MODIS SST retrievals algorithm derivation, error budget and plans for validation

Peter J. Minnett, Otis B. Brown

and

Richard Sikorski, Ajoy Kumar, Kay Kilpatrick, Albin Zavody

December 15, 1998

Introduction

- Radiative transfer simulations for pre-launch SST algorithm derivation
- Instrumental uncertainties and SST error budget
- M-AERI measurements for SST retrieval validation

Radiative transfer simulations

Uses an accurate RTE model with representative sets of atmospheric conditions to predict MODIS band radiances (or T_b s). These are used to derive the SST retrieval algorithm.

Pros:

- •Available pre-launch
- •Permits numerical experimentation
- Provides better understanding of physics involved

Radiative transfer simulations (Con't.)

Cons:

- Requires excellent RTE model
- Requires excellent instrument characterization
- Requires representative environmental conditions

Track record of RTE model

- Line-by-line radiative transfer model developed at RAL (UK) for ATSR Pre-Launch algorithm
- Includes the latest water vapor continuum model (Clough *et al.*)
- Permits realistic aerosol distributions and properties
- Used in many refereed publications in the last decade.

MODIS simulations:

- 1200 quality-controlled radiosondes
- 5 zenith angles
- 5 atmosphere-surface temperature differences
- generates a database of 30000 brightness temperatures in each of MODIS bands 31,32 and 20,22,23.
- robust regression to provide coefficients for retrieval algorithm

Radiosondes

ATBD-reviewed SST retrieval algorithm:

Based on Miami Pathfinder AVHRR SST algorithm (11,12µ m bands: 31,32)

 $modis_sst = c_1 + (c_2 * T_{31}) + (c_3 * T_{3132} * T_{sfc}) + (c_4 * secterm)$ secterm = (secant (θ) - 1) * T₃₁₃₂

 T_{31} is the band 31 brightness temperature (BT). T_{3132} is (Band31 – Band32) BT difference. T_{sfc} is an estimate of the surface temperature. θ is satellite zenith angle.

ATBD-reviewed SST retrieval algorithm:

	At-Launch Coefficients	
	$T_{_{30}}$ - $T_{_{31}} <= 0.7$	$T_{30} - T_{31} > 0.7$
C ₁	1.228552	1.692521
C ₂	0.9576555	0.9558419
C ₃	0.1182196	0.0873754
	1.774631	1.199584

MODIS simulations:

- for ATBD algorithm, residual SST uncertainty, caused by clear-sky atmospheric variability = 0.337K at nadir; increases with increasing atmospheric path length.
- For MWIR algorithm, clear-sky atmospheric variability = **0.247K** at nadir, but has the potential for some reduction.

SST Retrieval Errors–Atmospheric

SST= -4.43 + 1.83 X Ch 22 - 0.804 X Ch23 + Season Season = -.222 X cos(2X3.14XJulian/365) - 0.0643

RMS = .247

SST Retrieval Errors–Atmospheric

SST= -4.43 + 1.83 X Ch 22 - 0.804 X Ch23 + Season Season = -.222 X cos(2X3.14XJulian/365) - 0.0643

RMS = .247

MODIS Error budget

Contains major component specific to MODIS design:

Source of uncertainty	MODIS (Bands 31 and 32; Ltyp)	AVHRR 11,12 μm channels	ATSR 11,12 μm channels
Scan mirror emissivity	>0.25K, occurs both in earth view and space view for in- flight calibration	N/A - constant angle of incidence	
Temperature of BB	<0.1K	?	<0.03K
Emissivity of BB	>0.995	?	>0.999
ΝΕΔΤ	0.03 - 0.06K	0.05K (?)	0.02-0.04K

MODIS Prelaunch calibration means we know more about the instrumental characteristics than for the AVHRR.

SST retrieval errors

Has components from instrument, atmosphere and sea-surface (0.05K).

	Uncorrelated		Correlated	
	Nadir	45° zenith angle	Nadir	45° zenith angle
Current instrumental uncertainties	1.777	2.133	0.509	0.605
If rvs uncertainties reduced to 50%	1.038	1.256	0.397	0.526
If rvs uncertainties reduced to 10%	0.641	0.802	0.359	0.493

Does not include:

- Band 31-32 cross-talk
- Residual cloud effects
- Aerosol effects

SST uncertainties - MODIS, AVHRR, ATSR

	Uncorrelated		Correlated	
	Nadir	45° zenith angle	Nadir	45° zenith angle
Current instrumental uncertainties	1.777	2.133	0.509	0.605
If rvs uncertainties reduced to 50%	1.038	1.256	0.397	0.526
If rvs uncertainties reduced to 10%	0.641	0.802	0.359	0.493

AVHRR: 0.2-0.5K - algorithms derived from buoy matchups

ATSR: <0.3K - algorithms derived from RTE modeling (improvement expect with reprocessing using an aerosol-robust algorithm)

SST Validation

This is not in any form or fashion a 'vicarious calibration' of the MODIS infrared channels.

- To provide confidence in the MODIS SST product
- To confirm the atmospheric correction algorithm is functioning properly, identify situations where breakdown occurs, and learn how to improve the algorithm.
- Compare like-with-like *i.e.* infrared emission at the sea-surface
- Marine-Atmosphere Emitted Radiance Interferometer

Temperature Gradients at the Air-Sea Interface

Processes at the Air-Sea Interface

Courtesy Peter Schluessel, University of Munich

M-AERI on NOAA S Ronald H. Brown

M-AERI on NOAA S Ronald H. Brown

Track of R/V Roger Revelle

M-AERI Skin SST comparisons

R/V Roger Revelle section, Hawaii to New Zealand

55° incidence angle, $\lambda = 7.7 \ \mu m$

M-AERI 01 data interpolated to times of M-AERI 02 measurements

24 h data segments

 $\Delta_{\rm m}$ T = Skin SST (M-AERI 02 – M-AERI 01)

Dates - UTCNMean $\Delta_m T/K$ St.dev. $\Delta_m T/K$ October 1-108900.0050.077

M–AERI Calibration with NIST Black Body Target

Wind Speed Dependence of Skin Effect

Provide and the local Relation of the start of the start

Hawaii–New Zealand Section

Summary

- At launch algorithm in place. Expected uncertainty in SST caused by atmospheric variability ~0.33K.
- Bands 20,22,23 algorithms have smaller uncertainties, but are limited to night time use.
- Unless uncertainties in RVS for scan mirror can be significantly reduced, MODIS SST retrievals will not meet Level 1 Scientific Requirements and are unlikely to improve on AVHRR retrievals.

Summary (Continued)

- Unknown uncertainties introduced into SST by absence of system-level determination of band 31 and 32 relative spectral responses, and cross talk.
- Contamination of SST fields by aerosols likely to be a concern, but with MODIS we have the potential for better diagnostics than AVHRR or ATSR.

M–AERI Optical Bench

M–AERI on Pierre Radisson

M-AERI Front End

Shipboard Assembly of M-AERI

