ATMOSPHERIC CORRECTION FOR MODIS -OVER LAND

Yoram Kaufman and Didier Tanré Brent Holben and Eric Vermote

***WHAT IS THE PROBLEM ?**

*WHY CORRECTION FOR THE LAND IS MORE DIFFICULT THANFOR THE OCEAN ?

***MINIMUM CORRECTION THAT IS EASY TO PROMISE**

* CORRECTION THAT CAN BE APPLIED FOR PART OF THE 5-D DATA SET L(X, t, λ)

***** ALTERNATIVE APPROACHES

*FIELD EXPERIMENTS, empirical relations and testing.

*** WHAT IS THE PROBLEM ?** (VIOS)

***WHY CORRECTION FOR THE LAND IS MORE DIFFICULT THAN FOR THE OCEAN**

- Surface is brighter and variable $\rho(X,\lambda,t)$ - more difficult to find the atmospheric effect.

2

- For a bright surface atmospheric effect includes also T, ω_o .

- Higher optical thickness.

*** MINIMUM CORRECTION THAT IS EASY TO PROMISE**

Gaseous absorption $H_{\mathcal{U}} \rightarrow$ reduced to minimum unless there is an anomalous water vapor absorption.

- O_3 is easy to correct for.

Effect on vegetation index NDVI= $(L_2-L_1)/(L_2+L_1)$

***** CORRECTION THAT CAN BE APPLIED FOR PART OF THE 5-D DATA SET (X, t, λ) Aerosol effect on vegetation index NDVI= $(L_2-L_1)/(L_2+L_1)$

- Effect on bidirectional reflectance measurements

ZENITH VIEWING ANGLE (°)

Reflectance (dashed line) at the top of an aerosol layer for $\theta_0 = 35^\circ$ to 55° along the scan. The solid line corresponds to a BRDF used for the simulation which corresponds to a Minnaert model with k=1.0 and ρ =0.10. The second solid line corresponds to the actual BRDF with different surface parameters, k=0.2 and ρ =0.12 which displays the same behavior as the simulated reflectance.

Possible correction for the aerosol effect

$$L(\tau) = L_{o}(\tau) + f(\tau)T(\tau)\rho$$

$$(1-[\tau(1-\omega_{o})-\tau\beta]/\mu)$$

$$(1-[\tau(1-\omega_{o})-\tau\beta]/\mu_{o})$$

- Correction for the aerosol properties requires:

*aerosol optical thickness - 50%

* Phase function - 35%

* single scattering albedo - 15%

Path radiance combines the most out of the three.

~ TTWO

Fig. 3: The relation between the aerosol optical thickness and simultaneously measured atmospheric path radiance L_{pd} (the radiance is normalized to flux of π by $\pi L_{pd}/F_0$). Both the path radiance and the optical thickness data were interpolated for solar zenith angle of 60°. The wavelength is indicated on each graph. A least square fit is given (solid line) for each figure (for equations and correlations see text). Measurements are plotted by (•) and theoretical fit using a rural aerosol model by (Δ).

. در ۲

.

and the second s

Methods of correction: **STRATEGY**

- Correction methods are based on derivation of one aerosol parameter from space (τ or L_o) and computing the others using a model that is heavily based on empirical relations.
- I Dense dark vegetation method is for single image correction assuming $\rho_{DDV}(\lambda, \theta, \theta_o)$. Test possibility to apply also for non dense vegetation targets that are dark in the blue.
- **2** Structure function approach to find τ relative to a single day from a sequences of images with same view direction.
- 3 Optical thickness derived every several days from MISR to be used directly to verify DDV, and to give t of the reference day for the structure function method.

- DENSE DARK VEGETATION (over regions that include forests)

- On a box of 1°x1° find pixels with dense dark vegetation using NDVI or 3.7 μm reflectance (vio 3.7 vs. ch1, NDVI vs. ch1)
- Assume $\rho_O(\theta_O, \theta)$ for blue and red
- Find τ and $L_0 \quad \sqrt{10}$
- Interpolate on X and $\lambda \sqrt{0}$
- Correct all the box

(vio corrections)

12

Structure function (over regions with high contrasts)

 $F_{S}(d)=\Sigma[(L(x)-L(x+d)]^{2}$

 $L=L_{O} + Tf\rho$

$$\sqrt{\frac{F_{s1}(d)}{F_{s2}(d)}} \propto \frac{T_{1}f}{T_{2}f} \propto \tau * g(\omega_{0},\beta)$$

This ratio should be independent of d which is a test if the region is appropriate for the technique.

(vios)

LANDSAT MSS

1-. .

-66

.5

-

CORRECTION OF THE RADIANCE

-

K 4

SOUFFLET BTANRE, 1992

MANIWAKI ---> RESULTS OVER VEGETATION

MEAN VALUE AND STANDARD DEVIATION OVER ALL THE SCENE (120x120 PIXELS)

GAD, MALI

12

GAO, MALI

ATMOSPHERICALLY RESISTANT VEGETATION INDEX - ARVI FOR EOS-MODIS

Yoram J. Kaufman and Didier Tanré

Modis Team Meeting Oct. 1991

Principle of the self correction for the atmospheric effect:

- The path radiance in the blue is used to correct the path radiance in the red (Fig 1)

3

$$NDVI = (\rho *_{NIR} - \rho *_r) / (\rho *_{NIR} + \rho *_r)$$

$$ARVI = (\rho *_{NIR} - \rho *_{rb}) / (\rho *_{NIR} + \rho *_{rb})$$

where
$$\rho *_{rb} = \rho *_r - \gamma (\rho *_b - \rho *_r)$$

Table 1: Reflectances of typical surfaces in the three bands .

surface cover	ρ_{blue}	ρ_{red}	ρ _{NIR}
Soil [37]	:0.110	0.190	0.243
Grass [4]	0.012	0.052	0.660
Forest [36]	0.010	0.016	0.210

<u>Table 2:</u> Relation between the reflectance in the red channel ($0.66\pm0.025 \mu m$) and in the blue channel ($0.47\pm0.01 \mu m$).

surface	reflectances			RATIO	,		
/property	BLUE	RED	NIR	blue/red	difference	NDVI	ARVI
	0. 4 7 µm	0.66 µm	0.86 µm		••		-
all surfaces	0.11±0.11	0.19±0.17	0.41±0.19	0.64±0.24	0.08±0.08	0.38±0.33	0.26±0.40
vegetation	0.06±0.04	0.10±0.07	0.45±0.18	0.71±0.25	0.04±0.05	0.63±0.25	0.55±0.32
soils	0.18±0.14	0.31±0.18	0.35±0.18	0.5 6± 0.19	0.13±0.09	0.09±0.06	-0.08±0.08

1982 AIRCRAFT DATA

NUMBER

.

÷.

12 · 727.2 .

*** ALTERNATIVE APPROACHES**

ARVI,

TOOLS

- 6S code, RT codes (Eric)

- bidirectional scheme (updated from data)

FIELD EXPERIMENTS empirical relations and testing.

- Pre- and post MODIS measurements from the ground of aerosol physical and optical properties as a data set for relation between Lo and cand for ground truth (Brent).

- Field experiments with surface properties, aerosol properties and radiance transfer.

- To generate a data set of the parameters to test and update radiative transfer models and to validate remote sensing procedures and atmospheric correction schemes.

1. $L_{0}(\lambda), \tau(\lambda)$ - network of instruments

Brent - 7 instruments in Brazil from 1992

Didier - 5 instruments in West Africa from 1992

Yoram - 4 instruments for targets of opportunity (desert transition area, Puerto Rico, East Europe, GSFC). from 1992

Yoram and Didier - additional instruments from 1993 on depending on the budget.

2. Didier: 1992 HAPEX-SAHEL tau, Lo, fluxes, atmospheric samplers, surface bidirectional reflectance, PAR, METEOSAT, AVHRR, TM, POLDER, ATSP, TIMS

3. Yoram, Brent: 1992 Wallops, Desert transition area in Israel: tau, Lo, L(l) from digitized camera. - Need of a not expensive visible to near IR radiometer-imager.

4. MODIS team: 1993 Brazil, in collaboration with Ames and Hobbs aerosol, clouds and gases characterization simultaneously with radiation measurements, MAS, vegetation characterization and ground based measurements.

CONCLUSIONS

- Strategy that adds and sophisticates the corrections in stages molecular scattering and gaseous absorption alternative approaches aerosol correction
- Simulations of the performance and error analysis
- Data sets of surface properties of aerosol properties and of simultaneous surface, aerosol and radiance measurements;