

## MODIS Atmosphere Data Products and Status

Michael D. King

EOS Senior Project Scientist NASA Goddard Space Flight Center

#### Outline

- **D** MODIS atmosphere data products
- □ Physical principles behind the remote sensing of selected parameters
- □ Surface bidirectional reflectance function
  - Examples of recent datasets obtained in the Arctic
  - Progress in analysis of all acquired datasets



# **MODIS Atmosphere Products**

- **Cloud mask for distinguishing clear sky from clouds**
- **Cloud radiative and microphysical properties** 
  - Cloud top pressure, temperature, and effective emissivity
  - Cloud optical thickness, thermodynamic phase, and effective radius
  - Thin cirrus reflectance in the visible
- □ Aerosol optical properties
  - Optical thickness over the land and ocean
  - Size distribution (parameters) over the ocean
- □ Atmospheric moisture and temperature gradients
- **Column water vapor amount**
- □ Gridded time-averaged (level-3) atmosphere product
  - Daily  $(1^{\circ} \times 1^{\circ})$
  - 8-day ( $1^{\circ} \times 1^{\circ}$ )
  - Monthly  $(1^{\circ} \times 1^{\circ})$
  - Mean, standard deviation, marginal probability density function, joint probability density functions

Michael D. King, EOS Senior Project Scientist

December 16, 1998



# Cloud Mask

- □ Some cloud types (viz., cirrus, low stratus, and small cumulus) are difficult to detect using visible & infrared thresholds alone
- □ MODIS cloud mask will use multispectral imagery to indicate whether the scene is clear, cloudy, or affected by shadows
- **Cloud mask is input to rest of atmosphere, land, and ocean algorithms**
- □ Mask will be generated at 250 m and 1 km resolutions
- Mask will use, for the first time, 17 spectral bands ranging from 0.55 -13.93 μm (including new 1.38 μm band)
- □ Algorithm based on radiance thresholds in the infrared, and reflectance thresholds in the visible and near-infrared

|                                 | Tested  |           | Total Tests |           |
|---------------------------------|---------|-----------|-------------|-----------|
|                                 | Daytime | Nighttime | Daytime     | Nighttime |
| Ocean                           | 9       | 6         | 12          | 7         |
| Land                            | 6       | 4         | 9           | 5         |
| Snow/Ice                        | 4       | 4         | 6           | 4         |
| Coastline                       | 6       | 3         | 9           | 4         |
| Desert                          | 1       | 4         | 7           | 6         |
| ng EOS Soniar Praiact Scientist |         |           | 2           |           |

□ Mask uses different spectral tests for 10 different processing paths

Michael D. King, EOS Senior Project Scientist

December 16, 1998





# **Cloud Properties**

- **Twelve MODIS bands will be utilized to derive cloud properties** 
  - Visible and near-infrared bands
    - » daytime retrievals of cloud optical thickness and effective radius
    - » 1.6 µm band will be used to derive thermodynamic phase of clouds during the daytime (post-launch)
  - Thermal infrared bands
    - » determination of cloud top properties, including cloud top altitude, cloud top temperature, and thermodynamic phase
    - \* thermal band at 11.03  $\mu m$  will be used to make thermal emission corrections to the 3.75  $\mu m$  band



## Retrieval of $\tau_c$ and $r_e$

- The reflection function of a nonabsorbing band (e.g., 0.66 μm) is primarily a function of optical thickness
- The reflection function of a nearinfrared absorbing band (e.g., 2.14 μm) is primarily a function of effective radius
  - clouds with small drops (or ice crystals) reflect more than those with large particles
- For optically thick clouds, there is a near orthogonality in the retrieval of τ<sub>c</sub> and r<sub>e</sub> using a visible and near-infrared band





# Scattering Phase Function: Ice Cloud Model





# Weighting Functions for CO<sub>2</sub> Slicing

- **CO**<sub>2</sub> slicing method
  - ratio of cloud forcing at two near-by wavelengths
  - assumes the emissivity at each wavelength is same, and cancels out in ratio of two bands
- □ The more absorbing the band, the more sensitive it is to high clouds
  - technique the most accurate for high and middle clouds
- MODIS will be the first sensor to have CO<sub>2</sub> slicing bands at high spatial resolution







# Aerosol Properties

- □ Eight MODIS bands will be utilized to derive aerosol properties
  - 0.47, 0.55, 0.65, 0.86, 1.24, 1.64, 2.13, and 3.75  $\mu m$
  - Ocean
    - » reflectance contrast between cloud-free atmosphere and ocean reflectance (dark)
    - » aerosol optical thickness (0.47-2.13 μm)
    - » size distribution characteristics (ratio between the assumed two log-normal modes, and the mean size of each mode)
  - Land
    - » dense dark vegetation and semi-arid regions determined where aerosol is most transparent (2.13 and 3.75 µm)
    - \* contrast between Earth-atmosphere reflectance and that for dense dark vegetation surface (0.47 and 0.66  $\mu m)$
    - » enhanced reflectance and reduced contrast over bright surfaces (post-launch)
    - $\, \ast \,$  aerosol optical thickness (0.47 and 0.66  $\mu m)$



### **Aerosol Properties**





## **Aerosol Properties**



Michael D. King, EOS Senior Project Scientist

11

December 16, 1998



#### Aerosol Effects on Reflected Solar Radiation over Land

Biomass burning Cuiabá, Brazil (August 25, 1995)













# Column Water Vapor Amount

- Three near-infrared bands will be used for column water vapor over reflecting surfaces (land) during the daytime
  - 0.905, 0.936, and 0.94  $\mu m$
- Reference (nonabsorbing) bands will be compared to water vapor absorbing bands
  - 0.865 and 1.24 μm
- **Uncertainties** 
  - 0.01 error in transmittance translates into a 2.5 % error in precipitable water
- Four thermal infrared bands will be used to derive total column water vapor under clear sky conditions using sounding techniques
  - 6.72, 7.33, 11.03, and 12.02  $\mu m$







Michael D. King, EOS Senior Project Scientist

December 16, 1998



## June 1999 AERONET (Aerosol Robotic Network)

- □ Automatic recording and transmitting Sun/Sky Photometers
- □ Data Base: Aerosol optical thickness, size distribution, phase function & precipitable water
- □ Collaborative: NASA instruments/sites and centralized calibration & database Non-NASA – instruments/sites





# **MODIS Atmosphere Status**

- □ MODIS Software
  - All PGEs have been delivered and accepted, with the exception of the level-3 'weekly' product
    - » This weekly product is a new addition, but is virtually identical with the monthly product expected in January 1999
- **Documentation** 
  - All 6 ATBDs developed by the MODIS atmosphere group have been updated and delivered to the EOS Project Science Office
  - Validation Plan currently being updated to include the following new features
    - » Input from investigations selected through the validation NRA
    - » Recent plans for SAFARI 2000 field campaign in southern Africa in August-September 2000
    - » Extended planning through 2004 (current plan ends at December 2000)
    - » Updated launch status of AM-1 and PM-1



# **Cloud Absorption Radiometer**

- **Goddard Space Flight Center** 
  - developed in 1982-1983
- □ University of Washington
  - integrated & flown in 1984 (B-23)
  - principal data from 1987-97 (C-131A)
  - flights after 1998 (CV-580)
- □ Sensor Characteristics
  - 13 spectral bands ranging from 0.30 to 2.29  $\mu m$
  - scan ±95° from horizon on righthand side of aircraft
  - field of view 17.5 mrad (1°)
  - scan rate 1.67 Hz (100 rpm)
  - data system 8 channels @ 10 bit
  - 395 pixels in scan line
  - 4% reflectance calibration accuracy



December 16, 1998



## Bidirectional Reflectance Measurements

- □ Roll: ~20°
- □ Time: ~2 min
- □ Speed: ~80 m s<sup>-1</sup>
- □ Height: ~600 m
- **Diameter:** ~3 km
- **Resolution** 
  - 10 m (nadir)
  - $-270 \text{ m} (\theta = 80^{\circ})$
- **Channels** 
  - 7 continuously sampled:
    0.30 (0.75), 0.47 (0.51), 0.67,
    0.87, 1.04, 1.22, and 1.27 μm
  - 2 filter wheel channels used for BRDF measurements (1.64 & 2.20 μm)









# Summary

□ Surface bidirectional reflectance measurements acquired under the following conditions

- Cerrado and dense forest (Brazil)
- Dense smoke layers over forest (Brazil)
- Snow over tundra and open tundra (Alaska)
- Fast, first year, and multi-year sea ice (Alaska)
- Ocean with sun glint (Persian Gulf, Atlantic Ocean, Strait of Juan de Fuca)
- Great dismal swamp (Virginia)
- Desert (Saudi Arabia)
- Oil Fire Smoke (Kuwait)
- Water and ice clouds (various)