Phytoplankton Fluorescence from MODIS

Jasmine S. Bartlett Mark R. Abbott Ricardo M. Letelier

Oregon State University

Funded by NASA grant NAS5-31360.

Blue light induced chlorophyll fluorescence in Tobacco leaf. A. photographed in white light. B. taken in the low steady state of fluorescence, 5 min after the onset of illumination. The bright red fluorescing upper part of the leaf is where photosynthesis has been blocked by the herbicide duiron (DCMU).

(From Krause and Weis, 1988)

Why is fluorescence important?

- describes the physiological state of the phytoplankton
- will help to determine the cause of phytoplankton bloom collapses
- will help to make more robust estimates of primary productivity on a global scale

Fluorescence & Primary Productivity

- Ocean represents about 50% of total primary productivity
- Improved models of primary productivity essential to understand the linkages between atmospheric CO₂ and ocean uptake
- Simple chlorophyll-based models of productivity will not be adequate
- MODIS represents a significant step forward in ocean remote sensing

Present Models of Primary Productivity

- focus on light **absorption** processes
 - Variability result of variations in light utilization potential of phytoplankton
 - Present models attempt to use physical data and/or climatology to estimate light utilization potential
 - Mixed layer depth
 - Season
 - Biogeographic provinces
 - SST

Fluorescence-Based Models of Primary Productivity

- Variations in fluorescence quantum yield are related to light utilization
 - Related to nutrients and species composition
 - Require averaging over some time period or spatial domain
 - Exploit this variability to improve estimation of primary productivity

MODIS fluorescence parameters

- #16 chlorophyll fluorescence line height
- #17 chlorophyll fluorescence baseline
- #18 chlorophyll fluorescence efficiency

$F = [chl] (PAR a^*) F_f$

where

F	: chlorophyll fluorescence
[chl]	: chlorophyll concentration
PAR	: photosynthetically available radiation
	(radiation between 400 and 700 nm)
a*	: specific absorption coefficient
Φ_{f}	: fluorescence quantum yield
	(fluorescence efficiency)

$$\mathbf{F}_{f} = \frac{F}{(PAR a^{*}) [chl]}$$

MODIS

Chlorophyll-a and Fluorescence Arabian Sea & Bay of Bengal March 1, 2000

Principal Investigators Dr. Mark R. Abbott, Dr. Ricardo M. Letelier, and Jasmine S. Bartlett Oregon State University

These 4 km resolution L3 mapped products from (4-29°N, 44-96°E) were processed at the University of Miami Rosenstiel School of Marine & Atmospheric Science.

Issues to be resolved

How does \mathbf{F}_{f} vary as a function of light and nutrient limitation in surface waters?

How does the relationship between \mathbf{F}_{f} and \mathbf{F}_{p} vary?

 $\Phi_{\rm f} + \Phi_{\rm p} + \Phi_{\rm h} = 1$

How can **F**_f be used to help determine primary productivity?