture model.  We then use
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the model  to estimate aerial proportions of 1) woodiness (proportion woody
vegetation, herbaceous vegetation, or bare ground), 2) leaf type (proportion of
woody vegetation that is needleleaf or broadleaf) and 3) leaf longevity (proportion
of woody vegetation that is evergreen or deciduous).

4.3 Algorithm of The Prototype Product of Global Vegetation Continuous
Fields

4.3.1   Data

4.3.1.1   AVHRR data

We use data from the Advanced Very High Resolution Radiometer (AVHRR)
on board the NOAA operational meteorological satellites in this study, in particular
the 1km AVHRR data set processed under the guidance of  the International
Geosphere Biosphere Program [Eidenshink and Faudeen, 1994; Townshend et al.,
1994].  This data set includes daily and 10-day composites of 12 data layers at a
spatial resolution of 1 km in the Goode’s Interrupted Homolosine equal area
projection.  We extracted 10-day composites of the following layers: NDVI
((channel 2 - channel 1)/(channel 2 + channel 1)), channel 1 (visible reflectance,
0.58-0.68 microns), channel 2 (near infrared reflectance, 0.725-1.1 microns),
channel 3 (thermal infrared, 3.55-3.93 microns), channel 4 (thermal, 10.3-11.3
microns), and channel 5 (thermal, 11.5-12.5 microns). Initially the data were
collected continuously for 18 consecutive months beginning April 1, 1992,
continuing through September 30, 1993.  The period was subsequently extended to
September 30, 1996.  For this study, we use data from the twelve month period
from April 1, 1992 to March 31, 1993.  This avoids the period with the most
marked orbital drift and hence reduces problems arising from very high solar
zenith angles.

To reduce the possibilities of cloud contamination as well as to ease the
problems of handling large volumes of data, we recomposited the 10-day
composited images to monthly values based on the maximum NDVI value in the
month [Holben, 1986].  Despite this procedure, noise in the data still persisted in
some places.  We applied a procedure to eliminate this noise by identifying spikes
defined as those pixels 7 standard deviations away from the mean value from the
remaining months as described in DeFries et al. [1998].  Monthly data associated
with these spikes were flagged and excluded from subsequent processing.  In
addition, some locations clearly contained data from misplaced swaths.  These
pixels were also excluded from further processing.
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From the monthly data, we then generated a number of metrics that
characterize the annual phenological cycle of vegetation.  These metrics were
identified in previous research as those that maximize discrimination among
vegetation types [DeFries et al., 1995a; DeFries et al., 1998].  The 24 metrics
generated were the annual maximum, minimum, mean, and amplitude (difference
between maximum and minimum) for the annual time series of NDVI in each of
the 5 channels.  To reduce the effect of noisy data from residual cloud cover, snow,
streaks, scan lines, and remaining misplaced swaths, we chose to use only those 8
months of data with the highest NDVI values to generate the metrics.  The 8
months with the highest NDVI values were selected separately for each pixel so
that noisy data could be excluded regardless of the month it occurred.  Monthly
data flagged as noise as described above were not considered.  The selection of
only 8 months also enabled us to calculate metrics for high latitude areas which
were labeled as “missing”  because the processing procedure excludes pixels with
low solar zenith angle during winter [Eidenshink and Faudeen, 1994].  In addition
to 24 metrics derived from the 8 months with highest NDVI values, we also used 6
metrics derived from the 4 months with highest surface temperature measured in
AVHRR channel 4.  These metrics were chosen to counteract the tendency to
eliminate the dry season, particularly in lower latitudes, when using only 8 months
with highest NDVI values.  We observed that with the metrics based on the 8
months of highest NDVI, grasslands and wooded areas were not readily
distinguishable, most likely because grasslands in some areas in  the tropics tend to
be as green as forested areas except during the dry season.  The additional metrics
were calculated as the mean of  the 4 months with the highest channel 4 values for
each of channels 1 through 5 and NDVI.   This process produced 30 metrics in
total for use in the linear discriminant analysis (section 3.1).

4.3.1.2   Training data

Training data are required to derive the linear discriminants (section 3.1) and to
test the linear assumptions of the mixture model (section 3.2).  Ideally, training
data would be available for all ranges of percentage woody vegetation, herbaceous
vegetation, and bare ground and percentages of each leaf type and leaf duration.
Such information is not available, particularly with global coverage.
Consequently, we used training data developed in previous research for the
purpose of  land cover classification derived from the AVHRR 8 km Pathfinder
data set [DeFries et al., 1998].

The method to derive the training data is described in detail in DeFries [1998].
Briefly, it involves analysis of 156 scenes acquired by the Landsat Multispectral
Scanner (MSS).  The scenes were  reprojected to the same map projection as the
AVHRR data, rectified using ground control points and 1:250,000 navigational
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maps, and coregistered with the AVHRR data.  In consultation with local and
regional maps, we delimited areas in each scene occupied by the relevant cover
type.  The 13 cover types used in the classification are defined according to
approximate height of mature vegetation in upper canopy, ground surface covered
by vegetation, seasonality, and leaf type in DeFries et al. [1998] and are listed in
Table 4.1.

The procedure to derive training data from the global network of Landsat MSS
scenes was as described in DeFries et al. [1998], except that training pixels were
identified for this work  from overlaying the Landsat scenes with the 1 km
AVHRR data as opposed to the 8 km AVHRR data.  Training pixels for the 1 km
data were labeled as such if 100 percent of the Landsat pixels in the 1 km cell were
identified as the respective cover type.  This process generated 632,637  training
pixels in the 1 km AVHRR data set.

In order to create a  more manageable data set to carry out the analysis, we
sampled every eighth pixel and line of the 1 km AVHRR data and the training
data.  In addition, some areas of the world were clearly not well represented in the
training data, likely due  to a fragmented landscape making it impossible to obtain
a homogeneous 1 km pixel.  To overcome this problem, we selected additional
pixels based on browsing the Landsat archives georeferenced with the 1 km
AVHRR data based on visible physical features.  The training sample used for this
work  subsequently contained 29,101 pixels.
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Table 4.1.  Definitions of land cover types for training areas used in this work
(from DeFries et al. [1998])

Cover type Approximate
height of mature

vegetation in
upper canopy

Ground surface
covered by vegetation

Seasonality Leaf type

1 Evergreen
Needleleaf

Forests

> 5 m > 60% Almost all trees remain
green all year.  Canopy
is never without green

foliage

needleleaf

2 Evergreen
Broadleaf Forests

> 5 m > 60% Almost all trees remain
green all year.  Canopy
is never without green

foliage

broadleaf

3 Deciduous
Needleleaf

Forests

> 5 m > 60% Trees shed their leaves
simultaneously in

response to dry or cold
seasons

needleleaf

4 Deciduous
Broadleaf Forests

> 5 m > 60% Trees shed their leaves
simultaneously in

response to dry or cold
seasons

broadleaf

5 Mixed Forests > 5 m > 60% Neither broadleaf or
needleleaf forest types

has <25% or >75%
landscape coverage

consists of tree
communities with

interspersed
mixtures or mosaics

of needleleaf and
broadleaf forest

types
6 Woodlands > 5 m tree canopy cover

>40% and <60%.
can be either evergreen

or deciduous with
woody or herbaceous

understories

can be either
needleleaf or

broadleaf

7 Wooded
Grasslands/
Shrublands

> 5 m tree canopy cover
>10% and <40%

can be either evergreen
or deciduous with

woody or herbaceous
understories

can be either
needleleaf or

broadleaf

8 Closed
Bushlands or
Shrublands

Bushes and
shrubs <5 m

Bush and shrub
canopy coverage

>40%.  Tree canopy
coverage <10%.

Remaining cover is
either bare or
herbaceous.

Shrubs or bushes can be
either evergreen or

deciduous

Bushes can be either
broadleaf or
needleleaf

9 Open
Shrublands

Shrubs <2 m Shrub canopy
coverage >10% and
<40%. Remaining

cover is either bare or
annual herbaceous

type.

Shrubs can be either
evergreen or deciduous

NA

10 Grasses NA Continuous
herbaceous cover and

<10% tree cover

NA NA

11 Croplands NA >80% of the
landscape covered in
crop-producing fields

NA NA
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12 Bare NA <10% vegetated cover
during any time of
year.  Includes land
with exposed soil,

sand, rocks, snow, or
ice.

NA NA

13 Mosses and
lichens

NA Mosses and lichens
covering >60% of
land surface with

<40% woody canopy
cover, or mosses and
lichens >10% cover

with remaining cover
bare

NA NA

4.3.2   Methods

The aim of this work  is to provide continuous fields for three types of
vegetation characteristics: life form (woody vegetation, herbaceous vegetation, and
bare ground); leaf type (needleleaf, broadleaf); and leaf duration (evergreen,
deciduous).  Consequently, each pixel in the data layer is associated with seven
layers (Table 4.2).  The values range from 0 to 100 estimating the proportion by
area within the 1 km pixel occupied by vegetation with the characteristic.  Thus,
the sum of woody vegetation, herbaceous vegetation, and bare ground for each
pixel must equal 100.  The values of the needleleaf and broadleaf layers sum to the
percentage of woody cover, as do the values of evergreen and deciduous layers.

Based on the definitions used for deriving the training areas (Table 4.1), the
approximate height of mature vegetation in the upper canopy of woody vegetation
is greater than 5 m.  Thus, the continuous field describing the proportional cover of
woody vegetation represents the area occupied by vegetation with this height.
Areas identified as herbaceous display grass or other types of herbaceous
vegetation at some time in the annual cycle.  In semi arid regions, this could
include areas with herbaceous vegetation for only a portion of the year.  In this
scheme, shrubs are problematic.  Because the method relies partially on
reflectances in channel 1 representing shadow from standing vegetation, shrubs are
likely to be considered herbaceous if they are low to the ground and woody if they
are taller.  Future efforts will attempt to identify shrubs as a separate component.

The procedure for deriving continuous fields of woody vegetation, herbaceous
vegetation, and bare ground is shown in Figure 4.1.   The steps in the method are:
1) to use the 30 metrics and the training data to calculate linear discriminants for
use as variables in the linear mixture model, 2) determine endmember values of the
linear discriminants based on the training data, and 3) apply the linear
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discriminants and endmembers to a linear mixture model to derive the continuous
fields.   Subsequently, a similar procedure is carried out to derive continuous fields
for leaf type and leaf duration.

Table 4.2. Global continuous fields derived in this study

CHARACTERISICS
CONSIDERED

CONTINUOUS FIELDS

1)  Proportion of area occupied by woody vegetation

2)  Proportion of area occupied by herbaceous vegetationGrowth Form

3)  Proportion of area occupied by bare ground

4)  Proportion of woody vegetation that is needleleaf
Leaf Type

5)  Proportion of woody vegetation that is broadleaf

6)  Proportion of woody vegetation that is evergreen
Leaf Duration

7)  Proportion of woody vegetation that is deciduous

4.3.2.1   Linear discriminants for input into linear mixture model

To apply the linear mixture model to determine proportional cover of woody
vegetation, herbaceous vegetation, and bare ground, we are first faced with two
problems: 1) what metrics or combinations of metrics to use in the model, i.e. what
values should constitute R1,...Rj  in equation 1, and 2) how to determine
endmembers values, i.e. what values should constitute ri1, .... riQ.   With regard to
the first question, it is not practical to apply the linear mixture model (equation 1)
simultaneously to all of the 30 metrics derived from the annual time series of
AVHRR.   There are difficulties in minimizing the error (e) with a large number of
equations.  Furthermore, we observe that for most of the metrics the herbaceous
vegetation is along a continuum between woody vegetation and bare ground,
making it mathematically impossible to find unique solutions for combinations of
the three types.

To overcome this problem, we derive linear discriminants to combine the 30
metrics into a smaller number of variables to be used as Ri in the model.  Linear
discriminants are linear combinations of variables with a maximal ratio of the
separation of class means to within-class variance [Venables and Ripley, 1994].
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Weightings for each metric are derived to maximize this ratio, and linear
discriminants are the linear combination of these weighted metrics.  To derive the
linear discriminants, training data are required from which the class means and
within-class covariance matrices can be calculated.   We use the training data
described in section 4.3.1.2 for this purpose.  For woody vegetation, the training
data are those training pixels in the cover types that represent  forest, i.e.  all those
training pixels for cover types 1 through 5 (Table 4.1).  For herbaceous vegetation,
we take training data from the grassland cover type (type 10) and for bare ground
from type 12.  The linear discriminants were derived using the statistical package
Splus version3.4 [Venables and Ripley, 1994].

The distributions of values for woody vegetation, herbaceous vegetation, and
bare ground for the two linear discriminants are shown in Figure 4.2a.  Comparison
with a similar plot for two of the 30 metrics (Figure 4.2b), mean annual NDVI and
maximum annual channel 4, shows the ability of the linear discriminants to
improve discrimination between the three types (lower standard deviations and less
overlap) as well as to identify herbaceous as an endmember component rather than
an interim value between woody vegetation and bare ground.

The linear mixture model assumes linear relationships between Ri (in this case
the linear discriminants) and the proportional cover of each component (xj).
Before applying the linear mixture model, it is necessary to test this assumption.
Because fractional cover data are not available, we use instead the training data
described in section 4.3.1.2.  Based on the definition of each cover type, we
identify representative values for percent woody, percent herbaceous, and percent
bare (Table 4.3).  For instance, cover types 1 through 5 are defined as 60 to 100
percent woody cover, so we choose a representative value of 80.  We then examine
the relationship between percent woody, herbaceous and bare to determine if the
linear assumption is valid (Figure 4.3).   Based on these plots and the high R2

values (at least .95 in all but one of the plots), the linear assumption does not
appear to be violated.

In the plots in Figure 4.3, we separate the values for two regions, one region
being low latitudes (South America, Africa, South and Southeast Asia, and
Australia) and the other region being temperate and high latitudes (North America
and Eurasia).  This was done because grasslands were found to exhibit
substantially different values in the two regions.
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Table 4.3  Representative values of proportional cover of woody vegetation, herbaceous
vegetation, and bare ground for cover types defined in DeFries et al.  [1998]

Cover Type % woody
vegetation

% herbaceous
vegetation

% bare
ground

1   evergreen needleleaf forest 80 20 0
2   evergreen broadleaf forest 80 20 0
3   deciduous needleleaf forest 60 40 0
4   deciduous broadleaf forest
       (low latitude)

80 20 0

4   deciduous broadleaf forest
       (high latitude)

80 20 0

5    mixed forest 80 20 0
6   woodlands 50 50 0
7   wooded grasslands/shrublands 25 75 0
8   closed bushlands or shrublands 82.5* 82.5* 12.5
9   open shrublands 62.5* 62.5* 37.5
10  grasses 5 95 0
11  croplands 10 90 0
12  bare 5* 5* 95
13  mosses and lichens 20 80 0**

*  Value given is sum of woody and herbaceous vegetation.
** could contain up to 5 percent bare ground

4.3.2.2   Identification of endmember values

Accurate estimation of endmember values, or pure pixels,  is crucial to
successful application of the linear mixture model.   Several approaches have been
used, including values obtained from field or laboratory measurements   [Adams et
al., 1995], manual selection of endmembers based on principal component
analyses [Bateson and Curtiss, 1996], and deconvolution of the mixture modeling
equation to solve for the endmember values when the fractional cover is known
[Asner et al., 1997; Oleson et al., 1995].

We chose our endmembers according to the plots in figure 4.3.  By
extrapolating the regression to 100 percent, we can calculate the endmember
values for the two linear discriminants for woody vegetation, herbaceous
vegetation, and bare ground.  These values are then used in the linear mixture
model for rij.  We separately determine endmembers for each of the two regions.
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4.3.2.3   Application of the linear mixture model

With three components and two linear discriminants, the mixture model
becomes:

1R = 1wr wx + 1hr bx + 1br bx (4.3)

2R = 2wr wx + 2hr bx + 2br bx (4.4)

wx + hx + bx = 1 (4.5)

where R1 and R2  are the first and second linear discriminants; riw,, rih, and rib are
endmember values for woody vegetation, herbaceous vegetation, and bare ground
respectively; and xw, xh, and xb  are fractional cover for woody vegetation,
herbaceous vegetation, and bare ground respectively.

We then solve this set of simultaneous equations using the endmember values
to determine the proportion of woody vegetation, herbaceous vegetation, and bare
ground for each 1 km pixel.  As there are the same number of equations as
unknowns, we solve for xj directly as opposed to a least squares [Shimabukuro and
Smith, 1991] or Houghs transform [Bosdogianni et al., 1997a] method to minimize
the error.

The mixture model is applicable for those pixels for which the value of the
linear discriminants is between the endmember values for the three components.
For those pixels outside this range, we assumed the pixels to be either mixtures of
two components or one component only (Figure 4.4).  If the value for the first
linear discriminant was less than the endmember value for woody vegetation or
greater than the endmember value for bare ground, we labeled the pixel as 100
percent woody or 100 percent bare respectively (equations 6 and 7).  If the value
for the second linear discriminant was less than the endmember value for
herbaceous vegetation, we labeled it as 100 percent herbaceous (equation 8), so
that:

if 1R < 1wr  then w x = 100 (4.6)
if 1R > 1br  then b  x = 100  (4.7)
if 2R < 2hr  then h x = 100 (4.8)

Pixels falling between the endmember values but outside of the triangle formed by
the three endmember values were labeled as mixtures of two components,
determined as the linear distance between endmember values.  The second linear
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discriminant was used in the case of woody-herbaceous mixtures and herbaceous-
bare mixtures and the first linear discriminant was used in the case of woody-bare
mixtures.  For example, if the pixel fell into the W+H space in Figure 4.4, the
proportions for woody and herbaceous vegetation were calculated as:

 wx = ( 2R - 2hr )/( 2wr - 2hr )  and  hx = ( 2wr - 2R )/( 2wr - 2hr ) (4.9)

Similarly, for pixels in the H+B space:

 bx = ( 2R - 2hr )/( 2br - 2hr )  and  hx = ( 2br - 2R )/( 2br - 2hr ) (4.10)

For pixels in the W+B space:

 bx = ( 1R - 1wr )/( 1br - 1wr )  and  wx = ( 1br - 1R )/( 1br - 1wr ) (4.11)

4.3.2.3   Method for deriving continuous fields for leaf type and leaf duration

We derive continuous fields of leaf type and leaf duration  by the following
method:

1) We stratify the earth into three regions: low latitudes, mid and high latitudes,
and Siberia.  Each region is simplistically assumed to have two types of woody
vegetation: broadleaf evergreen and broadleaf deciduous in low latitudes,
needleleaf evergreen and broadleaf deciduous in mid and high latitudes, and
needleleaf evergreen and needleleaf deciduous in Siberia.  Though other types of
woody vegetation can be found, for example needleleaf evergreen can be found in
South America, we do not consider them in the derivation of the continuous fields.
These regions were stratified by using the metrics and the training data  in a
decision tree classifier [DeFries et al., 1998].

2) For each region, we calculate linear discriminants to determine the weightings
of the 30 metrics that maximizes the separation of the two types of woody
vegetation.

3) We determine the mean value of the linear discriminants for each woody type in
each region.  The proportion of each woody type is then taken as the linear
distance between the means.

Continuous fields of leaf type (needleleaf, broadleaf) and leaf duration
(evergreen, deciduous) are then determined by multiplying the proportion of each
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type from 3) above by the percent woody determined from the linear mixture
model.

4.3.3   Results

Figures 4.5, 4.6, and 4.7 show the resultant continuous fields for each of the
seven layers listed in Table 4.2.  We made only one modification to the results.  In
the Sahara desert, the continuous field for percent bare indicate the presence of
more vegetation than would be expected in some locations, possibly due to dark
soil or the presence of lichens.  To overcome this problem, we assigned a value of
100 to the percent bare data layer for those pixels identified in the Sahara region as
bare ground in the IGBP DISCover product [Loveland and Belward, 1997].  This
modification affected 3.8 percent of the total land surface.

The continuous fields show close to 100 percent woody vegetation in those
areas with extensive forest cover.  These areas include the humid tropical forests of
South America, Africa, and Asia, the eastern coast of North America,  and to a
lesser extent the boreal forests of North America and Eurasia.  The results show
high values for herbaceous vegetation in areas that are dominated by agricultural
crops and grassland, such as central North America, the steppes of Eurasia, and
large portions of the Indian subcontinent.  Based on this visual inspection, the
global distribution of vegetation characteristics generally corresponds to known
distributions.

A key question is how to quantitatively validate the continuous fields in the
absence of global or even regional  data on proportional cover.  This is a difficult
problem because even with high resolution data, we would expect mixtures of
vegetation types to be present within a pixel.  It is therefore somewhat problematic
even to use high resolution data as a means to validate the continuous fields.

One approach to validate the continuous fields is by comparison with other
land cover classification results.  Through the definitions for the cover types, such
as in Table 4.1, we can compare the continuous fields for consistency in the
geographic distributions.  Using the IGBP DISCover product [Loveland and
Belward, 1997] and the 8 km land cover classification from AVHRR Pathfinder
data [DeFries et al., 1998],we compared the extent of woody vegetation,
herbaceous vegetation, and bare ground on a continental basis (Figure 4.8).  Note
that the herbaceous vegetation category includes cropland and wooded grassland
because cropland can include purely herbaceous as well as up to 20 percent tree
canopy cover (Table 4.1).  The only marked discrepancy between the three data
sets is for woody vegetation in North America and Eurasia where the continuous
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fields product estimates lower percent woody values than the other two.  This is
likely due to the heterogeneous nature of the landscape in boreal areas, with
numerous small lakes interspersed with forest.  The continuous fields consequently
indicate lower canopy coverage than classification products which label these areas
as forests.

In this process, it must be kept in mind that any of the three data sets, the
continuous fields or the two classification results, may be inaccurate so this
procedure only provides a general understanding of the results rather than a true
validation exercise.  The comparison does suggest that the continuous fields give
results consistent with the other two data sets.

4.4   Conclusions

Continuous fields offer an alternative to the  traditional classification approach
for using remote sensing data to characterize global land cover.  The continuous
fields offer the user of land cover data richer information content and more
flexibility in the number and definition of classes to be used in earth system
models.  Ideally, the full information content in the continuous fields would be
used in models, though it is possible to construct land cover maps from the
continuous fields according to the user’s definitions.

The method described in this document is a first attempt to derive continuous
fields at the global scale.  It  applies a linear mixture model using training data
derived from high resolution data for calibration.  This training data was derived
for the purposes of land cover classification so it is less than ideal for the purpose
of continuous fields.  Further effort is required to obtain calibration and validation
data for the mixture model from very high resolution data, on the order of meters
where mixtures are less likely to occur, in a number of globally representative
locations.  The training data do suggest, however, that the linear assumption
implicit in the linear mixture model is valid.  They also suggest that the method to
use linear discriminants as inputs to the linear mixture model yields reasonable
results.

Data from MODIS, to be launched on board the EOSAM1 platform in June,
1998,  will provide higher spatial and spectral resolutions than have been available
from the AVHRR.  These data, as well as improved calibration and validation data,
will allow refinements to the simple method described in this document for
deriving continuous fields of vegetation characteristics.  More sophisticated
methods, such as those accounting for multiple endmembers [Roberts et al., 1998],
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potentially allow the derivation of global continuous fields that take into account a
broader range of vegetation characteristics.
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6. Figure Captions

(The mostly large figure files and this MS Word98 are stored at an anonymous FTP
site at  ftp://ftp.geog.umd.edu/pub/landcover/MODIS_ATBD. Any problems can
be addressed to xzhan@geog.umd.edu)

Figure 2.1.  Two-class hierarchical tree used in generation of the University of Maryland 1km
product.

Figure 2.2.  Procedure flow diagram, with sources of uncertainty/errors mandating the need for
an interpretative step to create final product.

Figure 2.3.  Subsets for boreal Russia, temperate United States and tropical West Africa.  On
left, red is maximum annual NDVI, cyan is minimum annual red reflectance.  All three have the
same linear stretch applied to both bands.  On right is classified map. 1=needleleaf evergreen
forest, 2=broadleaf evergreen forest, 3=needleleaf deciduous forest, 4=broadleaf deciduous
forest, 5=mixed forest, 6=woodland, 7=wooded grassland, 8=closed shrubland, 9=open
shrubland, 10=grassland, 11=cropland, 12=bare ground, 14=urban and built-up.  Bar scale equals
300 km.

Figure 2.4.  Vegetated/non-vegetated tree.  Only those nodes which account for 5% or more of
the respective class totals are shown.  Paths to lesser nodes are shown with ~.  The text in the
ellipses gives the metrics used for the split, with the left-hand side less than the value indicated
and the right-hand side greater.  Metrics beginning with t, such as tmeanch1 are metrics derived
from the 4 warmest months.  Other metrics, such as maxndvi, are derived from the 8 greenest
months. For example, tmeanch1 stands for the mean channel 1 value of the 4 warmest months.
Maxndvi stands for the maximum NDVI value of the 8 greenest months.  Values for channels 1
and 2 are in percent reflectance.  Values for channels 3, 4 and 5 are in degrees Kelvin.

Figure 2.5.  a)vegetated/non-vegetated tree.  Red = largest node for vegetated class, cyan =
largest node for non-vegetated class.  Black = lesser nodes in the tree.
b)tall/short vegetation tree.  Red = largest node for tall vegetation, orange = second largest,
yellow = third largest.  Cyan = largest node for short vegetation.  Black = lesser nodes in the tree.
Grey = bare ground class from previous tree.  c) Forest/woodland tree.  Red = largest node for
forest, orange = second largest, yellow = third largest. Cyan = largest node for woodland, green
= second largest.  Black = lesser nodes.  Dark grey = bare ground class.  Light grey = short
vegetation from previous tree.  Refer to Figures 4, 6 and 7 to view node paths.

Figure 2.6.  Tall/short vegetation tree.  Only those nodes which account for 5% or more of the
respective class totals are shown.  Paths to lesser nodes are shown with ~.  The text in the
ellipses gives the metrics used for the split, with the left-hand side less than the value indicated
and the right-hand side greater.  Metrics beginning with t, such as tmeanch5 are metrics derived
from the 4 warmest months.  Other metrics, such as minch1, are derived from the 8 greenest
months.  For example, tmeanch5 stands for the mean channel 5 value of the 4 warmest months.
Minch1 stands for the minimum channel 1 value of the 8 greenest months.  Values for channels 1
and 2 are in percent reflectance.  Values for channels 3, 4 and 5 are in degrees Kelvin.

Figure 2.7.  Forest/woodland tree.  Only those nodes which account for 5% or more of the
respective class totals are shown.  Paths to lesser nodes are shown with ~.  The text in the
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ellipses gives the metrics used for the split, with the left-hand side less than the value indicated
and the right-hand side greater.  Metrics beginning with t, such as tmeanch3 are metrics derived
from the 4 warmest months.  Other metrics, such as meanch1, are derived from the 8 greenest
months.  For example, tmeanch3 stands for the mean channel 3 value of the 4 warmest months.
Meanch1 stands for the mean channel 1 value of the 8 greenest months.  Values for channels 1
and 2 are in percent reflectance.  Values for channels 3, 4 and 5 are in degrees Kelvin.

Figure 2.8.  Final classified product.  1=needleleaf evergreen forest, 2=broadleaf evergreen
forest, 3=needleleaf deciduous forest, 4=broadleaf deciduous forest, 5=mixed forest,
6=woodland, 7=wooded grassland, 8=closed shrubland, 9=open shrubland, 10=grassland,
11=cropland, 12=bare ground, 14=urban and built-up.

Figure 2.9.  Areal comparison of 1km and 8km University of Maryland data sets.  1=needleleaf
evergreen forest, 2=broadleaf evergreen forest, 3=needleleaf deciduous forest, 4=broadleaf
deciduous forest, 5=mixed forest, 6=woodland, 7=wooded grassland, 8=closed shrubland,
9=open shrubland, 10=grassland, 11=cropland, 12=bare ground, 14=urban and built-up.

Figure 2.10.  Training accuracies of each class.  Graphs show the percentage of training pixels
for each class as portrayed in the final map product.  Over 50% of the errors involve the
intermediate mixed assemblage woodland and wooded grassland classes.  Class codes are those
in Figure 2.9.

Figure 2.11.  a)  UMd map for EPA region 3.  b) EPA MRLC Region 3 map.  c) UMd map for
Germany.  d) CORINE map for Germany.  1=needleleaf evergreen forest, 2=broadleaf evergreen
forest, 3=needleleaf deciduous forest, 4=broadleaf deciduous forest, 5=mixed forest,
6=woodland, 7=wooded grassland, 8=closed shrubland, 9=open shrubland, 10=grassland,
11=cropland, 12=bare ground, 14=urban and built-up.  Black areas are for classes which do not
aggregate into the UMd scheme such as wetlands for the EPA map and vineyards for the
CORINE map.  Bar scale equals 300 km.

Figure 2.12.  Areal comparisons of UMd map product and other regional land cover maps
derived from high-resolution data.  Class codes are those in Figure 2.9.

Figure 2.13.  a) Comparison of UMd and NASA Pathfinder Humid Tropical Deforestation
Project maps for Colombia, Peru and Bolivia. b) Comparison of UMd and NASA Pathfinder
Humid Tropical Deforestation Project map for the Democratic Republic of the Congo.  Bar scale
equals 300 km.

Figure 2.14.  Plot of FAO total forest cover country statistics versus predicted woody cover of
UMd product in millions of square kilometers.  a) UMd forest (>60% tree canopy cover) versus
FAO forest.  b) UMd forest plus woodland (>40% tree canopy cover) versus FAO forest.  c)
UMd forest plus woodland plus wooded grassland (>10% tree canopy cover) versus FAO forest.
d) best agreeing of the three UMd canopy closure figures versus FAO forest.

Figure 2.15.  Global area totals for aggregated classes of the IGBP DISCover and UMd 1km
maps.  Forest/woodland represents all forest classes plus the woody savanna class for the
DISCover map and all forest classes plus the woodland class for the UMd map.  Grass and
shrubs represents both shrub classes, the grassland class and the savanna class for the DISCover
map and both shrub classes, the grassland class and the wooded grassland class for the UMd
map.  Barren/ice is the combined barren class and permanent snow or ice class for the DISCover
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map and the bare ground class for the UMd map.  Crops, urban and wetlands represent individual
classes from the respective maps.

Figure 2.16.  Global agreement of tall versus short vegetation for the IGBP DISCover and UMd
1km maps.  Tall vegetation represents all forest classes plus the woody savanna class for the
DISCover map and all forest classes plus the woodland class for the UMd map.  Short vegetation
is all other classes combined.

Figure 2.17.  Global area totals for individual classes of the IGBP DISCover and UMd 1km
maps, with the IGBP name listed.  The UMd woodlands class is plotted as woody savanna, the
wooded grassland class is plotted as savanna and the bare ground class is plotted as barren.

Figure 2.18.  Full resolution snapshots of areas depicting the general differences between the
DISCover and UMd map products.  The permanent wetlands and snow and ice classes are absent
from these windows, leaving only the cropland/natural vegetation mosaic class as the only
category not in common between the data sets.  The DISCover product is on the left, and the
UMd product is on the right with both representing 500 km by 500 km squares. a) an area in
southwest Australia centered at 117d29'E, 33d04'S.  b) an area along the Canada/United States
border in the Pacific northwest centered at 118d10'W,48d16'N.  c) an area in the south of France
centered at 0d33'E,44d57'N.

Figure 3.1.  Data processing flow chart for the at-launch version of the MODIS 250m global
land cover change product.

Figure 3.2.  The processing procedure for compositing the 32 daily observations of the Band 1
and Band 2 reflectance values for each pixel.

Figure 3.3. Time intervals over which land cover changes will be detected in the at-launch
version of the MODIS 250m land cover change product.

Figure 3.4.  The relationship between the Red-NIR space and the Brightness-Greenness space
and the typical signatures of various land cover types.

Figure 3.5.  Typical change vectors associated with no forest change, deforestation and forest
burning processes in the Red-NIR space representing the Brightness-Greenness space.

Figure 3.6.  Change vectors in the Delta spaces.  The coordinates of change vector magnitude
and direction are overlaid with the Delta spaces.

Figure 3.7.  The MODIS 250m resolution images simulated from the Landsat TM band 3 and 4
reflectance data of the Santa Cruz, Bolivia area.

Figure 3.8.  The MODIS 250m resolution images simulated from the Landsat TM band 3 and 4
reflectance data of the Alexandra, Egypt area.

Figure 3.9.  The MODIS 250m resolution images simulated from the Landsat TM band 3 and 4
reflectance data of the Washington, DC area.
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Figure 3.10.   Comparison of the change detection results from each of the five methods and their
integration with the actual change bitmap for the Bolivia data set.

Figure 3.11.   Comparison of the change detection results from each of the five methods and their
combination with the actual change bitmap for the Egypt data set.

Figure 3.12.   Comparison of the change detection results from each of the five methods and
their combination with the actual change bitmap for the Washington, DC data set.

Figure 4.1. Procedure for deriving continuous fields of woody vegetation, herbaceous
vegetation, and bare ground.

Figure 4.2. Means and standard deviations for first and second linear discriminants for woody
vegetation, herbaceous vegetation, and bare ground (a) and for mean annual NDVI and
maximum annual channel 4 (b).

Figure 4.3.  Linear regressions for first and second linear discriminants vs. percent woody
vegetation (a and b), percent herbaceous vegetation (c and d), and percent bare ground (e and f).

Figure 4.4. Schematic representation of scatterplot of first and second linear discriminants and
designation of pixels as one, two or, three components.  W=woody vegetation, H=herbaceous
vegetation, and B=bare ground.

Figure 4.5 - Continuous fields for growth form: woody vegetation (top), herbaceous vegetation
(middle), and  bare ground (bottom)

Figure 4.6 - Continuous fields for leaf type: needleleaf woody vegetation (top), and broadleaf
woody vegetation (bottom)

Figure 4.7 - Continuous fields for leaf duration: evergreen woody vegetation (top), and
deciduous woody vegetation (bottom)

Figure 4.8 - Proportion of land area by continent for woody vegetation (a),
herbaceous/cropland/wooded grassland vegetation (b), and bare ground (c) calculated from the
IGBP DISCover product [Loveland and Belward, 1997], 8 km classification from AVHRR PAL
data [DeFries et al., 1998], and continuous fields.


