MODIS Atmosphere Group

- Payload Discussion
 - MODIS-N vs VIRSR for clouds from afternoon orbit
 - Advantages of GLRS-A for cloud properties with MODIS-N
 - Orbit preferences
- MODIS-N Airborne Simulator (MAS)
 - Instrument and data processing status
- Atmospheric Aerosols
 - Advantages of MODIS-N with MISR
- Response to SBRC regarding MODIS-N specifications

MODIS-N vs VIRSR

Advantages of MODIS-N

- Infrared sounding capability for cloud top pressure.
- Effective radius of cloud particles can more accurately be determined using 2.13 µm channel.
- 250-500 m pixels for accurate boundary layer cloud amount and for identifying clouds over snow and ice surfaces (texture analysis).
- Aerosol optical thickness over land, effective radius, mass loading
- Precipitable water over land and water.
- Atmospheric stability.

MODIS-N vs VIRSR

Advantages of MODIS-N

• Careful attention to calibration.

Advantage of VIRSR

• 25-35% the cost of MODIS-N.

EOS Payload Configuration

- Like MODIS-N and MISR together for atmospheric aerosol determination.
- Prefer MODIS-N to VIRSR for accurate determination of cloud radiative properties in afternoon orbit.
- Would like to see GLRS-A or LAWS in either morning or afternoon orbit along with MODIS-N and CERES for cloud top altitude, vertical distribution of complex clouds, and multi-layer cloud systems.
- Prefer afternoon orbit be ascending and morning orbit be descending, which is compatible with MODIS-N design and SAGE-III desires.

MODIS-N Airborne Simulator

50	
2.5 mrad	
45 m	
<u>+</u> 43°	
34 km	
0.55-14.2 µm	
6.25 scans/sec	
716	
12 channels – 8 bit	
	50 2.5 mrad 45 m ±43° 34 km 0.55-14.2 μm 6.25 scans/sec 716 12 channels – 8 bit

MODIS-N Airborne Simulator

- MAS will be delivered to Ames on October 15 where it will be integrated, calibrated, and flown in the FIRE Cirrus Experiment which begins November 12.
- After FIRE campaign, the *MAS* will be returned to Dædalus where it will be further modified to a full 50 channel spectrometer for use in ASTEX, Brazil, and later airborne field campaigns.
- Output Level-1B data will be produced by MODIS SDST and distributed in the netCDF format by 9-track tape or 8 mm (exabyte) cassette.

Airborne Field Campaigns (FY92-96)

- FIRE Cirrus IFO (Coffeyville, KS) November 1991
- MAS Science/Engineering Flights (20 hrs/year)
- Arctic Stratus, Haze and Sea Ice (Barrow) April 1992
- ASTEX (Azores) June 1992
- Biomass Burning (Brazil) September 1992
- TOGA-COARE (Guam/Townsville) December 1992

Atmospheric Aerosols

Advantages of MODIS-N

- Wide spectral range (0.415-2.13 μm) for spectral optical thickness and aerosol size determination.
- Small field of view (250-500 m) for all aerosol channels.
- Multiple algorithms possible, based largely on single view angle physics.

Advantage of MISR

- Multiple view angle helps determine aerosol by μ dependence (fixed τ).
- Local mode has small field of view (240 m) pixels.

MODIS-N Specifications

- Spectral band registration requirement.
 - Keep current requirements as goals, monitor carefully, but do not spend excessive resources if goal proves to be excessively difficult.
- NE Δ T requirement for spectral band 21.
 - Acceptable, but would like to see log amp used to better meet T⁹ dependence of radiance.
- Change the NE∆T fo Band 29 to 0.07 K.
 - Not acceptable.
 - Change $T_{max} = 400$ K to 335 K.
- Reduce the SNR of Band 6 to 275. Acceptable.

