

Linearity/Non-Linearity

SIS(100) investigations Raw Data examples and outliers fitting ranges residuals

Linearity Introduction

- Several bands showing non-linear response at low radiances
- Problem: no clearly identified mechanism
 - Optics, Si detectors are usually very linear
 - electronics are measured linear to 8 bits with Ecal
 - ramp data not yet examined
 - ADCs 16 bit data gives mixed results
 - Possible mechanism in ROICs
- Request from August Workshop that we re-examine linearity of SIS(100) calibration
 - SBRS stands behind linearity of SIS(100) output and calibration
 - Landsat data *may* indicate small nonlinearity in calibration

- Fitting over range of 0.3Ltyp to 0.9Lmax
 - may wish to switch to 0 to 0.9Lmax
 - however, there are often only one or two additional data points
 - Spec. Ltyp is very close to low end of dynamic range, which was set by Lmax requirements.
 - feedback appreciated
- Rejecting obvious outliers
 - cause not yet identified
- First cut at residuals indicates some possible improvement in going to non-linear algorithm

SIS(100) Investigations

- SIS(100) calibrated at multiple bulb levels
 - MCST has not reviewed January 1997 calibration of SIS(100)
 - Calibration transfer spectrometer linear to 0.5%
 - Uncertainties provided to date are only at one level and only as a percentage
 - need to know how uncertainties scale with radiance before final curve fit coefficients can be determined
 - Plots against lamp configurations indicate non-linearity not limited to one configuration or set of bulbs
- Landsat, using a transfer radiometer, observes small non-linearities in SBRS calibration values
 - *But* we don't overlap on all bulb levels
 - *And* we see much more non-linearity than Landsat attributes to the sphere

Relative residuals in Linear fittings (0.3 Ltyp to 0.9 Lmax) as a function of SIS lamp configurations for all reflective bands, middle channel, sample 1, UAID 1504

SIS(100) lamp configuration number

Bulb Configurations for RC01 Tests

Rep Back

Landsat look at SIS(100) linearity

- *Preliminary* results from John Barker
- Landsat had their transfer radiometer (LXR) look at the SIS(100) at the same time Landsat was
- Residuals to a linear fit, when using SBRS values for the calibration of the SIS(100) are ~1% and show some non-linear behavior
- Residuals to a linear fit, when using the simultaneous LXR values to redo the calibration of the SIS(100) are ~0.2% and are very linear

3.2-8

Example of Raw Data with outliers

3. 2-10

Fitting Range Example Band 26 Channel 5 Cold Plateau

20

Residuals indicate some improvement in going to non-linear algorithm for some bands

- Caveats:
 - Still a work in progress
 - Following residuals plotted vs. dn instead of DN*
 - Following residuals do not incorporate SIS(100) uncertainty when computing fit
 - %Residual does not necessarily translate directly into %uncertainty in product
- Possible improvement in bands 1, 2, 3, 5, 6, 12, 16, 18, 26.

Relative residual of DN_vs_L linear fitting in VIS/NIR bands (0.3Ltyp to 0.9Lmax). UAID 1504, primary, nominal plateau, sample 1

Relative residual of DN_vs_L linear fitting in SWIR bands (0.3Ltyp to 0.9Lmax). UAID 1504, primary, nominal plateau, sample 1

Relative residual of DN_vs_L quadratic fitting in VIS/NIR bands (0.3Ltyp to 0.9Lmax). UAID 1504, primary, nominal plateau, sample 1

Relative residual of DN_vs_L quadratic fitting in SWIR bands (0.3Ltyp to 0.9Lmax). UAID 1504, primary, nominal plateau, sample 1

Relative residuals in L from linear and quadratic fittings at 0.3Ltyp, Ltyp and 0.9Lmax

Sheet2 Chart 1

Sheet2 Chart1

Relative residuals in L from linear and quadratic fittings at 0.3Ltyp, Ltyp and 0.9Lmax

14 . EL_0.3Ltyp ■Q_0.3Ltyp ⊠L_Ltyp 12 ,4 Q_Ltyp BL_0.9Lmax ⊠Q_0.9Lmax Lm-Lf(n=1,2) / Lf(n=1,2) *100 ((%) 19 8 6 4 2 **HARMAN** 0 936 748 858 869 905 940 645 667 678 678 667 17 19 14L 14H 15 2 16 18 13H band 13L 1 Band center λ in nm (1,13,13H,14,14H,15,2,16,17,18,19) in NIR FP 3.2-24 For each band, listed in order: L_0.3Ltyp, Q_0.3Ltyp, L_Ltyp, Q_Ltyp, L_0.9Lmax, Q_0.9Lmax

Relative residuals in L from linear and quadratic fittings at 0.3Ltyp, Ltyp and 0.9Lmax

Relative residuals in L from linear and quadratic fittings at 0.3Ltyp, Ltyp and 0.9Lmax

Sheet2 Chart 2

Sheet2 Chart 4

Relative residuals in L from linear and quadratic fittings at 0.3Ltyp, Ltyp and 0.9Lmax