June 1998

MODIS sensing of aerosol radiative forcing of climate Example of Data Structure And Collaboration With Modelers and what is waiting for us behind the algorithm horizon Yoram Kaufman

NASA/GSFC Atmospheric Scientist and EOS-AM Project Scientist {Kaufman @climate.gsfc.nasa.gov}

Why do we care ? Biggest uncertainty in radiative forcing of climate in the 160 years of climate change research

How MODIS can address the indirect forcing ?

How MODIS can address the direct forcing ?

Lessons learned: Science done on the daily level 3 data set Forming an alliance: <u>satellites - ground network - models</u>

How MODIS can address the indirect forcing ?

- MODIS: from single photons to 0.25-1 km analysis: smoke, clouds (T, R_c, c) and water vapor
- Summary (through level 2) to daily level 3 data
- Statistical display of the interactions between the parameters in a daily 1°x1° grid scale
- The role of models ingest MODIS information and generate the anticipated answer serve as a crude method to extrapolate MODIS accurate measurements

How MODIS can address the direct forcing ?

The unprecedented power behind the spectral information: Resolve spectrally the surface and aerosol radiative forcing

Scatter plot between the radiative flux at 0.4-0.7 μ m reflected from the surface, and estimated at nadir from the 1.65 and 2.1 μ m channels, vs. the actual flux at nadir. The std in the error in F(0.4-0.7 μ m) is 4.3 w/m². The optical thickness was derived from the AVIRIS data as 0.09±0.07.

Scatter plot of the smoke aerosol contribution to the flux at 0.4-0.7 µm escaping to space, measured in several locations in Brazil and the smoke optical thickness.

June 1998

Lessons learned:

Science done on the daily level 3 data set - summary of parameters and the processes that govern the interaction between them:

The ability of water vapor to <u>control</u> the influence of smoke on clouds.

The direct effect, the indirect effect and the <u>mixed effect</u> - the subpixel clouds and inter-cloud, cloud edge aerosol - models and field experiments have a big problem with that

The effect of this "soup" on radiation

Forming an alliance: satellites - ground network - models

MODIS monitors daily the aerosol main parameters Ground based observations supplement missing information Trajectory mass balance models inter/extrapolate the results.