EOS-Terra remote sensing of atmospheric pollutants

Yoram Kaufman

EOS "Terra" Project scientist, MODIS science team NASA Goddard Space Flight Center

- Examples of the New Science from Terra: The Indian and African stories – how Terra can distinguish natural from human induced processes (with John Gille – NCAR, Jim Drummond – U. Toronto and Bruce Barkstrom – NASA/LaRC)
- Remote sensing of aerosol from MODIS first validation (with Didier Tanré and Lorriane Remer)

Ignition!! Vandenberg, AFB

Dec. 18, 1999

Up to space and new era in Earth Science begins

The Terra Observatory:

- MODIS **global, daily** views with 36 spectral channels, 250m-1km (PI V. Salomonson GSFC)
- MISR 9 angle views (PI D. Diner JPL)
- ASTER stereo zoom view: visible IR (PIs Yasushi/Kahle MITI/JPL)
- MOPITT first **carbon monoxide** and methane (PIs Drummond/Gille U. Toronto/NCAR)
- CERES measurements of the impact of the Earth processes on its ability to reflect and emit energy to space (PI B. Barkstrom LaRC)

Overall Objective of EOS-Terra – reflection on aerosol science

- Provide the first global and seasonal measurements of the Earth System: a thorough "check-up" of planet Earth – distribution of aerosol optical thickness, mass, size and radiative forcing (coming up – single scattering albedo)
- Distinguish natural variability from human impact, →
 "fingerprint" of human activity. Natural/anthropogenic aerosol
- Start long-term monitoring of global climate change and changes in our environment.
- D evelop technologies for disaster prediction, wildfires, volcanoes, floods, and droughts – effect of aerosol on health, pollution control, aircraft safety?

Terra observations MODIS-MOPITT-CERES distinguish human-induced vs. natural impact on air quality and radiative forcing of climate:

> Pollution in Indian sub-continent -Dust over the Atlantic off Africa

- A erosol over the Bay of Bengal→ small aerosol particles and elevated CO levels → human-induced pollution source.
- A erosol off the coast of Africa → large aerosol particles, low
 CO concentrations → natural dust air mass

The Himalayan mountains, and the heavily populated and polluted parts of the Indian sub-continent.

Topography + meteorology \rightarrow

High moisture (MODIS) under the Himalayas, precipitation \rightarrow

Dense vegetation (MODIS) →

Atracts people - half a billion people (red)→

dense haze (aerosol - MODIS, CO gas -MOPITT)→

alters reflection of sunlight to space (CERES)

Astronaut photo of the Himalayan mountains and the Indian subcontinent shrouded in haze The Earth needs a thorough "checkup" -> EOS-Terra is ready to provide

Topography of the Himalayan region and the Indian sub-continent (MOD<u>IS data + DEM) - Dense vegetation under the Himalayas</u>

Topography --> concentration of Water Vapor (MODIS)

Dense Vegetation --> Dense population

Dense population --> dense aerosol haze (MODIS)

Dense population --> high CO concentrations (MOPITT); John Gille - NCAR; Jim Drummond- U. Toronto

Dense haze ==> reflection of sunlight to space (CERES)

Dust over the Atlantic

- MODIS true color image
- MODIS dust detection (large particles -red)
- CERES reflected energy

2/29/2000 MODIS true color dust image

2/29/2000 MODIS analysis of dust (red - Tanre et al)

2/29/2000 CERES reflected sunlight (Barkstrom et al)

3/9/2000 MODIS true color of dust

3/9/2000 MODIS analysis of dust (red)

2/29/2000 CERES reflected sunlight

MOPITT view of carbon monoxide (blue-low, red-high) Jim Drummond, U. Toronto, John Gille, NCAR, MOPITT PIs

Fire count from ATSR

MOPITT view of carbon monoxide (blue-low, red-high)

REMOTE SENSING OF AEROSOL FROM MODIS Ocean: Land:

- 6 λs 0.55-2.1 μm → τ(λ)
- small & large modes τ_{small} , τ_{large}
- effective radius

- $\rho_{2.1} \rightarrow \rho_{0.66}$, $\rho_{0.47}$
- $\Delta \rho_{0.66}$, $\Delta \rho_{0.47}$ \rightarrow

• $\tau_{0.66}, \tau_{0.47}$

Using the spectral information to sense aerosol

ER-2, AVIRIS spectral image from SCAR-B of smoke over Cuiaba on Aug. 25, 1995

RGB: 0.47 μm, 0.55 μm, 0.66 μm

Heavy smoke. The image resembles human vision.

Near-IR RGB: 2.1 μm, 1.2 μm, 1.65 μm

The smoke is almost transparent in the mid-IR, surface features are visible.

CONCLUSIONS

- MODIS before final calibration can detect aerosol with errors slightly larger than predicted
- Land: τ for 0.47 and 0.66 μ m
- Ocean: $\tau(\lambda)$ for 0.55 to 2.1 µm, τ_{small} , τ_{large} , \mathbf{R}_{eff}
- Land and ocean algorithm generate similar results over sea shore
- Combination of aerosol small and large mode over ocean and CO from MOPITT may be used to fingerprint the human influence