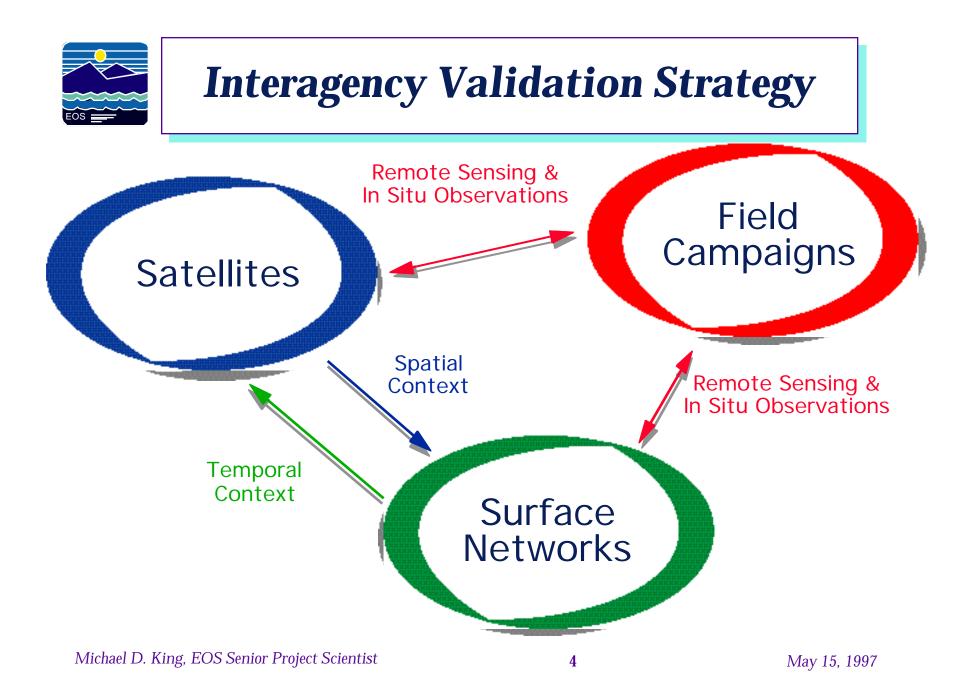


Project Science Office Update

- Biennial Review
- Data Products
 - MODIS variances with Data Product Handbook
 - Spatial resolution
- Miscellaneous
 - NRA response
 - EOS Science Implementation Plan


Biennial Review

- Purpose
 - Assess whether MTPE approach to planning and implementing programs to address its science themes are sound
 - » Does MTPE have effective processes for incorporating new scientific and technology advances?
 - » How well is MTPE positioning itself to engage in fruitful partnerships with commercial, interagency and international partners?
 - Are the recommendations of the Atmospheric Chemistry and EOSDIS review panels sound and implementable
 - » Fly EOS-Chemistry on common spacecraft
 - » Is EOSDIS architecture and customer base the right one?
 - Articulate and justify restoring the R&A funding to 1994 levels
 - Is the MTPE strategy for defining and implementing post-Chem 1 missions sound (just in time procurements, international, interagency, technology, etc.)

Research and Observations Strategy

- MTPE research priorities require a balance of:
 - Global Satellite Observations including the NASA/NOAA Pathfinder and other ongoing data analysis projects, the Earth Observing System (EOS) program, Earth System Science Pathfinders (ESSP) small research satellite missions, and multi-agency planning for the National Polar-orbiting Operational Environmental Satellite System (NPOESS)
 - Process Studies and Field Campaigns ground-based and airborne in situ and remote sensing measurements planned and implemented by the basic MTPE Science Discipline Programs under the Research and Analysis (R&A) Program
 - Modeling Studies including data assimilation, climate diagnostics, model improvements through organized community intercomparisons, observing system simulation experiments, and prediction/assessment runs

Interagency Validation Strategy

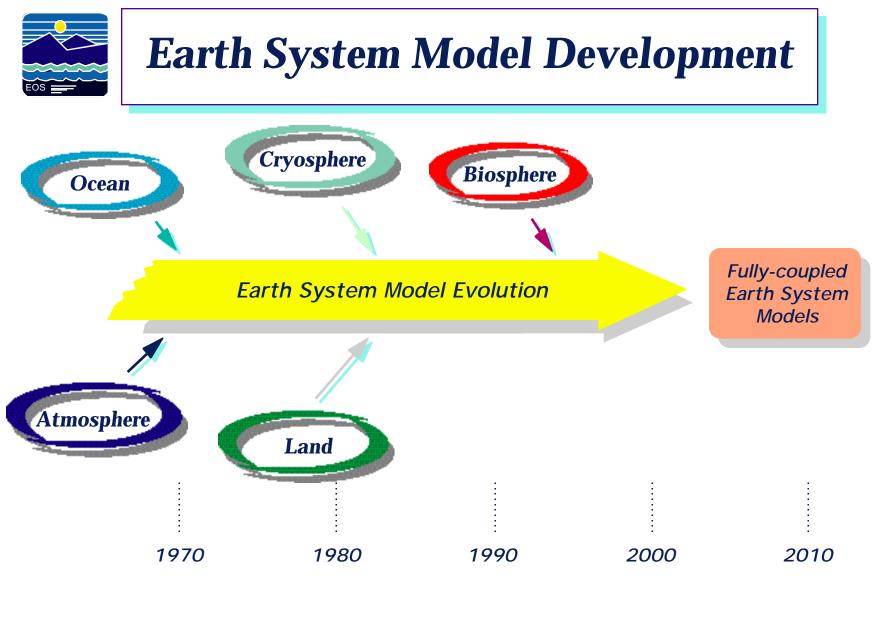
- Global Satellite Observations
 - Earth Observing System (EOS), Earth System Science Pathfinders (ESSP), Earth Probes, New Millennium Program (NMP), international and interagency spacecraft

Process Studies and Field Campaigns

- International and interagency focused field campaigns (e.g., FIRE, ASTEX, ASHOE, TOTE/VOTE, TRACE-A, SCAR, SASS, SHEBA, BOREAS, LBA)
- In situ and remote sensing observations, vertical profiles, validation of spaceborne observations (e.g., JGOFS, AMT, M-AERI)

Ground-based Observations

- Department of Energy Atmospheric Radiation Measurement (ARM) program at Southern Great Plains (SGP), Tropical Western Pacific (TWP) and North Slope Alaska (NSA)
- National Science Foundation Long-Term Ecological Research (LTER) sites,
 Antarctica (South Pole & McMurdo), JGOFS ships (R/V Nathanial B. Palmer)
- Department of Commerce NOAA CMDL network, meteorological networks, TOGA-TAO array, NIST calibration (round-robins, transfer radiometers, etc.)
- Cimel sun/sky radiometers (AERONET), Marine Optical Buoy (MOBY), and SIMBIOS


5

Airborne Science Program

- NASA Aircraft
 - Master schedules have been developed for NASA ER-2s, DC-8, and P-3B
 - » Research & Analysis (R&A) program for FY97-00
 - » EOS Validation plans for FY97-01 (AM-1, SAGE III, AMSR-E)
- Interagency aircraft planning
 - Department of Energy (DoE) Citation
 - National Center for Atmospheric Research (NCAR) C-130Q
- University aircraft facilities
 - University of Washington CV-580
 - » in situ cloud microphysics, tropospheric chemistry, aerosol properties, atmospheric lidar, and radiation
 - University of North Dakota Citation
 - » in situ cloud microphysics, especially upper tropospheric ice clouds
- Airborne Sensors
 - Airborne sensors supported by MTPE for the benefit of validation activities (e.g., MAS, MASTER, AirMISR, MATR, AVIRIS)

Calibration and characterization facilities at Ames and Goddard
 Michael D. King, EOS Senior Project Scientist
 6

Michael D. King, EOS Senior Project Scientist

7

May 15, 1997

Earth System Model Development

- Goal
 - Improve prediction of weather, climate (i.e., floods, droughts, etc.), and biological productivity on local and global scales, and from days to centuries
- General
 - Earth observations from space are used to develop models of various Earth system processes; these models are later coupled to produce Earth system models
 - Increased computer power is allowing many improvements in global change models (GCMs), including improved resolutions, faster run times, satellite date assimilation, and more complete treatment of coupling amongst atmosphere, ocean, land, biosphere, and cryosphere components
 - In the 1980s continuous global data sets from satellites became available for model development, model validation, and initialization
- Resolution
 - Horizontal and vertical resolutions have increased in many GCMs, some atmospheric GCMs now have horizontal resolutions of 2.5° and some ocean GCMs now being tested with stretched or rotated grid schemes have resolutions in the equatorial oceans as fine as ~0.5° in latitude

Earth System Model Development

- Atmosphere
 - Improvements being made in GCM cloud formulations should lead to improved understanding of the role of clouds and precipitation in global climate change
- Ocean
 - Global eddy-resolving ocean GCMs have been created and are reproducing features observed from satellite data sets, with salinity and momentum transport being important new considerations
- Land
 - Simple bucket soil moisture formulations are being replaced by more complex land surface process schemes, and up-scaling of physical hydrology models to basin scales
- Biosphere
 - GCMs are being enhanced by the incorporation of biosphere models with increasingly realistic treatments of water, energy, and carbon exchanges
- Cryosphere
 - Sea ice is being incorporated in several GCMs, with increased sophistication in both ice thermodynamics (through increasing the number of layers in the ice and overlying snow) and ice dynamics

Michael D. King, EOS Senior Project Scientist

9

Earth System Model Development

- Remote sensing and Earth system models
 - Model development depends on continuous (time and space) global observations of the state of the Earth system for parameterization, initialization, and validation
 - Remote sensing has the greatest potential for providing such data as sea surface temperature, snow cover, vegetation, Earth radiation budget, cloud cover and properties, precipitation, humidity, land surface temperature, ocean circulation, surface winds over the ocean, etc.
- Assessments
 - Major assessment activities comparing results from over 20 GCMs are helping identify strengths and weaknesses in various models

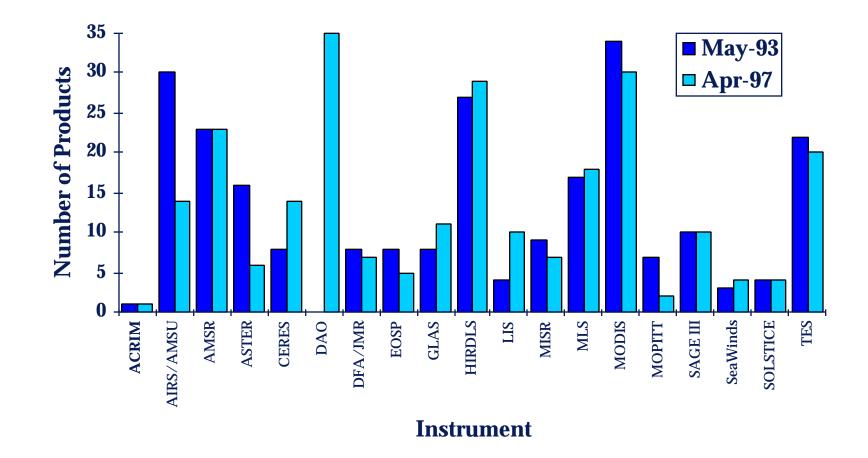
Measurements to Meet MTPE Scientific Priorities

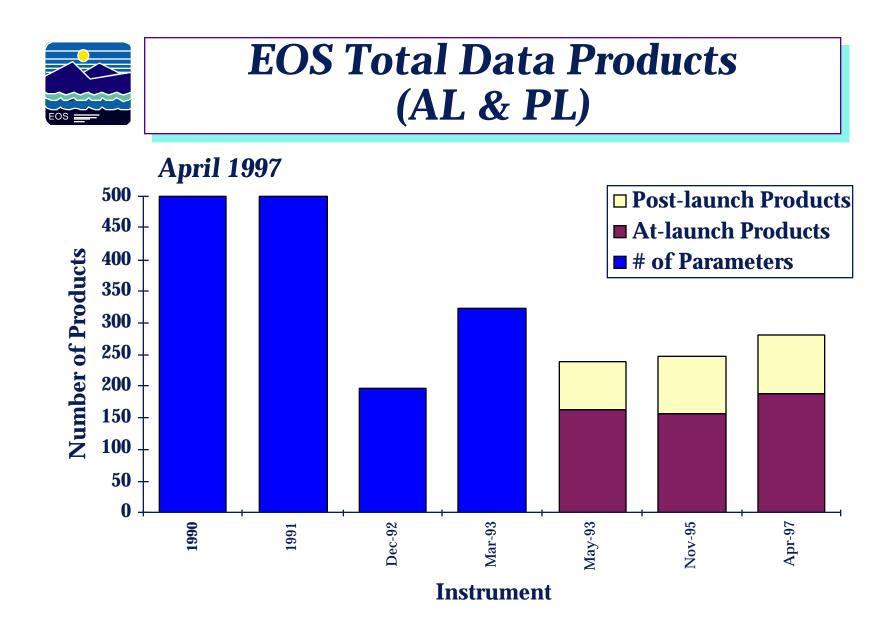
MTPE Science Research Plan Requirement	Seasonal-to- Interannual Climate Variability	Long-Term Climate Variability and Change	Atmospheric Ozone	Land Cover and Land Use Change	Natural Hazards
FORCING/FEEDBACK FACTORS					
Total Solar Irradiance	\sim	×	\bigcirc	\bigcirc	\bigcirc
Spectral Irradiance	\sim		×	$\widecheck{\bigcirc}$	$\widecheck{\bigcirc}$
Surface UV Irradiance	\sim	\sim	×	$\overline{\langle}$	\sim
Earth Radiation Budget	X	×	\bigcirc	\sim	\bigcirc
Global Cloudiness	×	×	\sim	\sim	\checkmark
OCEANS					
Surface Temperature	×	×	\bigcirc	\sim	\sim
Surface Wind Field	×	\sim	$\overline{\oslash}$	\oslash	×
Surface Topography	X	×	$\overline{\bigcirc}$	$\overline{\bigcirc}$	\bigcirc
Ocean Color	×××	X	$\widecheck{\bigcirc}$	X	Ŏ
Temperature Profile	X	×××	$\widecheck{\bigcirc}$	\bigcirc	Ŏ
Salinity Profile	\sim	X	\bigotimes	$\widecheck{\bigcirc}$	Ŏ
Coral Reef Attributes	, V	×	Ŏ	Ŏ	$\overline{\oslash}$
🗙 Prima	ary √ Secondary ⊘	Not Applicable	11	May	15, 1997

	Gl	0	ba	al	I	la						Se Dr	_	V	at	i	01	n	D	a	ta	a			
MTPE Science Research Plan Requirement FORCING/FEEDBACK FACTORS	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	
Total Solar Irradiance	N	I		N/X	[N/)	X/B			N	/B	N/U/B	U/	B/Q	U/B	U/B/H	H U/H		H/E		E/	/C
Spectral Irradiance								Q					Q		U	I/Q		U	U/Q	U					
Surface UV Irradiance							N								N/M		М			Y					
Earth Radiation Budget			N	1			в			B/O						В				Т		T/E		E	Ξ
Global Cloudiness													0								Т	/E		E	E
OCEANS:																									
Surface Temperature										0													E/O		
Surface Wind Field	S																					E			
Surface Topography	S									G				Ζ		F	P/Z			P/2	Z/G	J/Z/	G		J
Ocean Color					N														D	W/D)	W	I/E/D		
Temperature Profile																									
Salinity Profile																									
Coral Reef Attributes	E =	ERB EOS Geo	5		H = S J = J N = N	asor	n		0 =	-	ratio	onal (Pose		l	S =	Shu Sea: TRN		Bay		X : Y :	= SN	יסד י	MS		

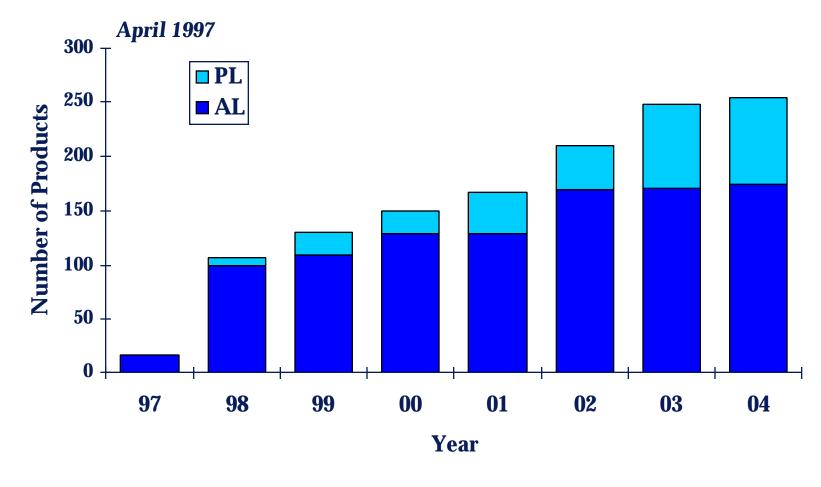
EOS Total Data Products

May 1993	At-launch	Post-launch	Total
Standard			
Routine	145	59	204
On-request	12	9	21
Software	5	9	14
April 1997			239
Standard			
Routine	168	68	236
On-request	3	2	5
Software	1	8	9
Validation	2	0	2
Research	6	15	21
Internal	8	1	9
			282
hael D. King, EOS Senior Project	Scientist	13	May 15, 1


EOS Standard Data Products by Level


April 1997

At-launch	Post-launch	Total
10	0	10
27	2	29
93	11	104
7	62	69
35	3	38
172	78	250
	10 27 93 7 35	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$



EOS Standard Data Products (AL & PL)

May 15, 1997

ATBD Statistics

		ATBDs	Validation Plans
	ACRIM	1	0
	AIRS	3	0
	AMSR	6	0
	ASTER	8	1
	CERES	10	1
	DAO	1	0
	LIS	1	1
	MISR		
	Land	1	0
	All Others	9	1
	MODIS		
	Level 1	2	1
	Atmosphere	6	1
	Land	9	1
	Ocean	11	1
	MOPITT	2	1
	SAGE III	9	1
	SeaWinds	1	0
	Total	80	10
hael D. King, EOS Sen	ior Project Scientist		18

Standard Data Products Resources Board

- Purpose
 - Establish a process to assess and manage change to the EOS data products list
 - Allocate data processing resources (MFLOPS) and storage space (GBytes) among science teams commensurate with available resources
- Requirements
 - Assess maturity of algorithm based primarily on ATBD review process
 - Evaluate impact of interdependencies when adding and deleting data products
 - Ensure that resource allocations are consistent with science priorities
 - Recommend "DAAC" assignment for routine data production
- Membership
 - Skip Reber, Chair
- Ghassem Asrar
- Yoram Kaufman
- U Domonrivon
- Bruce Barkstrom
- H. Ramapriyan
- David Glover

Standard Data Products: Outstanding Issues

- Accuracy of Data Products Database
 - Hughes ECS building to February 1996 baseline
 - 1997 Data Products Handbook differs in substantive ways

	February 1996	1997 Data Product	
	EOSDIS Baseline	Handbook	Discrepancies
ASTER	12	10	1 IN & 1 SP not shown
CERES	15	13	1 IN & 1 SP not shown
DAS	4	35	major changes
LIS	10	18	8 new products added
MISR	8	9	1 new product added
MODIS	42	41	2 new products, 3 dropped,
			IN products reclassified as
			standard
MOPITT	5	2	level-3 products not shown

IN = interim, **SP** = special

Michael D. King, EOS Senior Project Scientist

EOS Project Science Office

- NRA on correlative measurement program for EOS-wide validation received 340 letters of intent
- Six of ten Science Plan chapters received
 - Chapter 4: Radiation, Clouds, Water Vapor, and Precipitation (Hartmann)
 - Chapter 5: Oceanic Circulation, Productivity, and Exchange with the Atmosphere (Rothrock)
 - Chapter 6: Greenhouse Gases and Tropospheric Chemistry (Schimel)
 - Chapter 7: Land Ecosystems and Hydrology (Running, Sorooshian, Washburn)
 - Chapter 9: Ozone and Stratospheric Chemistry (Schoeberl)
 - Chapter 10: Volcanoes and Climate Effects of Aerosols (Hartmann & Mouginis-Mark)