MODIS VEGETATION INDICES

GLOBAL OBJECTIVE:

- Operational Monitoring of Earth's photosynthetic vegetation (phenologic and inter-annual)
- Precise and consistent, spatial and temporal comparisons of vegetation conditions
- Change detection
- Biome independent

Fig. 1. Three-week composite maps of North American normalized difference vegetation index measurements for April, June, August and October, 1982. The measurements are color-coded dependent on magnitude as displayed on the color bar in the center of the figure

Background Contamination

CHINA CERN SITES

8km AVHRR - Pathfinder

Temperate Grassland

MODIS VEGETATION INDICES

BIOPHYSICAL OBJECTIVE:

- LAI and FPAR
- Biome dependent
 - Canopy Architecture
 - Leaf Optics
 - Species Composition

LEVEL 2 VEGETATION INDEX

MNDVI =

NDVI $[1 + C_2H_2)] / [1 + C_1H_1],$ H₁ = L_s L_a L_v,

 $H_2 = 1/L_a$.

$$\begin{split} L_{s} &= 1 / [\rho_{nir} + \rho_{red}], \\ L_{a} &= C_{11} \rho_{red} - \rho_{blue} + C_{12}, \\ L_{v} &= 1 / [\rho_{nir} - \rho_{red}]. \end{split}$$

Enter Constinue Pati

 \odot

Physics of the Algorithm:

 $E_{soil} = E_{canopy} \exp(-k \text{ LAI})$ $T_{canopy} = \exp(-k \text{ LAI})$ $\rho_{canopy} = \rho_{veg.} (\gamma \text{ LAI}) + \rho_{soil} \exp(2k \text{ LAI})$

- Slope of a vegetation isoline is a function of LAI and the optical extinction properties of a canopy.

.

 $M_{LAI} = M_0 \exp \{ 2 (k_{red} - k_{nir}) LAI \}$

$$\epsilon_a = VI_p - VI,$$

N

$$\epsilon_{\rm f}$$
 (%) = 100 x (VI_p - VI) / (VI - VI's),

$$S/N = (VI - VI's) / (VI_p - VI),$$

$$VEN = (VI_p - VI) / \delta(LAI),$$

•

•

.

LEVEL 3 VEGETATION INDEX

COMPOSITING

GOAL:

- 1. Cloud-free Vegetation Product
- 2. Minimize Atmospheric Contamination
- 3. Near Nadir View Angles
- 4. Smallest Solar Zenith Angles

Figure 1. Nadir angle periodicity (top) and frequency distribution (bottom) for one 10-km man cell in eastern Kansas during April-September 1986

Vegetation Indices from AVHRR 123

NUMBER OF OBSERVATIONS

METHODS: 10-day Compositing

• Maximum Value Compositing

— selects maximum VI regardless of sun-sensor geometry

- Standardized Geometry
 - selects near nadir view angles and smallest solar zenith angle
 - utilize BRDF models
 - empirical
 - physical

-

- Hemispherical Spectral albedos
 - utilize BRDF models

Figure 1. Top of the atmosphere NDVI and SAVI responses of a Lambertian grassland canopy (40% green cover) at 9 view angles, 4 sun angles, and 3 atmospheres.

Figure 2. Top of the atmosphere NDVI and SAVI responses of an anisotropic grassland canopy (40% green cover) at 9 view angles, 4 sun angles, and 3 atmospheres.

EOS Mission Profile

Validation Approach:

- Establish relationships to physical parameters
- Use precursor sensors (MAS, ASAS, TM, SeaWifs, AVHRR) to test algorithm
- IFC's, MACs, Modis Test Sites (LTERs, GLCTS, IGBP GCTE sites) to develop validation

Pre - Launch Research Agenda:

- Test MNDVI for major land cover types
- Develop and evaluate global fields SeaWifs
- BRDF correction (nadir / view and sun angle)
- Evaluate impact of surface reflectance product inputs
- Evaluate impact of cloud mask product

CALIBRATION & VALIDATION EXAMPLE

- ASAS data of OTTER and Walnut Gulch experiments
 - 3-5m pixel size
 - Biophysical coupling
 - BRF strings
- TM data of OTTER and Walnut Gulch
 - MODIS-VIEW Simulation (250 & 500m pixels)
- MODIS VI comparisons over desert, grassland, shrubland, riparian, forest, and rainforest land cover types.

 $\overline{2}$

) J. L.V.

 \mathcal{D}

Ц

OTTER ASAS DATA

OTTER ASAS DATA

CALIBRATION & VALIDATION

- Current Activities
 - TM-ASAS analyses over HAPEX-Sahel
 - TM-MAS analyses over the Virginia LTER (SCAR)
 - Biophysical coupling
 - empirical
 - SAIL and Myneni canopy models
 - Atmosphere and background analyses
 - sun photometer network
 - field sampling
- Future Activities
 - Field experiments
 - BOREAS
 - SCAR
 - LAMBADA

.

E Å

Figure 1

, ,

