On-Board Calibration Algorithms

Harry Montgomery

28 September 1993
Pre-Launch On-Board Calibration (OBC)

• Transfer Ground Calibration to OBC
 • MODIS (All Bands)
 - Spectral
 - Spatial
 - Radiometric
 • On-Board Calibration
 SRCA
 - Spectral (Reflective Bands)
 - Radiometric (Reflective Bands)
 - Spatial (All Bands)
 SD/SDSM
 - Radiometric (Reflective Bands)
 Blackbody
 - Radiometric (Emissive Bands)
 Space View
 - Zero Radiance Level (All Bands)
EOS MODIS MISSION ELEMENTS
6 INSTRUMENTS
15 YEAR MISSION
6 CALIBRATION SOURCES

5 years 5 years 5 years

SRCA
Radiometric (VIS/NIR/SWIR)
Spectral (VIS/NIR/SWIR)
Spatial (All Bands)

V-Groove Blackbody
Radiometric (MWIR/LWIR)
DC Restore (All Bands)

Relative Calibration Sites
Non-Instrumented Sites

Instrumented "Vicarious" Sites

Lunar View Radiometric (VIS/NIR/SWIR Spatial)

Space View Radiometric (All Bands)

Sun
Data Sequence for One Scan (Mirror Side 1 or 2)

- PERFORM DC RESTORE
- EXECUTE COMMANDS
- FORMAT SCIENCE ENGINEERING DATA
- SOLAR DIFFUSER (BEGIN SIDE n SCAN)
- SRCA
- BLACK BODY VIEW
- SPACE VIEW
- START EARTH SCAN
- END OF EARTH SCAN
- NADIR
MODIS Spectral Radiometric Calibration Assembly (SRCA)
SRCA Processing

- ~5 Frames per Scan • ~800 Scans per Orbit
 (Assuming 20% Duty Cycle)

- One Lamp State at a Time

<table>
<thead>
<tr>
<th></th>
<th>TIME (min)</th>
<th>BAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiometric Calibration</td>
<td>17</td>
<td>Reflective</td>
</tr>
<tr>
<td>Spectral Characterization</td>
<td>75</td>
<td>Reflective</td>
</tr>
<tr>
<td>(Center Wavelength)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spatial Registration*</td>
<td>37</td>
<td>ALL</td>
</tr>
</tbody>
</table>

*Both Along Scan and Along Track

- Compute Radiometric Calibration, Center Wavelength or Spatial Registration
MODIS Solar Diffuser Stability Monitor

- 11 Detectors & Filters
- Integrating Sphere
- Entrance Port
- Three-Position Rotating Mirror
- 2% Screen Transmitting
- Solar Diffuser
- 8.5% Screen When In Use
- Sun

Solar Diffuser not shown when in use.
Solar Diffuser Processing

(~35 Frames per Scan)
(~30 Scans per Orbit)

• Analyze SDSM Data
• Obtain Degradation Constant for SD
• Correct SD Observations for BRDF and Degradation Effects
• Calculate Average SD Values
Check SD Stability: Analyze SDSM Data

SDSM Calculations:

\[Q_{SD}(\lambda, t) = R'(\lambda) K K(\theta) f(\lambda, \theta, \phi, \phi', t) \cos \theta S(\lambda) \]
\[Q_S(\lambda, t) = R'(\lambda) K S(\lambda) K(\theta) \]
\[K(\lambda) = \frac{Q_S(\lambda, t_0) f(\lambda, \theta, \phi, \phi', t_0) K K'(\theta) \cos \theta}{Q_{SD}(\lambda, t_0) K(\theta)} \]
\[f(\lambda, \theta, \phi, \phi', t) = \frac{K(\lambda) Q_{SD}(\lambda, t_1) K(\theta)}{Q_S(\lambda, t_1) K K'(\theta) \cos \theta} \]
\[C(\lambda, t_1) = \frac{f(\lambda, \theta_1, \phi_1, \phi'_1, t)}{f(\lambda, \theta_1, \phi_1, \phi'_1, t_0)} \]
\[<C(\lambda, t_1)> = \frac{1}{N} \sum_{i=1}^{N} C_i(\lambda, t_1) \]

Solar Diffuser Calculations:

\[L(\lambda) = <C(\lambda, t_1)> f(\lambda, \theta, \phi_1, \phi'_2, t_1) \]
\[<L(\lambda)> = \frac{1}{N} \sum_{i=1}^{N} L_i(\lambda) \]

- \(t_0, t_1 \) = Time Before, After Launch
- \(N \) = Number of Data Points
- \(Q_{SD} \) = Solar Diffuser Counts from SDSM minus offset
- \(Q_S \) = Sun Counts from SDSM minus offset
- \(R'(\lambda) \) = Spectral Responsivity of SDSM
- \(\text{offset} \) = offset from dark position of SDSM
- \(f(\lambda, \theta, \phi, \phi', t) \) = BRDF of Solar Diffuser
- \(S(\lambda) \) = Solar Spectral Irradiance
- \(K(\lambda) \) = Attenuation of SDSM sun-screen
- \(K' \) = 1 for no solar diffuser screen
- \(0.085 \) for solar diffuser screen
- \(K'(\theta) \) = obliquity factor for solar diffuser screen
- \(K(\theta) \) = obliquity factor for SDSM solar screen
- \(C(\lambda, t_1) \) = Degradation of SD panel
- \(<C(\lambda, t_1)> \) = Average Degradation Value
- \(L(\lambda) \) = Spectral Radiance
- \(<L(\lambda)> \) = Average Spectral Radiance

Calculate the MODIS SD Data

For all detectors for which the current solar diffuser mode will provide values within those detectors' dynamic ranges.

\[<Q> = \frac{1}{N} \sum_{i=1}^{N} Q_i \]

\[<Q> \] = Average Solar Diffuser Value for MODIS

\(N \) = Number of Solar Diffuser Values for MODIS

\(Q_i \) = \(i \)th Solar Diffuser Values for MODIS
Space View Processing

• 15 Frames per Scan
• Occurs Every Scan

• Compute Scan Average Over 15 Frames for Two Consecutive Scans. Interpolate Throughout Scan.

Black Body Processing

• 30 Frames per Scan
• Occurs Every Scan

• Correct each observation for gradient effects. Obtain effective temperature, radiance.

• Compute "Weighted" Average of all Observations for Calibration Every Scan for Two Consecutive Scans. Interpolate throughout Scan.
Emissive Band Calibration

\[V(L + L_0) = a_1(L + L_0) + \sum_{n=2}^{N} a_n(L + L_0)^n \]

Where:
- \(a_n \) = From Pre-Launch test; \(n = 2, N \)
- \(L_0 \) = Effective Radiance At Aperture during Space Look
- \(V_0 = V(L_0) \) = Space View Signal
- \(a_1 = \frac{V_B - \sum_{n=2}^{N} a_n(L_B + L_0)^n}{(L_B + L_0)} \)
- \(V_B \) = Blackbody Voltage
- \(L_B \) = Blackbody Radiance
Post-Launch On-Board Calibration

- Use OBC to calibrate MODIS.

- OBC will Degrade.
 - Need SD Characteristics (BRDF) With Age
 - Need Lamp Characteristics (Intensity versus Wavelength) With Age
 - Need "Best" Algorithm from Synthesis