MODIS Atmospheric Correction Performance: Initial Evaluation

Howard R. Gordon University of Miami

With significant help from K. Turpie, R. Vogel, B. Franz, R. Evans, J. Brown, W. Esaias, MODIS SDST and MCST.

MODIS Science Team Meeting June 2000

MODIS Atmospheric Correction Initial Evaluation

- MODIS/SeaWiFS Chl *a* at 36 km resolution
- Examine $nL_w(\lambda)$ for a Single Granual at Full Resolution
- Examine Retrieved Values for a Single AOI and Single Scan Line
- Review Atmospheric Correction Algorithm
- Evaluate Performance of Atmospheric Correction Bands 15 and 16
- Overall Evaluation

SeaWiFS - MODIS Chl a

- Difference ~ factor of 2
- Difference is equally likely to be positive or negative
- No obvious pattern
- MODIS **high** at high Southern latitudes
- MODIS **low** at high Northern latitudes

HRG, MST, June 2000

HRG, MST, June 2000

Atmospheric Correction (Simplified)

$$\rho = \frac{\pi L}{F_0 \cos \theta_0}$$

$$\rho_{t}(\lambda) = \rho_{r}(\lambda) + \underbrace{\rho_{a}(\lambda) + \rho_{ra}(\lambda)}_{\rho_{A}(\lambda)} + t_{0}(\lambda)t_{v}(\lambda)n\rho_{w}(\lambda)$$

$$\varepsilon(\lambda,\lambda_0) \approx \frac{\rho_A(\lambda)}{\rho_A(\lambda_0)}$$

In NIR $n\rho_w=0$, so

$$\varepsilon(15,16) \approx \frac{\rho_A(15)}{\rho_A(16)}$$

Get $\varepsilon(\lambda, 16)$ from $\varepsilon(15, 16)$ using aerosol models. Then

$$n\rho_{w}(\lambda) = t_{0}^{-1}(\lambda)t_{v}^{-1}(\lambda)\{\rho_{t}(\lambda) - \rho_{r}(\lambda) - \varepsilon(\lambda, 16)[\rho_{t}(16) - \rho_{r}(16)]\}$$

HRG, MST, June 2000

HRG, MST, June 2000

Characteristic Values (M80)

 $(\theta_0=0, \theta_v=45^\circ)$

Band	ρ_t	$ ho_r$	ρ_{a} + ρ_{ra}
15	0.017759	0.010964	0.006795
16	0.013219	0.006648	0.006574

 $\epsilon(15,16) = 0.006795/0.006574 = 1.0336$

Expected Noise in ρ_t

Band	SNR	$\Delta(\rho_t)$
15	800	2.22×10^{-5}
16	700	1.88×10^{-5}

Expected Noise in ε(15,16)

$$\varepsilon(15,16)^{+} = \frac{\rho_a(15) + \rho_{ra}(15) + \Delta\rho_t(15)}{\rho_a(16) + \rho_{ra}(16) - \Delta\rho_t(16)} = 1.0398$$

$$\varepsilon(15,16)^{-} = \frac{\rho_a(15) + \rho_{ra}(15) - \Delta\rho_t(15)}{\rho_a(16) + \rho_{ra}(16) + \Delta\rho_t(16)} = 1.0274$$

HRG, MST, June 2000

HRG, MST, June 2000

Summary

- Examined MODIS/SeaWiFS Chl *a* at 36 km Resolution
 ⇒ Differences ± a factor of 2
- Examined $nL_w(\lambda)$ for a Single Granual at Full Resolution
 - \Rightarrow Severe Striping in $nL_w(443)$
 - \Rightarrow Severe Striping in $nL_w(551)$
 - $\Rightarrow nL_w(551)$ Is 50% Too High (March 17, Calibration used by MODAPS)
 - $\Rightarrow nL_w(551)$ Is Improved (April 20, "Research" Calibration)
 - $\Rightarrow nL_w(551) \text{ Striping Improved But Not Eliminated (R. Evans)}$

Summary (Continued)

- Examined Retrieved Values for a Single Scan Line
 - \Rightarrow $nL_w(\lambda)$ and Chl *a* Reasonably Clean
 - \Rightarrow $nL_w(\lambda)$ and Chl *a* May Show RSV Effect
 - \Rightarrow Strong Effect of Sun Glint in $\tau_a(869)$
 - ⇒ Sun Glint Will Destroy Eastern Half of Scan in Tropics
- Evaluated Performance of Bands 15 and 16
 - \Rightarrow Bands show excessive noise
 - $\Rightarrow \text{ Severe Striping in } nL_w(551) \text{ Likely Not} \\ \text{Due to Atmospheric Correction}$
 - \Rightarrow Some Striping in Bands 15 and 16
 - \Rightarrow Atmospheric Model Choices are Reasonable

Summary (Continued)

- Overall Evaluation
 - \Rightarrow MODIS Visible Bands Need Flat-Fielding
 - \Rightarrow NIR Bands Appear to be Noisy
 - \Rightarrow NIR Bands are Striped
 - $\Rightarrow \text{ Visible Bands Show Incorrect Overall } nL_w's$ (MODAPS Processing With March 17 Calibration, Improved With Later Calibration)
- Prognosis
 - ⇒ Usable Data Requires Incremental/Iterative Resolution of Remaining Problems
 - ⇒ Multiple Processing/Reprocessing Will Be Necessary