Cloud Retrievals in the Arctic – A Few Preliminary Results for Liquid Water Clouds from FIRE/ACE

or

The Trouble with Sea Ice

S. Platnick, UMBC and NASA/GSFC M. D. King, NASA/GSFC G. T. Arnold, SM&A Corporation

> MODIS Science Team Meeting College Park, MD 16 December 1998

Outline:

- The FIRE/ACE experiment
- Liquid water cloud retrievals (τ, r_e) over ice/snow surfaces
- Snow/ice albedo and reflectance measurements in the Arctic
- Example MODIS Airborne Simulator (MAS) retrievals from FIRE/ACE

FIRE/ACE

First ISCCP (Internat. Satellite Cloud Climatology Project) Regional Experiment / Arctic Cloud Experiment

Study radiative effects of clouds in vicinity of:

Barrow AK
Beaufort and Chuckchi seas
Ice Station SHEBA (Surface HEat Budget of Arctic ocean) – research vessel adrift in pack ice

Platforms:

Remote Sensing:

NASA ER-2 (MAS, AMPR, HIS, ... – PM-1 like)

In Situ:

University of Washington CV-580, NCAR C-130Q

Surface:

SHEBA (NSF, ONR): radiation fluxes, radar, microwave radiometer, lidar, ...

ARM (DOE, Atmospheric Radiation Measurement program) – Barrow AK: similar to SHEBA

Usual Solar Reflectance Retrieval Approach

one non-absorbing band (0.67, 0.86, $1.2 \mu m$)

 $R \bullet R(\tau)$

+

one absorbing band (1.6, 2.2, 3.7 µm)

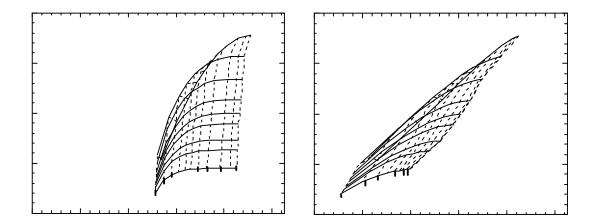
droplet absorption = $1 - \overline{\omega}_0 \sim r_e \implies R = R(\tau, r_e)$

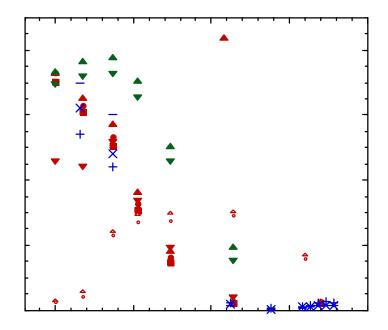
 \Rightarrow simultaneous retrievals of cloud optical thickness (τ) and effective radius (r_e)

To minimize retrieval model error due to sea-ice surface albedo, A_{sfc} :

Need:

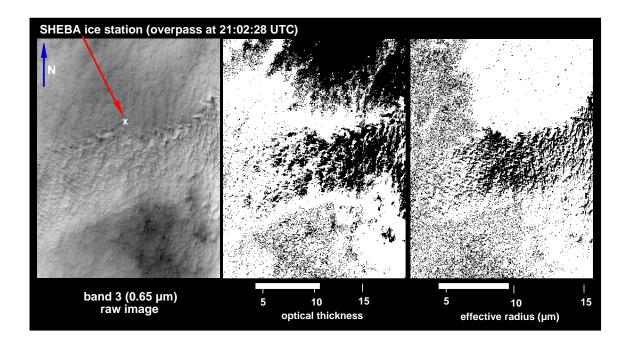
- $A_{\rm sfc}$ has to be known temporally, spatially
- Variability (small scale) in $A_{\rm sfc}$ should be small


Bonus:


For regions containing both sea ice and open water, difficult to obtain high resolution surface information (other algorithms, ancillary data, etc.) when clouds are present \Rightarrow

• Desire difference in A_{sfc} between sea ice and open water to be small

Possible alternative – use the 1.6µm band as a surrogate for the non-absorbing band in the retrieval?

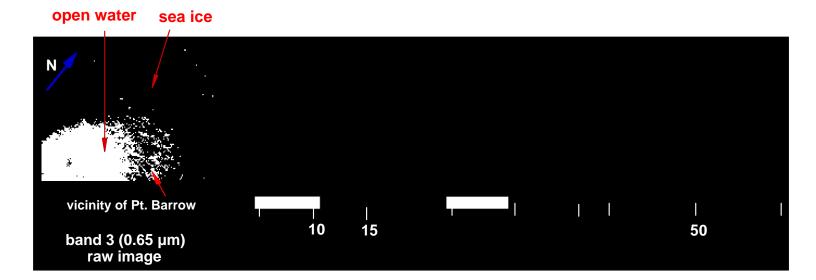

Solution Space for Cloud Retrievals using either the 0.67 and 1.6 µm bands in conjunction with a 2.1 µm band

Summary of CAR spectral albedo measurements from two previous Arctic field experiments (ARMCAS and LEADEX). Also shown are selected MAS bidirectional reflectance observations from 29 May 1998 during FIRE/ACE.

FIRE/ACE cloud retrieval (using MAS bands 10 & 20) 3 June 98

Cloud retrieval for a mid level stratus cloud overlying sea ice on 3 June 1998 near the SHEBA Ice Station during FIRE-ACE. Cloud tops were at about 3.3 km.

3 June 1998


MAS retrieval summary and comparison with	
UW CV-580 in situ measurements	

Parameter	MAS retrievals [*] (pixel average, standard deviation)	UW CV-580 (profile)
τ	9.3	10.7 ¹
$\sigma_{ au}$	0.7	
r _e (μm)	7.7	8-9 ²
σ_{re}	0.7	
$LWP (gm^{-2})$	48	43 ³
$\sigma_{\!\scriptscriptstyle LWP}$	5.4	

^{*}using 1.6 µm and 2.1 µm MAS bands

¹ g-meter probe, Gerber Scientific (courtesy H. Gerber)
² FSSP, expected retrieval range with adiabatic vertical profile
³ PVM (w/calibration from H. Gerber)

FIRE/ACE cloud retrieval (using MAS bands 10 & 20) 6 June 1998

Cloud retrieval for a boundary layer stratus cloud overlying both bright sea ice surface and dark open water on 6 June 1998 just North of Barrow, AK during FIRE-ACE. The cloud deck was about 300 m thick with cloud tops at 900 m.

6 June 1998

MAS retrieval summary and comparison with UW CV-580 in situ measurements:

Parameter	MAS retrievals [*] (pixel average, standard deviation)	UW CV-580 (profile)
au	11.2	8.6 ¹
$\sigma_{ au}$	1.5	
<i>r_e</i> (μm)	9.4	9-10 ²
σ_{re}	1.0	
LWP (gm ⁻²)	70	60 ³
$\sigma_{\!\scriptscriptstyle LWP}$	8	

^{*}using 1.6 μm and 2.1 μm MAS bands

¹ g-meter probe, Gerber Scientific (courtesy H. Gerber)
² FSSP, expected retrieval range with adiabatic vertical profile
³ DVM (w/aalibration from H. Carber)

³PVM (w/calibration from H. Gerber)

Summary

- Cloud retrievals based on solar reflectance measurements traditionally have used VIS/NIR band + SWIR band to retrieve optical thickness and effective radius.
- Sea ice albedo in the VIS/NIR cloud retrieval bands (0.67, 0.86, 1.2 μm) is both large and highly variable
 – both combine to seriously impact retrieval uncertainty.
- Sea ice albedo in the SWIR bands is relatively small (comparable to dark open water during June) – little impact on retrieval uncertainty.
- A modified cloud retrieval algorithm has been developed which only uses the SWIR bands.
- Preliminary MAS retrievals during FIRE/ACE are in good agreement with in situ measurements.