(1) Evaluation of Chl a algorithms for SeaWiFS

The Evaluation data set

Expected characteristics of the Evaluation data set :

1) it should contain Remote-sensing reflectances (Rrs) and Normalized Waterleaving radiances (Lwn) at or close to the SeaWiFS visible wavelengths (a prerequisite for the semi-analytical algorithms);

2) it should have the *in situ* chlorophyll *a* concentrations associated with the stations from which Rrs were derived;

3) it should encompass the widest possible chlorophyll a concentration range;

4) it should not contain data used for the development of the algorithms under evaluation;

5) it should be the same for all algorithms under evaluation.

Data set	Provider/PI	Measurements	Data processing
BBOP	D. Siegel	in water	$\operatorname{Rrs} = \operatorname{Lu}(z)/\operatorname{Ed}(z) \ (z < 5 \ \mathrm{m})$
WOCE	J. Marra	in water	$\operatorname{Rrs} = \operatorname{Lu}(z)/\operatorname{Ed}(z) \ (z < 5 \ \mathrm{m})$
EQPAC	C. Davis	in water	$\operatorname{Rrs} = \operatorname{Lu}(z)/\operatorname{Ed}(z) \ (z < 5 \ \mathrm{m})$
NABE	C. Davis - C. Trees	in water	$\operatorname{Rrs} = \operatorname{Lu}(z)/\operatorname{Ed}(z) \ (z < 5 \ \mathrm{m})$
CARDER	K. Carder	above water	Lsky corrected Lu/Ed(0+)
CALCOFI	G. Mitchell	in water	Rrs = Lw/Ed(0-) (extrap.)
MOCE	D. Clark	in water	$\operatorname{Rrs} = \operatorname{Lw}/\operatorname{Ed}(0+)$ (extrap.)
NORTH SEA	R. Doerffer	above water	Lsky corrected Lu/Ed(0+) CaseII
CHESAP. BAY	L. Harding	in water	Rrs = Lw/Ed(0+) (extrap.) CaseII
CANADIAN ARCTIC	G. Cota	in water	$\operatorname{Rrs} = \operatorname{Lw}/\operatorname{Ed}(0+)$ (extrap.)
AMT	G. Moore	in water	$\operatorname{Rrs} = \operatorname{Lw}/\operatorname{Ed}(0+)$ (extrap.)

(2) Data sets in the global SeaBAM data set

Data set	n	f_chla	f_phaeo	h_chla	h_phaeo	Wavelengths (nm)								
BBOP92-93	72	72	72	72		410	441	488	520	565	665			
BBOP94-95	67	61	61	67		410	441	488	510	555	665			
WOCE	70	70				410	441	488	520	565	665			
EQPAC	126			126		410	441	488	520	550	683			
NABE (CHORS)	72			72		412	441	488	521	550	-			
NABE (NRL)	40			40		410	441	488	520	550	683			
CARDER	87	87				412	443	490	510	555	670			
CALCOFI	303	303	303			412	443	490	510	555	665			
MOCE1	8	8	0	8		412	443	490	510	555	-			
MOCE2	5	5	5	5		412	443	490	510	555	-			
North Sea	10			10		412	443	490	510	555	670			
Ches. Bay	9			9	9	412	443	490	510	555	671			
Can. Arctic 96	8	8	7			412	443	490	509	555	665			
AMT	42	42		33		412	443	490	510	555	-			

(3) Characteristics of the data in the final version of the SeaBAM global data set.

TOTAL	919	656	448	442	9

(4) Frequency distribution, cumulative frequency and statistics associated with the concentration of Chl a in the SeaBAM global dataset (upper left panel) and in the 11 subsets.

Wed May 21 15:29:26 1997

FIGURE 5

(6) Statistical and Graphical Criteria for Model Evaluation

<u>Statistical</u> Linear Regression Slope: Linear Regression Intercept: Bias: Coefficient of Determination (R ²): RMS: Negative estimates of C by model:	1 +- 0.01 0 +- 0.01 0 +- 0.01 >0.9 <0.185 None
<u>Graphical</u> Scatter:	Linear distribution Few outliers (model: <i>in situ</i> >5:1 or <1:5) No curvature in tails of distribution
Quantile-Quantile:	Linear distribution Data overlap the 1:1 line No distributional discontinuities
Histogram Log (model/in situ):	Mode centered around 0 Symmetrical distribution Most ratios near 0 (=1:1) Low Standard Deviation (<0.185) Skewness near 0
Relative Frequency:	Congruency in overall distribution Coincident Modes

	Algorithm	Type - Wavelengths
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ \end{array} $	Carder Siegel-Garver GPs* Clark 3-B* Aiken 21+23 Aiken 22+24 OCTS_C* OCTS_CP* Polder* CalCOFI 2-B L CalCOFI 2-B C CalCOFI 3-B* CalCOFI 4-B* Morel 1 Morel 2 Morel 3 Morel 3	Semi-ana 412, 443, 490, 555 Semi-ana all wavelengths Power - 443, 520, 550 Power, 443, 520, 550 Hyp.+Power - 490, 555 Hyp.+Power - 490, 555 Power - 520, 565, 490 Quad 443, 490, 520 Cubic - 443, 565 Power - 490, 555 Cubic - 490, 555 Quad 412, 443, 510, 555 Power - 490, 555 Power - 490, 555 Cubic - 443, 555 Cubic - 443, 555

(7) Algorithms evaluated during the SeaBAM Workshop

PowerPower lawCubic3rd order PolynomialQuad.2nd order PolynomialHyp.Hyperbolic functionSemi-ana.Semi-analytical

	(11) General s	tatistical results and ranks of th	e eva	aluated algo	rithms											
Rank	Algorithm	Type - Wavelengths	Ν	Intercept	Slope	Rsq	RMS1	Bias	int	slope	rsq	rms	bias	sum	non-lin.	Discont.
1	Morel 1	Power - 443, 555	919	0.038	0.975	0.917	0.179	0.052	1	4	5	1	2	13	*	
2	Morel 3	Cubic - 443, 555	919	0.04	0.97	0.915	0.183	0.058	2	5	6	2	3	18		
3	CalCOFI 2-B C	Cubic - 490, 555	919	0.072	0.98	0.918	0.19	0.083	5	3	4	3	7	22		
3	OCTS_C*	Power - 520, 565, 490	919	0.054	1.148	0.933	0.19	-0.03	3	14	1	3	1	22	*	
5	Morel 2	Power - 490, 555	919	0.081	1.037	0.915	0.19	0.06	8	6	6	3	4	27		
5	CalCOFI 2-B L	Power - 490, 555	919	0.074	0.991	0.915	0.192	0.079	7	2	6	6	6	27	*	
7	CalCOFI 3-B*	Quad 490, 510, 555	919	0.062	0.939	0.908	0.205	0.097	4	8	10	8	8	38		
8	Morel 4	Cubic - 490, 555	919	0.102	1.059	0.907	0.204	0.069	10	7	11	7	5	40		
9	GPs*	Power - 443, 520, 550	919	-0.239	1.004	0.923	0.292	-0.241	15	1	2	12	14	44		*
10	CalCOFI 4-B*	Quad 412, 443, 510, 555	919	0.073	0.934	0.9	0.218	0.11	6	9	13	9	10	47		
11	Polder*	Cubic - 443, 565	919	0.215	1.19	0.921	0.241	0.107	14	15	3	10	9	51		
12	Carder	Semi-ana 412, 443, 490, 555	919	-0.128	1.073	0.872	0.284	-0.169	12	10	15	11	13	61		
13	Aiken 21+23	Hyp.+Power - 490, 555	877	-0.094	1.083	0.774	0.33	-0.139	9	11	17	14	11	62	*	*
14	Aiken 22+24	Hyp.+Power - 490, 555	877	-0.12	1.118	0.787	0.339	-0.168	11	13	16	15	12	67	*	*
15	Clark 3-B*	Power, 443, 520, 550	919	-0.306	0.913	0.905	0.323	-0.267	16	12	12	13	15	68		
16	Siegel-Garver	Semi-ana all wavelengths	919	0.141	0.776	0.896	0.345	0.269	13	16	14	16	16	75		
17	OCTS_CP*	Quad 443, 490, 520	919	-0.345	1.75	0.913	0.842	-0.68	17	17	9	17	17	77	*	
	Power	Power law														
	Cubic	3rd order Polynomial														
	Quad.	2nd order Polynomial														
	Hyp.	Hyperbolic function														
	Semi-ana.	Semi-analytical														
	MPC	Modified Cubic Polynomial														

