

MODIS Science Team Meeting FM1 Status

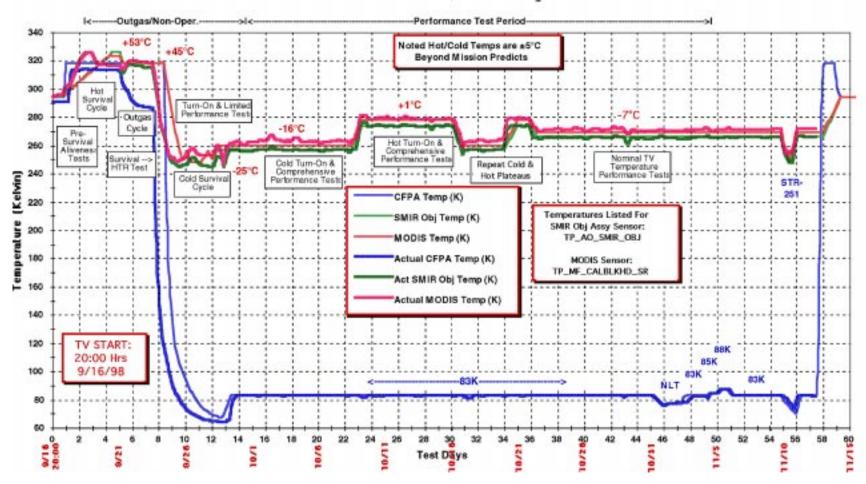
NASA GSFC Contract No. NAS 5-30800

15 December 1998

Raytheon

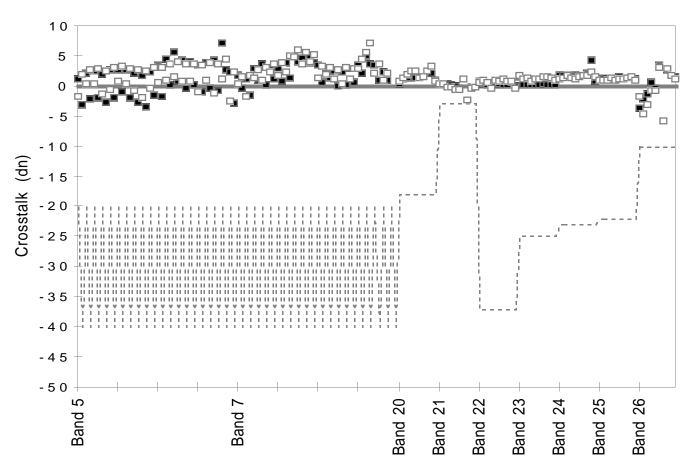
Agenda

- Overview
- TV Performance
 - —Crosstalk Performance
 - —Spectral Performance
 - —Radiometric
 - —OBC Calibrators
- Ambient FM1 RVS Update
- Issues
- Summary



FM1 Thermal Vacuum Test Has Been Completed

Santa Barbara Remote Sensing

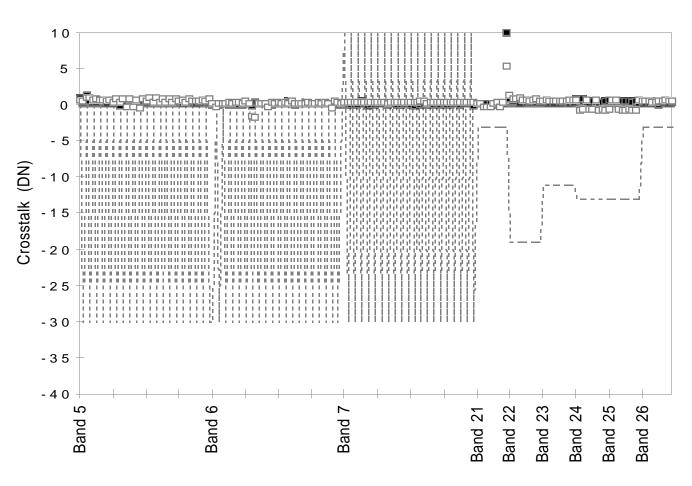


FM1 SWIR Crosstalk Significantly Better than PFM

Crosstalk From Band 6 Sender at Optimum Itwk/Vdet vs PFM

DESIRED

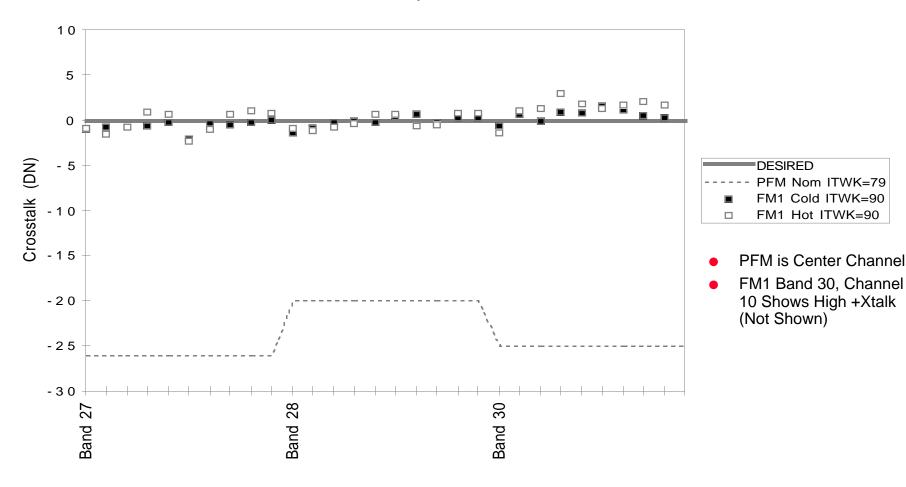
-- PFM Nom ITWK=79


- FM1 Cold ITWK=102
- □ FM1 Hot ITWK=102
- PFM is Center Channel
- FM1 Band 7, Channel
 20 Shows High +Xtalk
 (Not Shown)

FM1 MWIR Crosstalk Significantly Better than PFM

Crosstalk From Band 20 Sender at Optimum Itwk/Vdet vs PFM

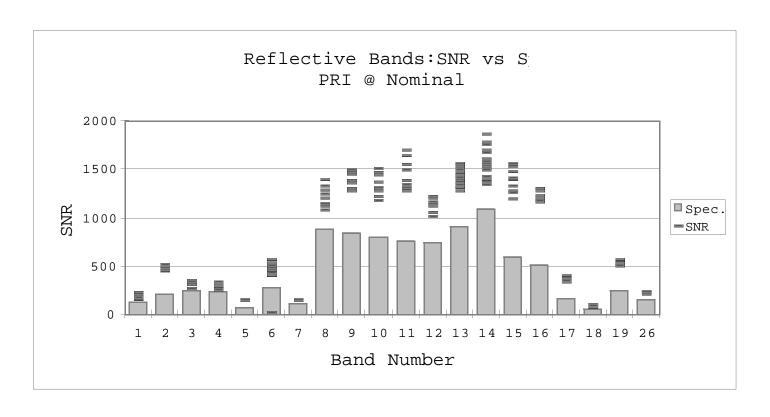
DESIRED


- PFM Nom ITWK=79
- FM1 Cold ITWK=102
 - FM1 Hot ITWK=102
- PFM is Center Channel
- FM1 Band 21, Channel
 10 Shows High +Xtalk

FM1 LWIR Crosstalk Significantly Better than PFM

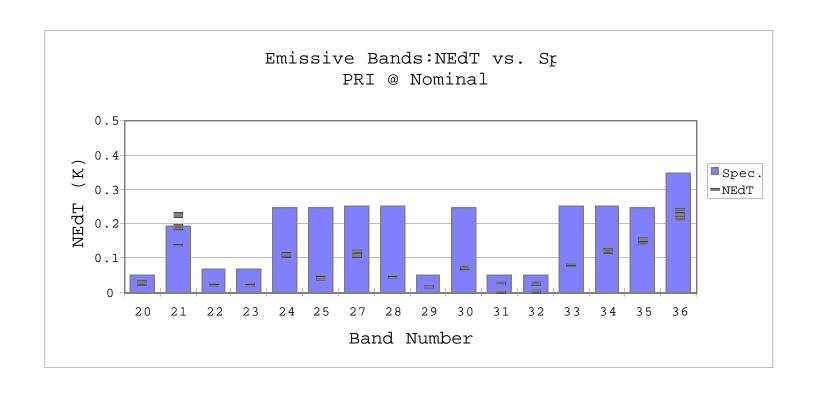
Crosstalk From Band 29 at Optimum Itwk/Vdet vs PFM

Radiometric Performance



- Preliminary results show excellent instrument performance
- Many, Many RC01/RC02 data sets acquired AND analyzed
- SNRs/NEdTs/Linearity has been characterized, save for radiometric coefficients
- CPA/PRI and CPA/RDT form calibration data set
 - Covers BOTH sides of all FPA analog signal trains
- Redundant side not calibrated with CPB
 - —Issues remain on CPB/RDT "drift" anomaly

Primary SNRs Compliant For Reflective Bands



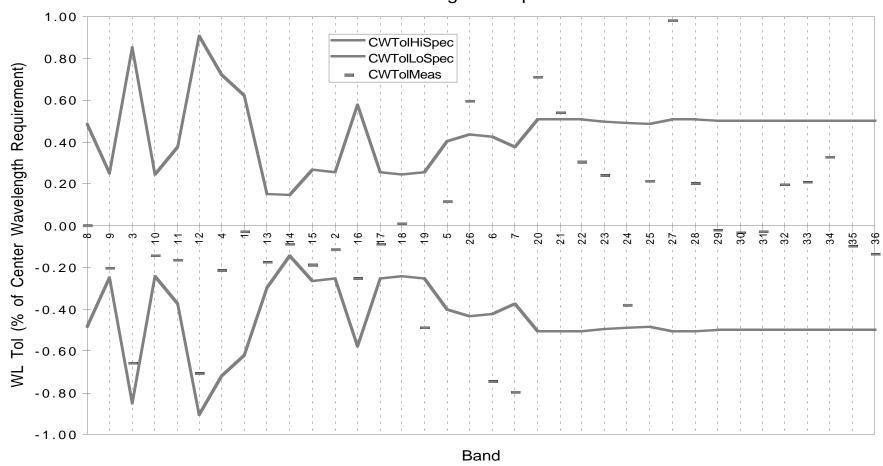
Two failed channels for Band 6 (7 and 19) documented
 EFR1732 (Waiver required)

Primary NEdTs Compliant For Emmissive Bands

- Low signal on Band 21 believed to be cause of non-compliances
 - EFR1733 (Waiver required)

Spectral Performance

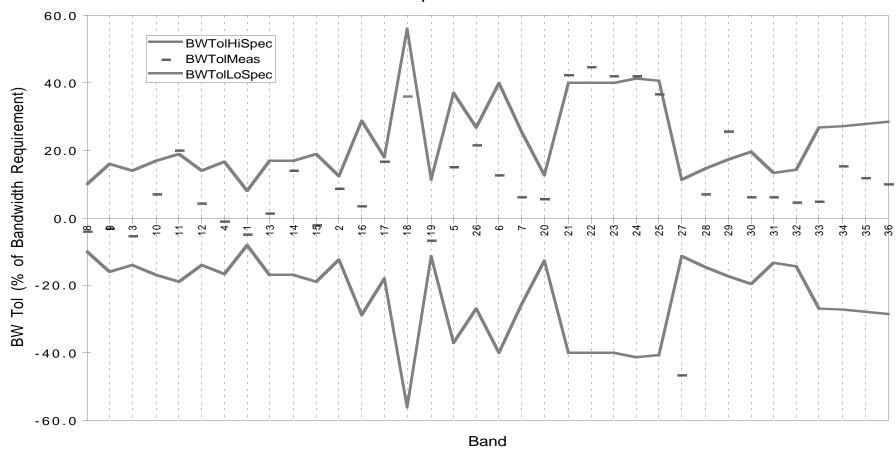
- In-band data is spec compliant for most bands
- All Data Processed
 - —In-Band Ambient (VIS,NIR) and TV Nominal (SW,MW,LW)
 - **—TV NLT**
 - > Shifts consistent with published literature
 - —Special Collects
 - > Bands 20 and 31 vs Instrument temperature
 - > Band 27 for SPMA Purge Characterization
 - > Band 35 acquired at 2nm intervals for CO2 characterization



Center Wavelength Requirements Achieved by Most Bands

Santa Barbara Remote Sensing

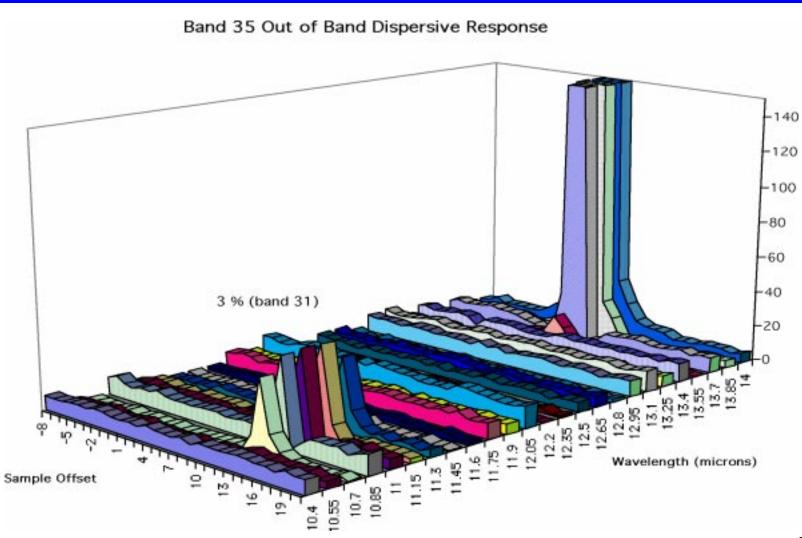
Measured vs Spec Center Wavelength Tolerance as a Percentage of Center Wavelength Requirement



Bandwidth Requirements Achieved by Most Bands

Measured vs Spec Bandwidth Tolerance as a Percentage of Bandwidth Requirement

Out-of-Band Data Analysis in Process

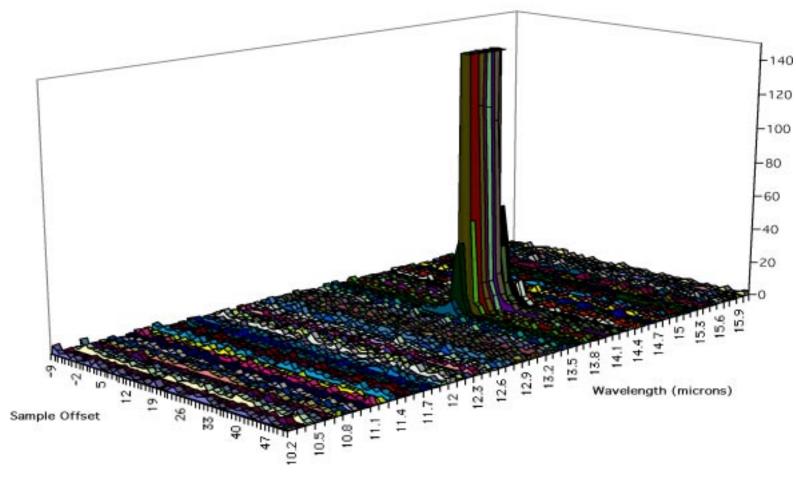

- All OOB data has been quiklooked
- Detailed DN level reductions completed
 - —Normalizations in process
 - Limited OOB results generated
 - > 5.3 µm leak on PFM is reduced on FM1, but NOT eliminated (based on BCS results)
 - Band 5 -> Approximately 3x reduction
 - Band 6 -> Approximately 4x reduction
 - Band 26 -> Approximately 2x reduction
 - > 11 μm leak on FM1 << PFM
 - $\sim 0.2\%$

PFM Band 35

Santa Barbara Remote Sensing

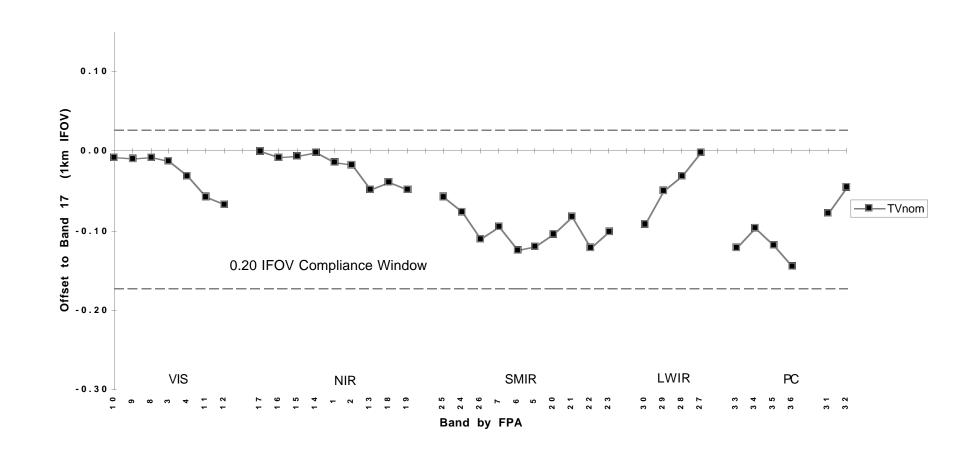
MODIS Quarterly Management Review 10 December 1998 Slide 14

Copyright © 1998 Raytheon Systems Company An unpublished work. All rights reserved.

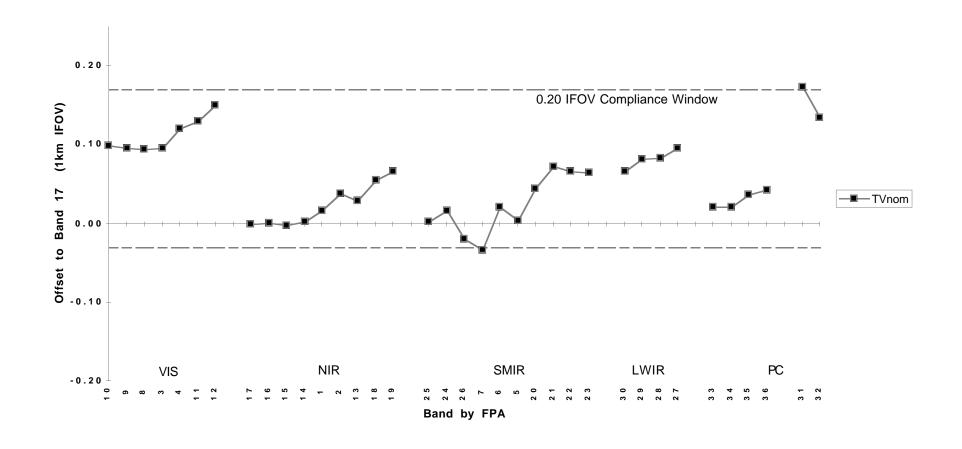


FM1 Band 35

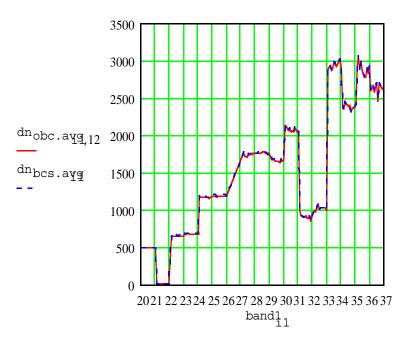
Santa Barbara Remote Sensing

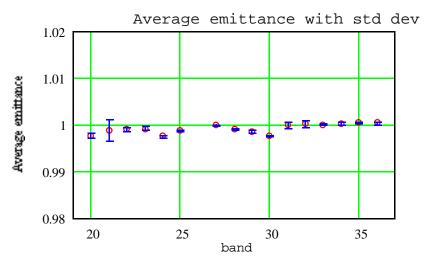

FM1 Band 35 Out of Band Dispersive Response

FM1 SRCA Registration Scan Direction (Nominal)



FM1 SRCA Registration Track Direction (Nominal)




OBC BB EMITTANCE EVALUATION NOMINAL PLATEAU

- BCS constant temperature @ ≈285K
- MFI09 transition ≈ 285K used for OBC BB data set
- Signal levels and emittance are illustrated

$$T2_{bcs} = 285.137$$
 $mean(\epsilon_{avg}) = 0.9993$ $T2_{obc} = 284.945$ $stde(\epsilon_{avg}) = 0.001$

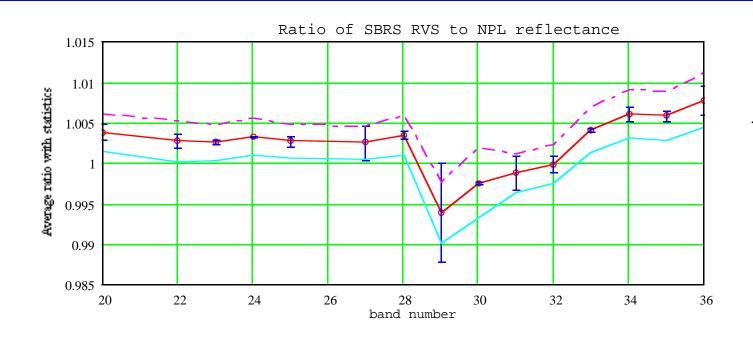
Response vs Scan Angle (PC20) VIS/NIR/SWIR Assessment

- VIS / NIR / SWIR meets 0.5 % requirement
 - —VIS / NIR response vs scan angle results good to ≈ 0.2 %
 - —SWIR response vs scan angle results good to ≈ 0.4%
 - —Channel to channel uniformity better than 0.1 %
 - Residual to second order polynomial fit is less than 0.15 % except band 26 less than 0.3 %.
 - —Residual for the third order polynomial are the same.
- FOV: No vignetting of NIR indicates field of view spec met

MWIR / LWIR RVS much better than PFM

- MWIR / LWIR does not meet internal 0.1 % requirement; however ...
 - PL3095-N06822 alternatives witness mirror (NPL) and on orbit measurements
 - Bands 20 to 28 0.12 to 0.18 %; bands 29 & 30 0.3 to 0.4 %; bands 31 to 36 0.12 % to 0.25 %
- Data reduction/analysis is continuing
 - Acquired data includes: BCS, SVS, and OBC BB sources
 - Channel to channel data (unsaturated) is clustered
 - Data is much better than that acquired on PFM
 - Reduction of all data sets not completed
 - Data sets with BCS 320 K side A and B; BCS 310 K side A done
 - Uncertainty assessment continues

COMPARISON OF HIGH BAY RVS TO NPL REFLECTANCE II


- Ratio of high bay RVS to NPL reflectance, R1
- Average and standard deviation of R1 given in array "stat"

	0	10	26.5	38	50	60.5	65.5			20	1.0038	0.001	1
	20	1	1.005	1.005	1.005	1.003	1.002			22	1.0027	0.0009	
	22	1	1.004	1.003	1.002	1.003	1.001				1.0026	0.0002	
	23	1	1.003	1.002	1.001	1.005	1.002	24	24	1.0033	0.0001		
_1	24	1	1.003	1.003	1.004	1.003	1.003			25	1.0027	0.0006	
R1 =	25	1	1.002	1.002	1.003	1.003	1.004		staŧ	27	1.0026	0.0021	
	27	1	1	1	1.001	1.005	1.007		28		1.0035	0.0005	
	28	1	1.005	1.004	1.003	1.004	1.003		29	0.994	0.006		
	29	1	1.007	1.001	0.993	0.987	0.982		30	0.9976	0.0002		
	30	1	1	0.997	0.995	0.998	0.998			31	0.9988	0.0021	
	31	1	1.004	1.002	0.998	0.996	0.995			32	0.9999	0.0009	
	32	1	1.003	1.002	0.998	0.998	0.998			33	1.0041	0.0002	
	33	1	1.007	1.004	1.002	1.004	1.004			34	1.0061	0.0009	
	34	1	1.007	1.006	1.004	1.005	1.008			35	1.0059	0.0007	
	35	1	1.008	1.007	1.003	1.004	1.007			36	1.0078	0.0018	
	36	1	1.009	1.008	1.004	1.006	1.011						

COMPARISON OF HIGH BAY RVS TO NPL REFLECTANCE IV

- Middle curve is average ratio of high bay RVS to NPL reflectance.
- Vertical bars represent ±1 σ obtained from high bay to NPL comparison
- Envelope curves obtained by combining NPL and high bay estimated uncertainty in quadrature.

Issues

- —Power supply resets
- —PC detector response drift anomaly
 - Telemetry/science data vs LW/SM HTR, PRI/RDT crosstrap modes to the TCPs, FPA temperature, timing, and FPAs on/off
 - Occurs with CPB, LW Heater, NIR FPA on, and sector timing re-synchs enabled
 - > Ambient diagnostics in process; Drift has been observed in ambient
- —NAD/SDD fail-safe operation
 - NAD counterweights installed improperly
 - > Blanket ground wire interference discovered on SDD

Summary

- TV test yielded impressive instrument performance
 - Significantly reduced crosstalk observed compared to the PFM
 - —SNR/NEdT, spectral, spatial predominantly in spec
 - —Post-TV tests going well wrt door, PS, and PC "drift" anomalies
- Extremely well coordinated effort; Thanks to all who participated, including NASA/MCST
- Key tasks remaining
 - -Finish ambient analyses (RVS, Stray Light)
 - —Prepare for PSR
 - > Specifically spectral reductions, waivers, final paper

VIS/NIR/SWIR Spectral Parameters Summarized

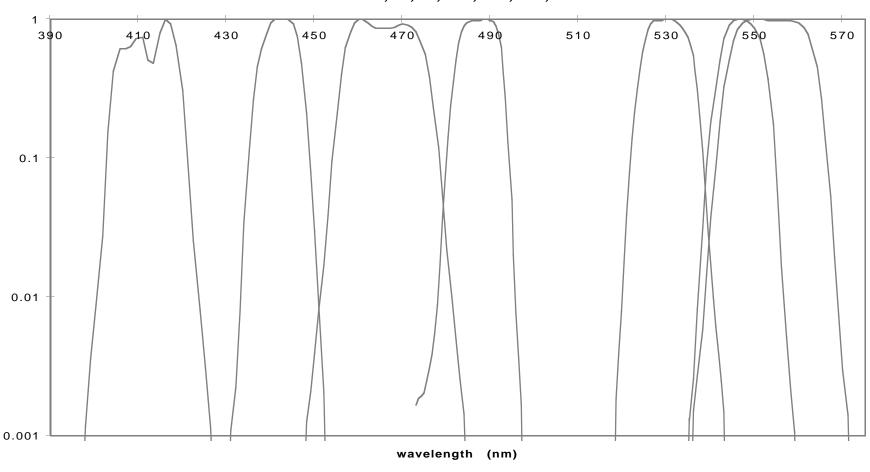
Band	Channel	CW50%Meas	CWCentMeas	CWSPEC	BWMEAS	BWSPEC	ER1MEAS	ER2MEAS	ERSPEC	RippleMEAS	RippleSPEC
8	5	412.0	412.3	412.0	14.4	15.0	12.8	4.1	7.2	80.5%	80.0%
9	5	442.1	442.1	443.0	9.7	10.0	4.9	3.8	4.9	93.4%	80.0%
3	10	465.9	465.8	469.0	18.9	20.0	4.7	6.0	9.5	81.2%	80.0%
10	5	487.3	487.2	488.0	10.7	10.0	4.0	3.1	5.4	80.9%	80.0%
11	5	530.1	530.0	531.0	12.0	10.0	4.4	5.0	6.0	80.0%	80.0%
12	5	547.1	547.0	551.0	10.4	10.0	5.1	4.8	5.2	85.3%	80.0%
4	10	553.8	553.8	555.0	19.8	20.0	5.4	5.3	9.9	84.7%	80.0%
1	20	644.8	645.8	645.0	47.5	50.0	20.8	13.8	23.8	80.7%	80.0%
13	5	665.8	665.8	667.0	10.1	10.0	4.8	5.7	5.1	84.1%	80.0%
14	5	677.4	677.3	678.0	11.4	10.0	5.8	5.4	5.7	87.6%	80.0%
15	5	746.6	746.5	748.0	9.8	10.0	5.5	5.4	4.9	86.8%	80.0%
2	20	857.0	856.5	858.0	38.1	35.0	16.5	13.2	19.1	90.4%	80.0%
16	5	866.8	866.6	869.0	15.5	15.0	7.5	6.9	7.8	86.2%	80.0%
17	5	904.2	904.2	905.0	35.0	30.0	13.0	12.6	17.5	90.8%	80.0%
18	5	936.1	936.1	936.0	13.6	10.0	7.1	6.5	6.8	84.6%	80.0%
19	5	935.4	936.0	940.0	46.7	50.0	20.9	19.1	23.4	80.5%	80.0%
5	10	1241.4	1241.3	1240.0	23.0	20.0	14.5	13.5	11.5	80.1%	80.0%
26	6	1383.2	1381.8	1375.0	36.5	30.0	28.6	18.8	18.3	83.5%	80.0%
6	10	1627.7	1627.6	1640.0	27.7	24.6	15.7	16.2	13.9	85.8%	80.0%
7	10	2113.0	2113.5	2130.0	53.1	50.0	21.9	42.4	26.6	80.9%	80.0%

Parameters in nm units

MW/LW Spectral Parameters Summarized

Band	Channel	CW50%Meas	CWCentMeas	CWSPEC	BWMEAS	BWSPEC	ER1MEAS	ER2MEAS	ERSPEC	RippleMEAS	RippleSPEC
20	5	3776.7	3778.4	3750.0	189.6	180.0	51.0	54.5	94.8	78.7%	80.0%
21	5	3980.4	3980.2	3959.0	84.4	59.4	39.4	40.1	42.2	86.8%	80.0%
22	5	3971.0	3970.5	3959.0	85.9	59.4	38.7	30.3	43.0	82.3%	80.0%
23	5	4059.7	4059.6	4050.0	86.3	60.8	35.9	32.0	43.2	85.2%	80.0%
24	5	4447.9	4447.3	4465.0	92.2	65.0	44.2	38.3	46.1	81.1%	80.0%
25	5	4524.5	4524.5	4515.0	91.6	67.0	47.4	37.2	45.8	83.4%	80.0%
27	5	6780.7	6782.1	6715.0	192.5	360.0	181.2	169.6	96.3	80.1%	80.0%
28	5	7339.6	7341.2	7325.0	321.1	300.0	146.4	162.9	160.6	82.7%	80.0%
29	5	8547.8	8545.3	8550.0	376.3	300.0	198.4	140.9	188.2	81.6%	80.0%
30	5	9726.3	9716.2	9730.0	317.9	300.0	178.1	200.7	159.0	80.5%	80.0%
31	5	11026.8	11024.8	11030.0	530.8	500.0	269.4	267.4	265.4	80.8%	80.0%
32	5	12043.5	12039.9	12020.0	522.1	500.0	117.3	139.1	261.1	82.0%	80.0%
33	5	13362.4	13361.2	13335.0	313.9	300.0	110.8	121.6	157.0	86.9%	80.0%
34	5	13679.6	13680.9	13635.0	345.7	300.0	122.6	119.5	172.9	84.5%	80.0%
35	5	13920.5	13920.1	13935.0	335.0	300.0	114.5	117.8	167.5	81.3%	80.0%
36	5	14215.3	14209.6	14235.0	330.4	300.0	128.4	133.8	165.2	81.2%	80.0%

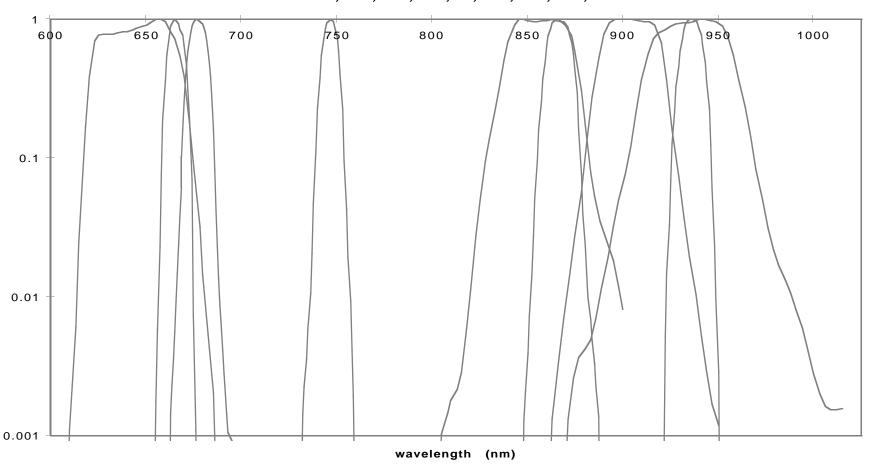
Parameters in nm units



VIS Bands

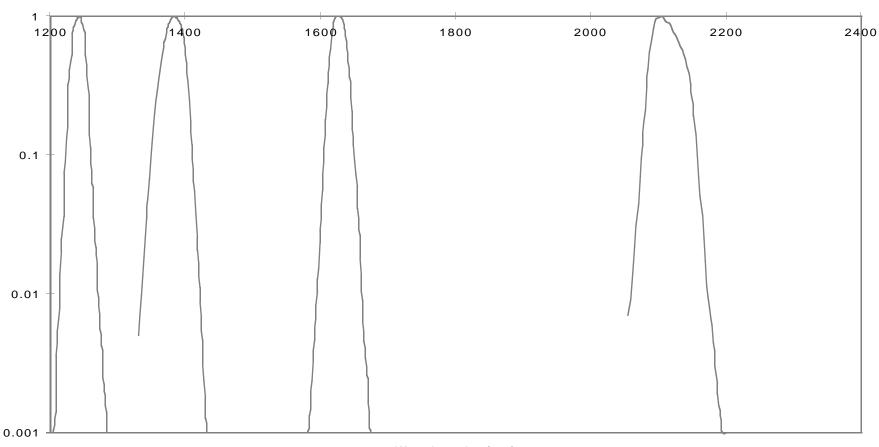
Santa Barbara Remote Sensing

FM1 VIS Spectral Response Bands 8, 9, 3, 10, 11, 12, 4



NIR Bands

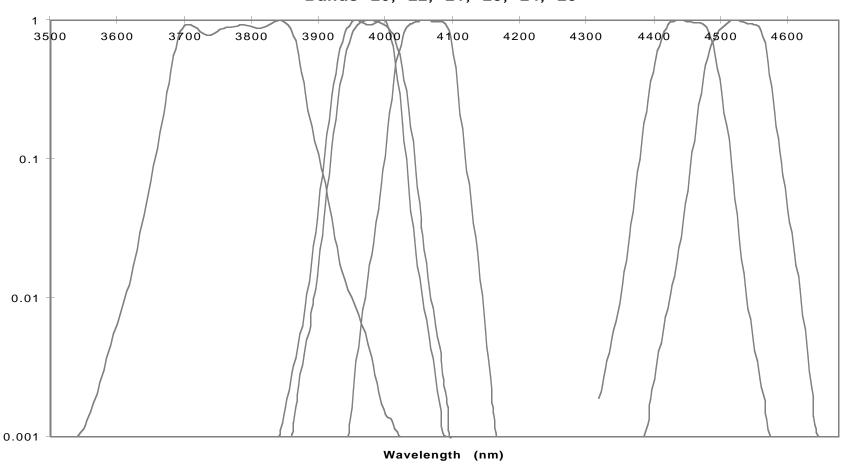
FM1 NIR Spectral Response Bands 1, 13, 14, 15, 2, 16, 17, 18, 19



SWIR Bands

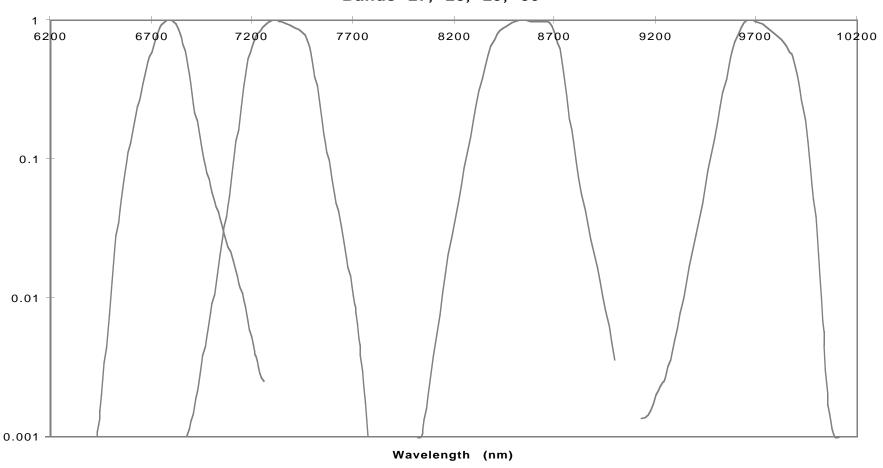
Santa Barbara Remote Sensing

FM1 SWIR Spectral Response Bands 5, 26, 6,7


Wavelength (nm)

MWIR Bands

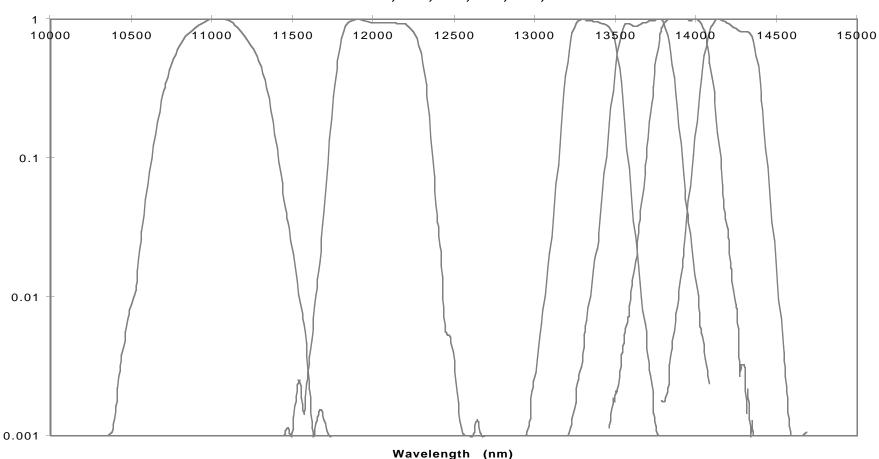
FM1 MWIR Spectral Response Bands 20, 22, 21, 23, 24, 25



PV LWIR Bands

Santa Barbara Remote Sensing

FM1 PVLW Spectral Response Bands 27, 28, 29, 30



PC LWIR Bands

Santa Barbara Remote Sensing

FM1 PCLWIR Spectral Response Bands 31, 32, 33, 34, 35, 36

Tabulated RVS (MWIR / LWIR)

- Tabulated normalized RVS based upon BCS 320 K, side A
- Scan angle and AOI given in degrees row 1 & 2

320	-54.5	- 5 4	- 5 3	- 45	- 23	0	10	26	38	45	50	53	5 4	54.5
band	10.75	11	11.5	15.5	26.5	38	43	5 1	57	60.5	63	64.5	65	65.25
20	1	0.997	1.000	0.997	1.001	1.002	0.997	0.998	1.000	0.996	0.995	0.997	0.999	0.995
22	1	1.001	0.999	0.999	1.000	1.001	0.997	1.000	0.999	0.999	0.996	0.994	1.000	0.993
23	1	0.997	0.998	0.998	0.998	1.000	0.995	0.998	0.998	0.995	0.998	0.998	0.998	0.997
24	1	0.997	1.000	0.996	1.000	1.001	0.997	0.997	1.001	0.998	0.997	0.999	1.000	0.997
25	1	0.997	0.998	0.997	0.997	1.000	0.995	0.997	0.999	0.997	0.999	0.999	0.998	0.997
27	1	1.002	1.002	1.000	0.998	0.997	0.995	0.999	0.998	0.998	0.997	1.000	0.996	0.999
28	1	0.997	0.996	0.996	0.996	0.999	0.993	0.994	0.994	0.988	0.991	0.990	0.991	0.987
29	1	0.995	0.991	0.988	0.986	0.979	0.973	0.964	0.942	0.934	0.926	0.925	0.922	0.922
30	1	0.989	0.983	0.985	0.981	0.977	0.968	0.968	0.952	0.955	0.948	0.946	0.947	0.944
3 1	1	1.001	0.999	0.999	0.998	0.994	0.988	0.984	0.978	0.974	0.970	0.966	0.971	0.965
32	1	1.001	1.000	0.999	0.997	0.993	0.986	0.979	0.971	0.966	0.962	0.958	0.962	0.955
33	1	1.000	1.000	0.998	0.993	0.985	0.976	0.961	0.948	0.938	0.933	0.926	0.928	0.919
3 4	1	1.000	1.001	0.999	0.993	0.985	0.975	0.959	0.944	0.935	0.930	0.924	0.926	0.915
35	1	1.000	1.001	0.999	0.992	0.985	0.974	0.956	0.941	0.931	0.927	0.920	0.922	0.911
36	1	1.001	1.002	0.999	0.992	0.984	0.974	0.954	0.939	0.929	0.926	0.918	0.919	0.908