MCST Report

to the MODIS Science Team by the MODIS Characterization Support Team (MCST)

MOD erate Imaging Spectroradiometer

John Barker, MCST Project Scientist

• Ken Brown • Joann Harnden • Brian Markham • Harry Montgomery • Steve Ungar

Contributions

•Paul Anuta - Spectral Simulation • Joan Baden - Editor • Tom Bryant - Instrument Monitoring • Jon Burelbach - Image Processing • Dan Knowles Jr. - Database Development • Ed Knight - Instrument Engineer • Geir Kvaran - Algorithm Development • Al McKay - Technical Writing • Jon Smid - Sensitivity Studies • Nicole White - Editing

30 September 1993 1100

Goddard Space Flight Center (GSFC), Greenbelt, MD, 20771 Building 8, 2nd Floor Auditorium

Outline

MODIS Level-1 Characterization and Calibration Algorithm

MODIS Instrument Characterization and Calibration

MODIS System Performance Simulation

Level-1 Characterization and Calibration Algorithm

Joann Harnden Harry Montgomery

<u>Contributions</u> •Paul Anuta - Spectral Simulation • Joan Baden - Editor • Ed Knight - Instrument Engineer • Geir Kvaran - Algorithm Development • Al McKay - Technical Writing • Jon Smid - Masking Development • Nicole White - Editing

3

MODIS Calibration Strategy

• Use Alternative MODIS Calibration Methodologies

Several alternative calibration methodologies will be implemented throughout 15-year mission to provide a robust unique "official" calibration algorithm and to allow for its validation by independent methods

• Characterize Precision on a Time-Scale of Months

Post-launch quantitative characterization and monitoring of the precision (repeatability) with which MODIS at-satellite radiances are measured by various methods will occur within 2 to 6 months

• Characterize Accuracy on a Time-Scale of Years

Post-launch quantitative characterization and monitoring of the accuracy with which MODIS at-satellite radiances are measured by various methods and on two in-orbit instruments will occur within 3 to 5 years

LOS MODIS MISSION ELEMENTS

6 INSTRUMENTS 15 YEAR MISSION 6 CALIBRATION SOURCES

Time-Dependent Radiometric Calibration of the Reflective Bands

Time Scale	Calibration Technique	<u>Availability</u>
Within a Scan Line	Scene-dependent MTF inversion	Post-Launch
Within a Scan	Bias Offset measurements Blackbody as DC-restore Space view	At-Launch
	Relative cross-correlation of detectors both within and between bands	At-Launch
Within a Half Orbit	Radiometric rectification over known radiometrically homogeneous site	Post-Launch es
Between Orbits	SRCA in Radiometric mode	At-Launch
Between Days	Solar Diffuser	At-Launch
Between Months	Lunar Pointing Vicarious Measurement Methods aircraft and ground-based	At-Launch Post-Launch
Between Years	Lunar Views Radiometric Math Model	At-Launch Post-Launch

Time Domains for MODIS Image-Derived Calibration Methodologies

Example of Potentially Redundant Calibration

MODIS Level-1 Geolocation, Characterization and Calibration Algorithm Theoretical Basis Document (Cal ATBD)

Version 0 Preliminary DRAFT

Version 1 DRAFT

Version 1

June 30, 1993

July 31, 1993

September 7, 1993

Table of Contents MODIS Cal ATBD

Executive Summary

- 1. Introduction
- 2. MODIS Instrument Calibration Requirements
- 3. Theoretical Basis for the MODIS Calibration and Characterization Algorithm
- 4. Instrument Error Budgets
- 5. Summary

MODIS Cal ATBD Appendices

- A Geolocation (SDST)
- **B** Instrument Specification
- C Instrument Design
- D MODIS Calibration Strategy
- E Vicarious Calibration (UAz)
- F Acronyms & Symbols
- G Glossary
- H References
- I Index

Pre-Launch SBRC Absolute Calibration of MODIS Channels

• Pre-launch calibration data relates 12-Bit counts to input spectral radiance for all MODIS channels.

- There will be at least two sets of 470 functions, one for each side of the scan mirror.
- •LMax is the spectral radiance producing full scale output (4095 DN).
- LMin will be negative due to the intentional offset at zero radiance.

MODIS Channel to OBC Transfer & On-Orbit Use of OBC

• Pre-Launch Calibrattion produces a set of Quantized Output for each lamp state, $Q_{OBC,i}$, and a corresponding effective spectral radiance, $L_{\lambda,OBC,i}$ which is obtained from the inverse of the MODIS Calibration Function, f⁻¹.

•On-Orbit Observations of the SRCA at different lamp states produce current values of Q which are compared to pre-launch values.

•The pre-launch/post-launch count pair or the predicted/current pair for each lamp state become the basic input to the Calibration Algorithm.

15-Year MODIS Calibration Strategy

• The overall calibration objective is to produce a 15 year MODIS data set which maintains a fixed relationship between "calibrated" Digital Values, QCAL, and At-Aperture Spectral Radiance L_{λ} , for all MODIS Instruments.

• A Single, Linear Relationship will be maintained between L_{λ} and QCAL for all channels within each band.

• The dynamic range of QCAL for all Bands will be 0 to 65, 535 (216-1).

• The Post-Calibration Dynamic Range of L_{λ} for each Band will be specified by 2 values, L_{Lower} , and L_{Upper} .

MODIS Level-1 Data Products*

Level-1A Data (MOD01)

• Each Pixel Geolocated

•Calibration Coefficients Included as Ancillary Data

Level-1B Calibrated Data (MOD02)

• Each Pixel Geolocated

•Radiometric Dynamic Range of 1 to 65,535 Represents

Spectral Radiance Range of LLower to LUpper for each Band

Level-1B Utility Masks (MOD18)

•1-Bit Binary Masks

•3-Bit Fractional Masks

*Metadata for all Products

•Quality Assurance Data for Each Pixel

•Processing Applied to Each Band

MODIS Level-1 Core Algorithm Flow

(From MODIS L-1 Geolocation, Characterization and Calibration Algorithm Theoretical Basis Document; Version 1; 9/7/93)

OVERVIEW: Level-1 Processing Flow

MODIS Utility Mask Product

• One of the standard MODIS Level-1B (MOD18) products will be a generic set of masks for all bands. It will be developed by MCST in collaboration with members of the MODIS science team.

• There will be three 64-bit Level-1B images, one for each of the different 250, 500 and 1000 m MODIS spatial resolutions.

• The bits in these images are each masks which will contain either binary or fractional information on each pixel. Binary masks will be for a "definite" presence or absence of an instrument state or target condition.

• There may be different discipline-dependent masks for some of these classes, e.g., cloud masks.

- There will be different algorithms for daytime and nighttime imagery.
- The MOD18 Product will be available for all MODIS datasets.

Three 8-Byte MODIS Level-1B Utility Masks

for 250, 500 and 1000 m Bands of Instrument Channel, Data, and Scene Usefulness

Illustrative 1-bit Binary Level-1 Pixel Masks

- •Replaced Dead Channels*
- •Overlapped with Adjacent Scan
- •Opaque Clouds
- Calculated Cloud Shadow
- •Spatially Homogeneous Pixels
- •Land
- •Calculated Potential Glint

- •Unreplaced Noisy Channels*
- •No Overlapped Ground Pixels
- •Transparent Clouds
- •Radiometric Outlier
- Mixed Pixel (Mixels)
- Water
- •Actual Observed Glint

Illustrative 3-bit Fractional Level-1B Pixel Masks

• Pixel Area on Ground

- •Water Fraction
- •Opaque Cloud Fraction
- •Snow/Ice Fraction
- •Solar Irradiance at Top of Atmosphere
- Modular Transfer Function (MTF) Significance on Radiometry
- •Size of Corrected (or Uncorrected) Systematic Errors

*Specific Channels identified in metadata files.

MODIS

Characterization & Calibration Data Sources

MODIS Level-1 Product Flow

MODIS Instrument Characterization & Calibration

Harry Montgomery Ken Brown

Contributions

• Joan Baden - Editor

• Tom Bryant - Instrument Monitoring

• Ed Knight - Instrument Characterization

• Dan Knowles Jr. - Database Development

• Nicole White - Editing

MODIS Instrument Calibration Requirements

		Predicted			
Parameter	Requirement (Goal)	Pre-Launch	On-Orbit		
Radiometric Calibration *	%(+/-1o)				
Below 3000nm (Reflective)	5.0	4.0			
Above 3000nm (Emissive)	1.0				
Except 20,	0.75(0.50)				
31 & 32, and	0.50(0.25)				
31 High & 32 High	10				
Reflectance (Relative to the Sun)	2.0	4.0	2.0		
Spectral Band-to-Band Stability					
Full Scale	0.5				
Half Scale	1.0				
Spectral Characterization	nm				
Center Wavelength					
Pre-Launch	0.5				
On-Orbit	1.0				
Geometric Characterization	IFOV(+/-3σ)				
Band-to-Band Registration					
Required	0.2 (0.1)	0.1	0.15		

*Radiometric Accuracy is at specified typical radiance and can be 1% larger from 0.3 L_{typ} to 0.9 L_{Max} based on multiple samples of uniform, extended, non-polarized sources.

MODIS Stability Specification

Short-Term Radiometric Stability

(dt <= 2 weeks, corrected on the ground, including orbital perturbations) Reflective Bands +/-1% (+/- 0.5% goal) Emissive Bands +/-0.5%

Long-Term Radiometric Stability

(2 weeks <= dt <= 5 years, corrected on the ground, including orbital perturbations) Below 3000 nm +/- 2% Above 3000 nm +/- 1%

Spectral Band-to-Band Stability

(dt <= 2 weeks, corrected on the ground, including orbital perturbations) +/-0.5% (at full scale)

Wavelength Stability

(dt <= 5 years, corrected on the ground, including orbital perturbations)

VIS Bands +/- 2nm Other Bands +/-1%

MODIS Solar Diffuser Stability Monitor (SDSM)

õ	<u>ج</u>
Se	ES.
Pe	7
nj.	£.
ĝ	ă
19	ģ
ų ت	×
B	B
Ë	S
E.	Sci.
00	g
بر	ĕ,
đ	<u>6</u>
E	B
ğ	Š.
	~
2	Ë.
Audit	
Auditori	ting at N
Auditorium	ting at NA
Auditorium	ting at NASA,
Auditorium	ning at NASA/GS
Auditorium	ting at NASA/GSFC
Auditorium	ting at NASA/GSFC, C
Auditorium	tting at NASA/GSFC, Gree
Auditorium	ning at NASA/GSFC, Greenb
Auditorium	zing at NASA/GSFC, Greenbelt,
Auditorium	zing at NASA/GSFC, Greenbelt, M
Auditorium	zing at NASA/GSFC, Greenbelt, MD 2
Auditorium	zing at NASA/GSFC, Greenbelt, MD 207

27

Use SDSM and SD Data to Create ($L_{\lambda r} Q$) Calibration Point

	SDSM Calculations for Stability of SD:			
	Q _{SE})(λ,t)	= R'(λ) K'K(θ)' f(λ , θ , ϕ , θ ', ϕ ',t) cos θ S(λ)	
	QS	λ,t)	= R'(λ) K(λ) S(λ) K(θ)	
	κ(λ)		$= \frac{Q_{s}(\lambda, t_{0}) f(\lambda, \Theta, \phi, \Theta', \phi', t_{0}) K' K'(\theta) \cos \theta}{Q_{SD}(\lambda, t_{0}) K(\theta)}$	
	۴(کر ۱	0 ,¢, 0' ,¢',t ₁)	$= \frac{K(\lambda) Q_{SD}(\lambda, t_1) K(\theta)}{Q_{S}(\lambda, t_1) K' K'(\theta) \cos \theta}$	
	С(λ,	t ₁)	$=\frac{f(\lambda,\Theta_1,\phi_1,\Theta_1',\phi_1',t_1)}{f(\lambda,\Theta_1,\phi_1,\Theta_1',\phi_1',t_0)}$	
	<c(2< th=""><th>λ,t₁)></th><th>$= 1 \bigwedge_{i=1}^{N} C_{i}(\lambda, t_{1})$</th></c(2<>	λ,t ₁)>	$= 1 \bigwedge_{i=1}^{N} C_{i}(\lambda, t_{1})$	
	Solar Diffuse	r Calculati	ons:	
	L(λ)	= <	$C(\lambda,t_1) > f(\lambda,\Theta_1,\phi_1,\Theta_2',\phi_2',t_0) S(\lambda)$	
L_{λ} for Solar	√(λ	L)> = 1/	$N\sum_{i=1}^{\Sigma} L_i(\lambda)$	
Diffuser	$\begin{array}{c} t_{0}, t_{1} \\ N \\ Q_{SD} \\ Q_{S} \\ R'(\lambda) \\ offset \\ f(\lambda, \theta, \phi, \theta', \phi', t) \\ S(\lambda) \\ K(\lambda) \\ K' \\ K(\theta) \\ K(\theta) \\ C(\lambda, t_{1}) \\ C(\lambda, t_{1}) \\ L(\lambda) \\ L(\lambda) \\ L(\lambda) \end{array}$	$t_1 = Time Before, After Launch= Number of Data Points= Solar Diffuser Counts from SDSM minus offset= Sun Counts from SDSM minus offset(\lambda) = Spectral Responsivity of SDSMiset = offset from dark position of SDSM, \theta, \phi, \theta', \phi', t) = BRDF of Solar Diffuser\lambda) = Solar Spectral Irradian ce\lambda) = Solar Spectral Irradian ce= 1 for no solar diffuser screen= 0.085 for solar diffuser screen\theta) = obliquity factor for SDSM solar screen\theta) = obliquity factor for SDSM solar screen\lambda, t_1) = Degradation of SD panel2(\lambda, t_1) = Average Degradation Value\lambda) = Spectral Radiance(\lambda) = Average Spectral Radian ce$		
	Ca	Iculate the	e MODIS SD Data	
	For all detectors for values within those	which the curi detectors' dyn	rent solar diffuser mode will provide amic ranges.	
Q from Solar		= 1 /N ∑Q;		
Diffuser	<q> = Average Solar Diffuser Value for MODIS N = Number of Solar Diffuser Values for MODIS O: = ith Solar Diffuser Values for MODIS</q>			

On-Orbit SRCA Acquisitions

- •4 of 10 SRCA Frames per Scan
- •~800 Scans per Orbit (Assuming 20% Duty Cycle)
- •One Lamp State at a Time

	TIME (min)	BAND
Radiometric Calibration	17	Reflective
Spectral Characterization (Center Wavelength)	75	Reflective
Spatial Registration*	37	ALL

*Both Along Scan and Along Track

SBRC Documentation Tracking by MCST

• SBRC Deliverables Database

Software: EXCEL

• SBRC Deliverables Library

Location: Bldg 22, Rm 354, GSFC, Greenbelt, MD

Contact: Dan Knowles Jr. 301-286-1378 for more information.

MODIS System Performance Simulation

Stephen Ungar Brian Markham

<u>Contributions</u> •Paul Anuta - Spectral Simulation • Joan Baden - Editor • Jon Burelbach - Image Processing • Ed Knight - Instrument Engineer • Jon Smid - Sensitivity Studies • Nicole White - Editing

MODIS System Performance Simulation Task

Objective

• Provide for spectral, spatial, and temporal simulation of MODIS Imagery End-to-End Performance for developing and testing Level-1 Calibration/Masking Algorithm and Performing Product to Instrument Calibration Sensitivity Studies.

<u>Approach</u>

• Obtain, maintain, and enhance SBRC MODIS Radiometric Math Model

• Provide for Simulation of MODIS Imagery From TM Imagery, including retention of TM reference composition in each MODIS pixel for evaluation of algorithm effectiveness.

• Use PRA (Photon Research Associates) GCI (Global Change Toolkit) Toolkit as user-friendly software shell to allow insertion of user developed Models of Atmosphere, Target and Instrument Characteristics, including synthetic scenes.

MODIS Scientific Calibration-Related Requirements

Radiometric Requirements

for Solar Reflective Bands (#1-19, 26)

Scientific Discipline Requirements	At-Satellite Radiance used in Identification of Scientific Products		Signal Accuracy Required to Support 5-10% (±10) Modeling of Scientific Products		Instrument Precision Required for 2X Verification of Signal Accuracy		Monitoring Precision Required for 2X Verification of Instrument Precision	
	min (%)	max (%)	min (%)	max (%)	min (%)	max (%)	min (%)	max (%)
Radiance								
• Atmosphere-Leaving	10	100	0.5	10	0.2	5	0.1	2
Land-Leaving	50	90	2.0	10	1.0	5	0.5	2
Water-Leaving	10	50	0.5	5	0.2	2	0.1	1
Net Radiance (Signal)								
Atmospheric	1	100	0.05	10	0.02	5	0.01	2
Components	5	20	0.20	2	0.10	1	0.05	0.5
Reflections by Land Class	1	5	0.05	0.5	0.02	0.2	0.01	0.1

Oceanic Components ۰

Conclusion: The Ocean Group has the highest Radiometric Requirement.

MODIS Scientific Calibration-Related Requirements

Geometric Requirements

Scientific Discipline Requirements	IFOV		Geolocation		Band-to-Band Registration	
	min	max	min	max	min	max
	(Km)	(Km)	(Km)	(Km)	(pixels)	(pixels)
Atmospheric Products	0.1	10	10	10	2	5
Land Products	0.1	10	0.02	0.5	0.05	0.15
Ocean Products	2	10	2	5	2	5

Conclusion: The Land Discipline Group has the highest Spatial Requirement.

Feedback to MCST is requested from Discipline Representatives and others as to the appropriate range for these requirements. Specifically, identify the key calibration-critical MODIS data products & the approximate Band-Dependent Algorithms To Be Used in Developing Sensitivity Studies for Deriving Requirements, Including Key People With Whom to Work.

MODIS Scan Edge Geometry

Parameters Influencing MODIS Scan Pattern

PARAMETER	SIMPLIFIED	RIGOROUS	UNITS			
platform altitude		705	kilometers			
maximum scan-angle		55	degrees			
angular IFOV		1.41844	millirad's			
number if array elements		10				
orbital period		98.80299	minutes			
subsatellite velocity		6.760355	KM/sec			
sweep scan period		1.479241	seconds			
swath width at nadir	10	10.00017	kilometers			
half swath distance	1006.844	1164.77	kilometers			
range to swath edge	1229.13	1414.032	kilometers			
range/height		2.005719				
great circle arc		10.46289	degrees			
nadir x-pixel size	1000	1000	meters			
nadir y-pixel size	1000	1000	meters			
The following measurements refer to the edge pixel						
edge stretch	4.829771					
look angle	55	65.46289	degrees			
x-pixel size	4829.771	4829.783	meters			
y-pixel size		2005.719	meters			
lead/trail ranges	1411.839	1416.232	kilometers			
trapazoidal distortion		6.23182	meters			
refractive distortion		127.5133	arc-sec's			
refractive distortion		0.6182019	millard's			

SIMPLIFIED refers to small angle and/or flat earth approximation

x = along-scan direction y = along-track direction

MODIS Pixel Size Range (drawn to the scale of 1" = 1 km)

Edge distortion in the along-track direction is due to doubling of the satellite distance from target at slant angle of 55 degrees. The along-scan distortion is further exaggerated by obliqueness of view and curvature of the earth.

BAND 29 STUDY

TASK

Evaluate acceptability of 2 different filter wafers for Band 29 Wafer A: Center Wavelength 5 nm beyond Specification tolerances, Lower Edge Range 31.5 nm beyond Specification Wafer B: Lower Edge Range 66 nm beyond Specification

METHOD

Compared to Ideal Filter Examined Sensitivity to Spectral Shift Examined Effects due to Out-of-Band Radiance

RESULTS

Wafer B land Wafer A show similar sensitivity to potential after-launch wavelength Shifts Wafer B displayed shifts/radiances comparable to Ideal Filter Out-of-Band Radiance contributions minimal

CONCLUSION

Wafer B deemed acceptable

Band 29 with TOA Radiance Spectrum

Change In MODIS Band-29 Output due to Shift in Center Wavelength (Spec. CW = 8550 nm, CW Tolerance = 43 nm)

Sensitivity Analysis System Modules

DK0011

DK0014

MODIS Center Wavelength (CW) Spectral Sensitivity Study Change in MODIS Band Output Radiance without Solar Diffuser Calibration

MODIS Change of In-Band Radiance (%) Band GW Shift -10mm -5000 -20m -Inm n +1nm 2000 +5mm 1 2.5 0.9 0.3 0.1 0.0 -0.1 0.0 0.2 1.7 2.0 2 -2.3-0.6 -0.3-0.2 0.0 0.2 0.2 1.3 2.9 1.2 0.5 -0.5 -0.5 -2.9 -6.8 3 6.7 0.0 2.5 4 5.2 0.5 0.0 -0.6 -0.6 -3.1 -6.1 1.1 5 5.9 -7.9 3.4 1.5 0.7 0.0 -0.8 -1.6 -4.1 6 1.5 1.2 0.6 0.3 0.0 -0.3 -0.7 -1.8 -3.8 7 1.8 1.1 0.5 0.3 0.0 -0.3 -0.3-2.0 -5.8 -7.3 8 1.3 0.6 0.0 -0.5-0.8 -2.3 no data no data 3.2 9 -7.7 -2.5 -0.7 -0.5 0.0 0.8 0.9 2.7 -0.2 10 12.0 5.9 2.1 1.0 0.0 -0.7 -0.4 -3.3 -2.8 0.6 -0.3 -0.3 -5.6 11 1.2 1.5 0.2 0.0 -6.2 -3.3 2.3 0.0 -1.1 -1.1 12 4.1 1.1 0.6 1.5 8.2 17.0 -6.2 -2.4 -1.3 0.0 1.4 13 -11.0-7.5 -3.0 1.3 14 -15.0-1.4 0.0 1.1 2.6 -2.4 -3.3 22.0 15 -17.0-9.0 -1.5 0.0 1.0 0.6 0.3 -2.2 -6.2 -0.6 -0.3 0.0 0.5 0.7 3.6 6.1 16 6.9 -3.2 2.9 -26.017 38.0 18.0 3.4 0.0 -14.05.7 18 304.0 110.0 22.0 7.8 0.0 -2.8 -2.8 11.0 19 -1.9-3.1-3.722.0 8.0 2.7 1.3 0.0 -1.0 17.0 3.5 26 0.0 -1.0 -0.8 -5.2 -22.084.0 1.4

TOA Spectral Radiance Input (Kurucz solar spectrum, 1 cm water vapor, nominal vegetation reflectance)

DK-0006

MODIS Spectral Band Output Change due to Shift in Center Wavelength

(Plotted Value is Max. Abs. Change in the Center Wavelength Tolerance Range) (J. Barker, 6 Aug., 1993)

DK-0009

Effect of Solar Irradiance Normalization

DK0013

Sensitivity of MODIS Reflective Band Output to Shift in Center Wavelength (J. Barker, 6 Aug., 1993)

DK-0007

• Ken Brown • Joann Harnden • Brian Markham • Harry Montgomery • Steve Ungar

Contributions

•Paul Anuta - Spectral Simulation • Joan Baden - Editor • Tom Bryant - Instrument Monitoring • Jon Burelbach - Image Processing • Dan Knowles Jr. - Database Development • Ed Knight - Instrument Engineer • Geir Kvaran - Algorithm Development • Al McKay - Technical Writing • Jon Smid - Sensitivity Studies • Nicole White - Editing

Acknowledgements & Addresses

GSFC/NASA

Code 704: Systems Engineering Office / Code 923: Biospheric Sciences Branch / Code 925: Sensor Development and Characterization Branch / MODIS Characterization Support Team (MCST) / Goddard Space Flight Center, Greenbelt, MD 20771:

John Barker (925) Phone: 301-286-9498 / Email: JBarker@gsfcmail.nasa.gov or jbarker@highwire.gsfc.nasa.gov; Ken Brown (925) Phone: 301-286-3296 / Email: KBrown@gsfcmail.nasa.gov; Joann Harnden (925) Phone: 301-286-4133 / Email: jharnden@highwire.gsfc.nasa.gov; Brian Markham (923) Phone: 301-286-5240; Harry Montgomery(795 Phone: 301-286-3117; Steve Ungar (923) Phone: 301-286-4007 / Email: ungar@highwire.gsfc.nasa.gov or sungar@gsfcmail.nasa.gov

RDC

Research & Data Systems, Corp./7855 Walker Dr., Suite 460; Greenbelt, MD 20770/Phone: 982-3700 / FAX: 301-286-9200:

Paul Anuta Phone: 301-286-9412 / Email: panuta@highwire.gsfc.nasa.gov ,
Joan Baden Phone: 301-286-1378, Email: baden@highwire.gsfc.nasa.gov ,
Tom Bryant Phone: 301-286-6739, Email: baden@highwire.gsfc.nasa.gov ,
Ed Knight Phone: 301-286-2382, Email: eknight@highwire.gsfc.nasa.gov ,
Dan Knowles Jr. Phone: 301-286-1378,
Geir Kvaran , Al Mckay, & Jon Smid Phone: 301-982-3700.Email: baden@highwire.gsfc.nasa.gov,
Nicole White. Phone: 301-286-1378,