

MCST Calibration Workshop at Science Team Meeting

June 6, 2000

Workshop Agenda

- Introduction
- Remarks from Science Team members (representatives)
- Brief Description of Calibration Testing
- Electronic Crosstalk
- PC Optical Crosstalk
- ADC Issue
- RVS Review
- Polarization Issue
- Band 21 Calibration
- Band to Band Registration (from MCST, SDST)
- SRCA Results (Spatial & Spectral)
- Remaining FM1 Testing Objectives

INTRODUCTION Objectives of this Workshop

- Recommendations for operating configuration
- Communication of our progress/Science Team concerns
- Recommendation of FM1 spacecraft T/V objectives
- Identify Key Operations Milestones
- Validate/challenge MCST Preliminary Conclusions

- There are no significant surprises in Terra-MODIS on-orbit performance
- Non-optimum characteristics have been accepted by NASA in waivers and deviations
- The task remaining to MCST and SBRS System Engineering is optimization of the L1B data set for the best science from MODIS
- This instrument meets specifications

Recent/Planned Level 1B Code Deliveries

Version	Date	Comments	Status
V2.2.0	May 30, 1999	Launch ready version.	
V2.3.2	Jan 5, 2000 Feb 25, 2000	Changes to: reflective calibration algorithm, uncertainty algorithms, SWIR OOB leak correction algorithm. Can process without a leading or trailing Level 1A granule.	In operations at GDAAC
V2.4.1	May 5, 2000	Process up through 208 scans in granule	In SSI&T at GDAAC
V2.5.0 (?)	(?)	Delete obsolete metadata, Incorporate time-dependent LUTs, Incorporate other changes TBD.	

Level 1B Lookup Table Updates Sent to GDAAC

Version	Date	Comments	LUTs Changed
V2.3.2.0	Jan 5, 2000	Pre-launch calibration	
V2.3.2.1	Feb 16, 2000	Derived from on-orbit data, pre- launch (Vdet/Itwk) configuration. (not used in operations)	Emissive and reflective bands calibration and uncertainty LUTs, uncertainty index scaling factors
V2.3.2.2	Feb 25, 2000	Update to previous table. Entered operations for data collected on day 056.	Detector quality flag values. (includes V2.3.2.1 update)
V2.3.2.3	Mar 15, 2000	Derived from on-orbit data, current (Vdet/Itwk) configuration. Entered operations for data collected on day 078. ("St. Patrick's Day" update)	Reflective bands calibration and uncertainty LUTs (no changes to emissive LUTs)

Terra Launch	1999/352
MODIS 1st turn-on	2000/003
NAD Open	2000/055
Vdet/Itwk to Operational Configuration	2000/066
LUT up-date	2000/078
Moon-in-Space-View-Port	2000/084
Lunar Yaw Mapping (NAD closed)	2000/116-1408
Day-mode data collection at night	2000/152

A graphic timeline of important MODIS events being developed All relevant detail exists on MCST Webpage under "Terra MODIS History"

Recommendations for operating configuration

- Focal Plane detector bias selection represents a trade-off between electronic cross-talk and detector operability in SW/MWIR focal plane.
- ADC/bin-fill non-uniformity varies with selection of primary side/back-up side of selected electrical subsystems. FM1 testing indicates best performance from all B-side and mainly B-side operations.

- Electronic Cross-talk (based on M-SV data set)
 <u>At Operational Configuration (110/226)</u>
 - MWIR effects seem to be about 3%
 - Bias may be function of scene temperature
 - Effect "incorporated" into calibration coefficient determination
 - SWIR effects may be typically 1 3%
 - Must be very careful for scenes with low dn signals in a SWIR band
 - Need verify DN_{SV} not contaminated
 - PV LWIR effect gone
- Band 31 Optical Leak
 - Improved (1st-order) leak correction coefficients into Bands 32 - 36

Preliminary Conclusions (2)

CAUTION - THESE RESULTS CAME FRIDAY, 2 JUNE, AND MUST BE VERIFIED. ESPECIALLY PC RESULTS SURPRISE US

- A-side (PC Bands, 31 36) 3 or 4 of 10 channel pairs for SST (Bands 31 & 32) meet Differential Non-Linearity (DNL) requirement
- A-side (PV Bands, 20 25) 3 of 10 channel sets for SST-4µm (Bands 20, 22 & 23) meet DNL requirement
- ADC Spacecraft Thermal Vacuum (S/C T/V) testing
 - Useful data for Band 36 only
 - A-side 1 of 10 channels meets DNL requirement
 - B-side 6 of 10 channels meets DNL requirement

Expect significant improvements operating on B-side Need investigate NIR behavior now too

- SRCA Spectral
 - Little to no apparent shift (< 0.5 nm)
 - Need look more carefully at Band 5 _c; it may be function of temperature
- SRCA Spatial
 - Scan direction shows no significant launch shifts
 - Track direction
 - VIS to NIRabout + 40 mSMIR to NIRabout 45 mLWIR to NIRabout 55 m
 - No FPA rotation
 - PFM stability suggests one more look at FM1 co-registration results warranted

- Calibration strategies >>> Image effects
 - Vulnerable to RSB ch-ch stripes due to SIS100 calibration uncertainty
 - Vulnerable to TEB MWIR stripes due to SAM resistor change
 - Vulnerable in SMIR focal plane data if electronic cross-talk varies by channel
 - Striping effects more pronounced than expected

The entire MCST staff has contributed in significant ways to the materials prepared for presentation here.Significant contributions have been made by SBRS Systems Engineering here too.

Brief Description of Calibration Tests (Pre-launch)

- Sensor thermal vacuum configuration
- RSB: linear calibration, through zero
 - Each detector, sub-frame and mirror side treated independently
- TEB: primarily quadratic
 - Each detector and mirror side treated independently
- General Sensor Status

Focus of this section is relationship of calibration realities to data applications in MODIS images

MODerate Resolution Imaging Spectroradiometer (MODIS)

- 36 Spectral Bands (490 detectors) cover the wavelength range from 0.4 to 14.5 µm
- Spatial resolution at nadir: 250, 500 and 1000 meters (depending on band)
- SD/SDSM, SRCA, and Blackbody On-Board Calibrators
- 12 bit (1:4096) dynamic range
- 2-sided Paddle Wheel Scan
 Mirror scans 2330 km swath

Thermal Vacuum Configuration for MODIS Pre-launch Calibration

- 3 instrument temperatures (260, 270, and 280K)
- 3 cold focal plane temperatures (83, 85, and 88K)
- 21 BCS levels (170K to 340K); many SIS-100 lamp configurations

Principal Scan Angles Mapped to Scan Mirror Angles of Incidence

Principal Scan Angles (Earth View: -55° to 55°)

Angles of Incidence (Earth View: 10.5° to 65.5°)

CAL-4

RSB SIS-100 Round Robin (RR)

- SIS(100) was calibrated at SBRS for the RR in 1996 (PFM) and 1998 (FM1)
- Due to burnout of the 45W bulbs, the PFM SIS(100) calibration has not been RR validated
- The 1998 data has been turned in for the RR and the FM1 calibration will be RR validated when results are published.
- Preliminary results indicate consistency between NIST standards and the SBRS SIS(100) scale at about 2-3% for FM1 Testing

SBRS SIS(100) Radiance as used for FM1

SIS(100) Radiance

PFM Band 8 Dets 1–10 MS 1 R* and K_inst fit sequentially in range 0.3 Ltyp to 0.9 Lmax, exclusive of saturation, with constraint at origin. From PFM T/V RC01 UAIDs 1338, 1339, 1504, 1442, 1443

CAL-7

PFM Band 8 Dets 1–10 MS 1 R* and K_inst fit sequentially in range 0.3 Ltyp to 0.9 Lmax, exclusive of saturation, with constraint at origin. From PFM T/V RC01 UAIDs 1338, 1339, 1504, 1442, 1443 Expanded Vertical Scale

PFM Band 16 Dets 1–10 MS 1 R* and K_inst fit sequentially in range 0.3 Ltyp to 0.9 Lmax, exclusive of saturation, with constraint at origin. From PFM T/V RC01 UAIDs 1338, 1339, 1504, 1442, 1443

PFM Band 16 Dets 1–10 MS 1 R* and K_inst fit sequentially in range 0.3 Ltyp to 0.9 Lmax, exclusive of saturation, with constraint at origin. From PFM T/V RC01 UAIDs 1338, 1339, 1504, 1442, 1443

TEB Calibration Algorithm Derivation

When Viewing the BCS

When Viewing the Space View Source (SVS)

Equate the Difference Signal to a Quadratic Fitting Function:

$$\underset{BCS}{^{SM}} \underset{BCS}{^{BCS}} L_{BCS} + \begin{pmatrix} \underset{SVS}{^{SM}} - \underset{BCS}{^{SM}} \end{pmatrix} L_{SM} = a_0^{BCS} + a_1^{BCS} dn_{BCS} + a_2^{BCS} dn_{BCS}^2$$
(1)

CAL-11

TEB Calibration Algorithm Derivation (Continued)

When Viewing the On-Board Blackbody (OBC)

Subtracting the Space View Path

 $\sum_{OBC OBC}^{SM} \sum_{OBC} L_{OBC} + \left(\sum_{SVS}^{SM} - \sum_{OBC}^{SM}\right) L_{SM} + \sum_{OBC}^{SM} \left(1 - \sum_{OBC}\right) \sum_{cav} L_{cav} = a_0^{BCS} + b_1^{OBC} dn_{OBC} + a_2^{BCS} dn_{OBC}^2$ (2) $b_1^{OBC} \text{ is determined scan-by-scan from OBC measurements}$ CAL-12

TEB Calibration Algorithm Derivation (Continued)

The linear gain term is continuously determined via the OBC blackbody by

$$b_{1}^{OBC} = \frac{\int_{OBC}^{SM} OBC + \left(\int_{SVS}^{SM} - \int_{OBC}^{SM}\right) L_{SM} + \int_{OBC}^{SM} \left(1 - OBC\right) + \int_{Cav}^{SM} L_{cav} - a_{0}^{BCS} - a_{2}^{BCS} dn_{OBC}^{2}}{dn_{OBC}}$$
(3)

Where $dn_{OBC} = DN_{OBC} - DN_{SVS}$

The Earth view radiance is given by:

$$\overline{L}_{EV(-)} = \frac{1}{\frac{SM}{EV(-)}} \left\{ \left(a_0^{BCS}(t) + b_1^{OBC} dn_{EV(-)} + a_2^{BCS}(t) dn_{EV(-)}^2 \right) - \left(\begin{array}{c} SM \\ SV - \begin{array}{c} SM \\ EV(-) \end{array} \right) \overline{L}_{SM} \right\}$$
(4)

- Wavelength dependent parameters are weighted by the Relative Spectral Response RSR() - $a_0(t)$ and $a_2(t)$ are functions of the instrument temperature

Earth View Radiance Is Retrieved From Both Pre-Launch and On-Board Parameters:

$$\overline{L}_{EV} = \overline{L}_{EV} \left[a_0(t), \underline{a}(t), \underline{b}_{AOI}^{SM}, \underline{c}_{AV}, \underline{o}_{BC}, T_{OBC}, RSR(), t, \underline{b}_1^{OBC}, T_{OBC}, T_{SM}, T_{CAV}, DN_{OBC}, DN_{SV}, DN_{EV} \right] (5)$$
Pre-Launch Parameters (7) On-Orbit Parameters (8)

Lincoln Laboratory Measured Scan Mirror Average Reflectance

Blackbody Calibration Source (BCS)

 $L_{BCS} = W_{P1} \cdot L(, T_{P1}) + W_{P2} \cdot L(, T_{P2}) + W_{P3} \cdot L(, T_{P3})$

BCS Trapezoid Configuration Achieves > 0.998 Emissivity (From SBRS)

The MODIS On-Board Calibrator (OBC) Blackbody

OBC Blackbody Emissivity

New Calibration Algorithm

To capture the effects of the scan mirror polarized reflectance variation with scan angle, the scan mirror average reflectance is replaced with the system level measured Response versus Scan Angle, RVS(), which is normalized to unity at the scan angle for the OBC.

BCS Calibration Equation

$$RVS_{BCS} \quad _{BCS} \quad L_{BCS} + \left(RVS_{SVS} - RVS_{BCS} \right) \quad L_{SM} = A_0^{BCS} + A_1^{BCS} dn_{BCS} + A_2^{BCS} dn_{BCS}^2$$
(1')

On Board Linear Gain

$$B_{1}^{OBC} = \frac{OBC}{dn_{OBC}} \frac{L_{OBC} + (RVS_{SVS} - 1)}{dn_{OBC}} L_{SM} + (1 - OBC) \frac{L_{Cav}}{Cav} L_{Cav} - A_{0}^{BCS} - A_{2}^{BCS} \frac{dn_{OBC}^{2}}{dn_{OBC}}$$
(3')

New Calibration Algorithm (Continued)

The Earth View Radiance Retrieval Equation:

$$\overline{L}_{EV(-)} = \frac{1}{RVS_{EV}(-)} \left\{ \left(a_0^{BCS}(t) + B_1^{OBC} dn_{EV}(-) + a_2^{BCS}(t) dn_{EV}^2(-) \right) - \left(RVS_{SV} - RVS_{EV}(-) \right) \overline{L}_{SM} \right\}$$
(4')

On-orbit, for the LWIR bands, the RVS() could be updated by measuring the scan mirror emission against the cold space background and applying the directional form of Kirchoffs Law.

New Calibration Algorithm (Continued)

Changes made considering the use of RVS and the reduction of PV electronic xtalk:

Previous Algorithm:		New Algorith	ım:
()		RVS()	
B20, 22, 23:	Cubic	PV bands :	Linear
All other bands	Quadratic	PC bands	Quadratic

1.0

 $(L_{n} - L_{r})/L_{n} \times 100 (\%)$ 1.0 - 0.0 - 0.0 1.1 - 0.0 - 0.0

-1.0

O

2

4

B31 (11.0 µm) L vs DN Quadratic Fitting Results at Nominal Plateau (273 K)

Solid Line: Lim

6

Dashed Line/Box: $(0.3L_{typ} - 0.9L_{max})$ ×

 $\pm 1/2$ Goal

CAL-21

At Launch General Sensor Status

Impact on Data Set	Expected Relation to Terra Data Set
10 km stripes; minimum at AOI of OBC device (RSB between NADIR and EOS; TEB between NADIR and BOS); growing at other AOIs	RSB - OK RVS labor ator y measur ement; expect minimum impact TEB-RVS not measured, expect significant impact
1 km stripes; minimum at L <i>OBC-Cal</i> and increases for radiance values away from L <i>OBC-Cal</i>	 RSB: using linear calibration; force aO (LO) to 0; expect bigger effect at low radiance levels (detector non-linearity) and little elsewhere until radiance nears saturation-radiance TEB-MWIR/ PV LWIR (Bands 20 - 30); using only linear calibration; likely a problem until "true" bO , b2 determined from OBC-BB elevated temperature cycles and scene data drive fix TEB- PC LWIR (Bands 31 - 36); adequate pre-launch calibration, do not expect a problem
Ghosts of surface features appear in atmospheric bands when cross-talk from surface band into atmospheric band	Present in B33-36 if B31 optical leak not preperly corrected; present in SW/MWIR
	 10 km stripes; minimum at AOI of OBC device (RSB between NADIR and EOS; TEB between NADIR and BOS); growing at other AOIs 1 km stripes; minimum at LOBC-CaI and increases for radiance values away from LOBC-CaI Ghosts of surface features appear in atmospheric bands when cross- talk from surface band into atmospheric band

Brief Description of Calibration Testing (On-orbit)

- RSB: from SD; linear calibration, through zero
 - Each detector, sub-frame and mirror side treated independently
- TEB: from OBC-BB
 - Each detector and mirror side treated independently
- General Sensor Status

Solar Diffuser Stability Monitor (SDSM)

- Long term solar diffuser plate trend monitoring
- SDSM contains 9 detectors with cwl close to 9 MODIS bands: 8, 3, 11, 4, 1, 15, 2, 17, and 18 respectively
- The BRDF (or relative BRF) of the SD for the SDSM viewing direction was not measured pre-launch
- On-orbit calibration: MODIS yaw maneuvers (OA-09), April 25 & 26, 2000. On-orbit measurement uncertainty of the SD relative BRF for the SDSM viewing direction is less than 0.3%

BRDF Round Robin

Preprint Results: Validation of SBRS Diffuser Plate Laboratory Measurement Techniques

- The BRDF RR data from SBRS was obtained from three samples: a) Spectralon ; b) Pressed PTFE; c) Sintered PTFE
- SBRS BRDF Spectralon measurements were validated to have an uncertainty less than 1.4 % for all incident angles
- SBRS BRDF Spectralon measurements at 30°, 45°, and 60° indicate better than 0.5% agreement with NIST (Early et al., 2000, accepted by JAOT). The MODIS on-orbit SD-Solar incident irradiance zenith angle 60°
- On-orbit validation of the Solar Diffuser **relative** BRDF agrees with SBRS pre-launch measurements to better than 1%

BRDF Round Robin Preprint Results: Figure 24, Early et al., 2000

SBRS 4 4 3 3 2 2 1 1 0 0 -1 -1 -2 -2 (b) pressed PTFE (a) Spectralon -3 -3 -4 _4 500 600 700 800 900 1000 400 500 600 700 800 900 1000 400 4 3 3 2 2 1 1 0 0 -1 -1 -2 -2 (c) sintered PTFE (d) Aluminum -3 -3 -4 -4 500 600 700 800 900 1000 400 500 600 700 800 900 1000 400 Wavelength [nm] Incident Angle [deg] → 45 0 - 30 -0- 60

CAL-27

On-orbit to Pre-launch 250m m₁ Coefficients

Fractional On-orbit to Pre-launch Differences for the MODIS 250m Bands

CAL-28

On-orbit to Pre-launch 500m m₁ Coefficients

Fractional On-orbit to Pre-launch Differences for the MODIS 500m Bands

On-orbit to Pre-launch 500m m₁ Coefficients

CAL-30

On-orbit to Pre-launch 1km m₁ Coefficients

Fractional On-orbit to Pre-launch Differences for the 1km Bands

On-orbit to Pre-launch 1km m₁ Coefficients

- Thermal emissive bands were calibrated with a quadratic algorithm at pre-launch
- Set PV bands a0 and a2 to 0 due to SAM resistors change
 - no retest after resistors change
- On-orbit analysis of using OBC retrieved b0 and b2
 - Prelaunch 21 BCS levels from 170K to 340K (not all used for every band)
 - On-orbit OBC BB warm-up & cool-down temperature ranging from 270K to 315K

PFM B31 US East Coat (066.1630; Day Mode)

Enhanced Radiance Images Using Pre-launch a0 and a2

TOA B31 & B32 Temperature Retrieval Difference Between a0, a2 (Pre-launch) and b0, b2 (On-orbit)

$$T = T_{EV}(b_0, b_2) - T_{EV}(a_0, a_2)$$

Images begin with mirror side 1

CAL-35

General Sensor Status

Sensor Characteristic (not accurately represented in L1B algorithm)	Impact on Data Set	Expected Relation to Terra Data Set	Actually Observed on Terra	
Mirror Side Differences (RVS)	10 km stripes; minimum at AOI of OBC device (RSB between NADIR and EOS; TEB between NADIR and BOS); growing at other AOIs	RSB - OK RVS laboratory measurement; expect minimum impact TEB-RVS not measured, expect significant impact	Yes Yes	
Channel-to-channel differences	1 km stripes; minimum at L <i>OBC-Cal</i> and increases for radiance values away from L <i>OBC-Cal</i>	RSB: using linear calibration; force aO (LO) to 0; expect bigger effect at low radiance levels (detector non-linearity) and little elsewhere until radiance nears saturation-radiance	Yes	
		TEB-MWIR/ PV LWIR (Bands 20 - 30); using only linear calibration; likely a problem until "true" b O , b 2 determined from OBC-BB elevated temperature cycles and scene data drive fix	Yes	
		TEB- PC LWIR (Bands 31 - 36); adequate pre-launch calibration, do not expect a problem	Yes	
			Saw-tooth stripes observed within a scan line in Ocean Colar data sets	
			20 km banding stripes observed in Ocean Color	
Cross-talk (optical or electronic)	Ghosts of surface features appear in atmospheric bands when cross-talk from surface band into atmospheric band	Present in B33-36 if B31 optical leak not preperly corrected; present in SW/MWIR	Technique to remove appearance of effect used for improved B31 leak into B32-36	

Calibration Strategies

- Calibration strategies >>> Image effects
 - Vulnerable to RSB ch-ch stripes due to SIS100 calibration uncertainty
 - Vulnerable to TEB MWIR stripes due to SAM resistor change
 - Vulnerable in SMIR focal plane data if electronic cross-talk varies by channel
 - Striping effects more pronounced than expected

Electronic Cross-talk

- What is Electronic Cross-talk
- How did we first see it, and what does it look like
- PFM status at-launch
- On-orbit efforts to mitigate behavior
- Configurations selected for further study
- Moon-in-Space-View-Port results
- SRCA (Spatial) results
- Summary of electronic cross-talk performance characterizations Discussion Aid
- What still needs to be done

- Readout integrating capacitor fails to return to baseline voltage following signal reset
- First realized nature of problem from RSR testing
 - Actually "seen" as negative dns & sub-frame differences, B5-7
 - Nearly impossible to detect when observing flat scenes; these calibrations in error, but cannot detect that
- Structured scene analysis in 1998 showed effects of 5-10% or more in SWIR bands & several percent in 4-µm SST bands
- Observed in both SW/MWIR and PV LWIR bands (5-7, 20-30)
- Focus here on SW/MWIR bands (5-7, 20-26)

EXTK-3

Band 5 Sub-frame Difference

EXTK-7

10

Band 26 Response to Thermal Source

Band 26 Response to Thermal Source (Channel 5 Nominal1 Dataset)

Consider a structured scene incident on the FPA 10km (track) x 30km (scan)

Structured Scene Analysis

Structured Scene Analysis

Structured Scene Analysis

SMIR FPA

- Bands 5-7,and 26 SWIR (1.2-2.2µm); Bands 20-25 MWIR (3.7-4.5µm)
- S Scan Direction; T Track Direction
- FPA Nominal Temperature (83K)

PFM Status At-launch

- Circuit analysis and later sub-system focal plane tests in cryo-dewar indicated inrush current to analog focal plane electronics during reset inadequate
- Replaced resistors (housed in SAM) to increase inrush current
- Did NOT retest to verify fix
- a₀ and a₂ terms for Bands 20-30 set to 0 in L1B code; need establish values on-orbit
- m₁ (linear gain) for SWIR invalid, but always intended replace m₁ on-orbit with SD-based value

Initial On-orbit Performance (Itwk/Vdet: 79/190)

Comparison of Residual Electronic Cross-talk On-orbit Compared to Sensor TV Performance

	PFM S TV re	Sensor sults	Terra MODIS on-orbit results		
Band 5, sf2	-33	365	-27	250	
Band 6, sf1	-14	125	-13	120	
Band 7, sf2	-52	277	-30	275	
	dn_BB	DN_SV	dn_BB	DN_SV	
	@285K	SF difference	@285K	SF difference	

- Options limited to adjustment of V_{det} (detector voltage bias control) and I_{twk} (FPA current bias control)
- Performed V_{det}/ I_{twk} sweeps looking for minimum B5-7 sub-frame differences; many configurations tested over 5 minute test period; OBC-BB at 285K for low flux scenes
- Performed elevated blackbody cycle for selected configurations to verify linear gain performance for B20-25); requires 24 hours for each configuration tested; SD observation present each configuration too (high flux scenes)
- Determined minimum residual electronic cross-talk in configuration of 110/226; induced non-functioning and noisy detectors (B5:16; B6:3, 7 & 8; B7:14; B21:9; B22:4, 7 & 8; B23:10; B24:8, 9 & 10; and B25:9 & 10)

Configurations Selected for Further Study

- MODIS operated in I_{twk}/V_{det} of 110/226 since 6 March; call this **Operational Configuration** (for simplicity)
- Optional Configuration (100/218) selected on basis of no detector outages in 4 µm SST bands and minimum cross-talk
 - No change in SWIR bands for detector functionality
 - Strong advocacy present from SST team
 - "Turning on" all SWIR detectors moves residual cross-talk to nearly identical level as at-launch operations
- Operational and Optional Configurations tested through Moon-in-Space-View-Port (M-SV) in April
- These two, plus At-launch Configuration for M-SV 21 June

Moon-in-Space-View-Port Results (Operational & Optional Configurations)

- Optional Configuration
 - Itwl / Vdet = 100 / 218
 - Lunar observation at 84 17:00
- Operationall Configuration
 - Itwl / Vdet = 110 / 226
 - Lunar observation at 84 20:20

Contamination due to cross-talk for the two lunar observations

- Calculate the sum, S1, of the observed dns for a given band
- Isolate the region where true dns dominate and evaluate the summation of the dns, S2
- The total cross-talk from other bands, S3 = S1 S2
- The ratio of the cross-talk over signal, R = S3 / S2

RSB & TEB Ltyp & dn@Ltyp

RSB	CWL	Ltyp	dn @	TEB	CWL	Ltyp	dn @
Band	(nm)	$(W/m^2/sr/\mu m)$	Ltyp	Band	(µm) V	$(\mu m) W/m^2/sr/\mu m)$	
1	646.5	21.8	111	20	3.788	0.45	966
2	856.7	24.7	315	21	3.992	2.38	150
3	465.6	35.3	163	22	3.972	0.67	1346
4	553.7	29.0	209	23	4.057	0.79	1372
5	1241.9	5.4	195	24	4.473	0.17	263
6	1629.1	7.3	389	25	4.545	0.59	876
7	2114.3	1.0	190	27	6.765	1.16	404
8	411.8	44.9	925	28	7.337	2.18	698
9	442.1	41.9	1201	29	8.524	9.58	2284
10	486.9	32.1	1189	30	9.730	3.69	681
11	529.7	27.9	1305	31	11.014	9.55	1301
12	546.8	21.0	1236	32	12.028	8.94	1448
13lo	665.6	9.5	1056	33	13.361	4.52	1324
14lo	676.7	8.7	1025	34	13.680	3.76	1029
15	746.4	10.2	1421	35	13.911	3.11	842
16	886.2	6.2	887	36	14.195	2.08	461
17	904.1	10.0	190				
18	935.3	3.6	51				
19	936.1	15.0	287				
26	1382.0	6.0	288				
13hi	665.6	9.5	1465				
14hi	676.7	8.7	1735				

Differences in the "Vermote-Scence" (Granule 66.1630, Day mode, US East Coast) for operational and optional configurations

Differences in the "Vermote-Scence" for the operational & optional configurations

- Cross-talk coefficients are determined for the two configurations with a linear response assumption using the dns of the lunar views
- With each group of cross-talk coefficients, a correction can be calculated for each pixel
- The correction dns vary with detectors, scans, frames, and the cross-talk coefficients
- Average the correction dns over detectors, scans, frames for each band

Contamination due to cross-talk for the two lunar observations

Band 3 (Channel 10) During 84/17:00 Moon View Event

Band 16 (Channel 5) During 84/17:00 Moon View Event

Band 5 (Channel 10) During 84/17:00 Moon View Event

Band 5 (Channel 10) During 84/17:00 Moon View Event

Band 3 (Channel 10) During 84/20:20 Moon View Event

Band 16 (Channel 5) During 84/20:20 Moon View Event

Band 5 10 (Channel 10) During 84/20:20 Moon View Event

Band 5 10 (Channel 10) During 84/20:20 Moon View Event

Band 20 (Channel 5) During 84/20:20 Moon View Event

Band 27 (Channel 5) During 84/20:20 Moon View Event

- Results to date:
 - Differences in electronic cross-talk less than had been expected from low-flux OBC-BB testing
 - Behavior looks complicated and non-linear

- On-orbit SRCA Spatial Test
 - Slit (1 by 10) illumination
 - Sector rotation more frames
 - Itwk/Vdet = 110/226
- dn': dark background subtracted

- Clearly different electronic cross-talk (receiver) for similar illumination levels in sender band
- Need perform careful comparison with other measures of this behavior
- Note: M-SV over-drives the focal plane in way not typical to how operate on orbit, but SRCA seems to illuminate TEB in way similar to earth scenes, but SWIR illumination not really typical

Summary of electronic cross-talk performance characterizations

	Feature			
Configuration	Cross-talk	SWIR sub-frame difference, low flux levels	SWIR sub-frame difference, high flux level	Non-functional Detectors
Launch 79/190	Presumed significant; will verify 21 June	Significant	Significant	None
Optional 100/218	Small, but larger than Operational	Small (all bands)	Small	3 SWIR channels
Operational 110/226	Small	Negligible	Negligible (small Band 7)	3 SWIR channels 3 MWIR channels

- MCST recommendations that Science Team not rely on any correction algorithms in selecting operating configuration
- Will repeat M-SV on 21 June, for 3 configurations
- Will get SRCA observations for all 3 configurations
- What about the B-side
- Reassess after measuring 3 configurations for SRCA and M-SV in June
- Land Team evaluating early data for at-launch configuration

Changes in configuration changes gains

Preliminary Conclusions

- Electronic Cross-talk (based on M-SV data set)
 <u>At Operational Configuration (110/226)</u>
 - MWIR effects seem to be about 3%
 - Bias may be function of scene temperature
 - Effect "incorporated" into calibration coefficient determination
 - SWIR effects may be typically 1 3%
 - Must be very careful for scenes with low dn signals in a SWIR band
 - Need verify DN_{SV} not contaminated
 - PV LWIR effect gone

Need review results from June M-SV data & provide recommendation for final operating configuration to Team Leader

Voltages converted using Command and Telemetry coefficients

051/21:36 VDET:ITWK=110 SMIR Fine Tuning

051/21:36 VDET:ITWK=110 SMIR Fine Tuning

051/21:36 VDET:ITWK=110 SMIR Fine Tuning

Figure 1. Band 5 dn_{BB} of SMIR-A Itwk/Vdet Sweeps

Figure 2. Band 5 DN_{SV} of SMIR-A Itwk/Vdet Sweeps

Figure 3. Band 6 dn_{BB} of SMIR-A Itwk/Vdet Sweeps

Figure 4. Band 6 DN_{SV} of SMIR-A Itwk/Vdet Sweeps

Figure 5. Band 7 dn_{BB} of SMIR-A Itwk/Vdet Sweeps

Figure 6. Band 7 DN_{SV} of SMIR-A Itwk/Vdet Sweeps

Figure 2. PFM B6 $\langle dn_{BB} \rangle$ of Sub-frame 1, 2, and their Difference OBC Data Sets Selected during OA-26 (Day 45-47) (Blackbody Warm-up/Cool-down Activity; Itwk:79/Vdet:190)

□ Ch11 □ Ch12 ◇ Ch13 ◇ Ch14 ◇ Ch15 ◇ Ch16 ▽ Ch17 ▽ Ch18 ▽ Ch19 ▽ Ch20

OBC Data Sets Selected during OA-26 (Day 45-47) (Blackbody Warm-up/Cool-down Activity; Itwk:79/Vdet:190)

Figure 3. PFM B7 $\langle dn_{BB} \rangle$ of Sub-frame 1, 2, and their Difference

Figure 1. PFM B5 $\langle dn_{BB} \rangle$ of Sub-frame 1, 2, and their Difference OBC Data Sets Selected during OA-26 (Day 83-84) (Blackbody Cool-down Activity; Itwk:100/Vdet:218)

Figure 2. PFM B6 $\langle dn_{BB} \rangle$ of Sub-frame 1, 2, and their Difference OBC Data Sets Selected during OA-26 (Day 83-84) (Blackbody Cool-down Activity; Itwk:100/Vdet:218)

 \square Ch11 \square Ch12 \diamond Ch13 \diamond Ch14 \diamond Ch15 \diamond Ch16 \bigtriangledown Ch17 \bigtriangledown Ch18 \bigtriangledown Ch19 \bigtriangledown Ch20

Figure 3. PFM B7 $\langle dn_{BB} \rangle$ of Sub-frame 1, 2, and their Difference OBC Data Sets Selected during OA-26 (Day 83-84) (Blackbody Cool-down Activity; Itwk:100/Vdet:218)

O Ch1 O Ch2 O Ch3 O Ch4 △ Ch5 △ Ch6 △ Ch7 △ Ch8 □ Ch9 □ Ch10 □ Ch11 □ Ch12 ◇ Ch13 ◇ Ch14 ◇ Ch15 ◇ Ch16 \bigtriangledown Ch17 \bigtriangledown Ch18 \bigtriangledown Ch19 \bigtriangledown Ch20

OBC Data Sets Selected during OA-26 (Day 57) (Blackbody Warm-up/Cool-down Activity; Itwk:110/Vdet:226)

Figure 1. PFM B5 $\langle dn_{BB} \rangle$ of Sub-frame 1, 2, and their Difference

Figure 2. PFM B6 $\langle dn_{BB} \rangle$ of Sub-frame 1, 2, and their Difference OBC Data Sets Selected during OA-26 (Day 57) (Blackbody Warm-up/Cool-down Activity; Itwk:110/Vdet:226)

□ Ch11 □ Ch12 ◇ Ch13 ◇ Ch14 ◇ Ch15 ◇ Ch16 ▽ Ch17 ▽ Ch18 ▽ Ch19 ▽ Ch20

OBC Data Sets Selected during OA-26 (Day 57) (Blackbody Warm-up/Cool-down Activity; Itwk:110/Vdet:226)

Figure 3. PFM B7 $\langle dn_{BB} \rangle$ of Sub-frame 1, 2, and their Difference

EXTK-A23

EXTK-A25

EXTK-A29

EXTK-A30

EXTK-A32

- Pre-launch Analysis Review
 - Crosstalk observations
 - Correction algorithm
 - Coefficients determination
- On-orbit Analysis Results
 - Moon in Space View Port (SVP)
 - New coefficients
 - Scene applications

LWIR FPA

S

PC Bands 31-36

Pre-launch Crosstalk Observation (Spatial/Spectral OOB Response Testing)

BAND 35 SPECTRAL AND SPATIAL RESPONSE

- Assumptions
 - Only B31 to other PC bands (32 36) considered
 - Possible along track crosstalk not included
- Algorithm
 - Apply to B32-36 dn_{BB} and dn_{EV} for calibration and retrieval
 - LUT with channel to channel flexibility in L1B code

$$dn_{B(i)}^{True}(F) = dn_{B(i)}^{Cont}(F) - Xtalk_{B31 - B(i)} dn_{B31}(F + FO_{31 - B(i)}) p_{B(i)} + q_{B(i)}$$

(F: Frame; FO: Frame Offset; p and q parameters for use in on-orbit correction)

- Coefficients Determination
 - Same type of PC detectors on the same FPA
 - Non-linearity (NL) depends on the detector gain setting
 - B31 crosstalk changes the NL behavior of other PC bands
 - Quadratic fitting using RC02 TV BCS data
- Pre-launch Coefficients (LUT in L1B)

B(i)	Ch	Xtalk	FO	р	q
32 32 	1 2 	1.0 1.0 	4 4 	1 1 	0 0
32	10	1.0	4	1	0
33	1	1.0	-12	1	0
•••	•••	•••	•••	•••	•••
34	1	3.5	-9	1	0
•••	•••	•••	•••	•••	•••
35	1	8.3	-6	1	0
•••	•••	•••	•••	•••	•••
36	1	6.5	-3	1	0
•••	•••	•••	•••	•••	•••

On-orbit Analysis Results (Moon in SVP)

B31 D1, D5, and D10 Moon View

PCX-7

On-orbit Analysis Results (B31 D5 View of the Moon)

On-orbit Analysis Results (B33 D5 View of the Moon)

On-orbit Analysis Results (B34 D5 View of the Moon)

On-orbit Analysis Results (B35 D5 View of the Moon)

On-orbit Analysis Results (Moon in SVP)

- New Coefficients Determined for B33, 34, 35
 - Same assumption & same algorithm
 - B32 coefficients unchanged
 - B36 coefficients estimated (due to small frame offset)

Detecor	B32	B33	B34	B35	B36
1	0.010	0.012	0.023	0.045	0.025
2	0.010	0.014	0.024	0.045	0.025
3	0.010	0.014	0.022	0.045	0.025
4	0.010	0.014	0.022	0.045	0.025
5	0.010	0.014	0.020	0.045	0.025
6	0.010	0.015	0.019	0.045	0.025
7	0.010	0.015	0.020	0.045	0.025
8	0.010	0.014	0.023	0.050	0.025
9	0.010	0.015	0.025	0.055	0.025
10	0.010	0.007	0.027	0.060	0.025

On-orbit Analysis Results (B33 D5 View of the Moon)

On-orbit Analysis Results (B34 D5 View of the Moon)

84/20:20 Moon View Event

On-orbit Analysis Results (B35 D5 View of the Moon)

84/20:20 Moon View Event

On-orbit Analysis Results (Scene Applications)

- Selected scene (1353km x 2030km, Day mode)
- B34 and B35 Images (75km x 75km) with
 - No correction
 - Pre-launch correction coefficients
 - New correction coefficients
- New Coefficients are Better
- Planning LUT Update

(Coordinating with Chris Moeller of U. of Wisconsin)

Baja, California

Selected Image Area (28N 114W) Isla Angel de la Guarda

Baja California (094.1835; Day Mode) Enhanced Radiance Images (*before* PC_XT Correction) in True Color

Band 34 (Top) & Band 35 (Bottom) (94/18:35)No CorrectionPre-launch CorrectionNew Correction

Band 34 (Top) & Band 35 (Bottom) (78/18:35)No CorrectionPre-launch CorrectionNew Correction

Band 34 (Top) & Band 35 (Bottom) (103/18:30)No CorrectionPre-launch CorrectionNew Correction

ADC Performance

- Pre-launch ADC Testing and Evaluation
 - Component Level Testing
 - System Level (Ramp) Testing
 - Spacecraft TV Testing (TEB only)
- On-orbit ADC Performance

MODIS Electronic Block Diagram

ADC List

ADC #	ADC Name	Bands	ADC #	ADC Name	Bands
1	VIS (p)	3,4, 8-12	15	PCB31 (p)	31
2	VIS (r)		16	PCB31 (r)	
3	NIR1 (p)	1	17	PCB32 (p)	32
4	NIR1 (r)		18	PCB32 (r)	
5	NIR2 (p)	2	19	PCB33 (p)	33
6	NIR2 (r)		20	PCB33 (r)	
7	NIR3 (p)	13-19	21	PCB34 (p)	34
8	NIR3 (r)		22	PCB34 (r)	
9	SMIR5 (p)	5,6,7	23	PCB35 (p)	35
10	SMIR5 (r)		24	PCB35 (r)	
11	SMIR20 (p)	20-26	25	PCB36 (p)	36
12	SMIR20 (r)		26	PCB36 (r)	
13	LWIR (p)	27-30		Ţ	
14	LWIR (r)		PC Bands ADC Conversion Time: 15 μs		
	Ļ				
V Bands	ADC Conversion	Time: 800 ns	p/r: pri	mary / redunda	nt

- 16-bit DAC used as calibrator for the 12-bit ADC
- Minimum 2 DAC steps for each of the ADC DN step (level)
- Averaging 200 400 samples per DAC step
- BFSL method used to fit the averaged ADC DN data set -> Integral Non-linearity (INL)
- No test for LWIR PC bands ADCs
- Periodic pattern observed

Component Level Testing

Component Level Testing

- Ramp generator with triangle waveform covering most of the dynamic range
- ALL ADCs Evaluated
- SBRS analysis -> Differential Non-linearity (DNL)
- MCST histogram plots show some periodic patterns

ADC Name	UAID	Band	A vs B	Note
PCB31	901	31	A	Data not found
PCB32	904	32	А	
PCB33	905	33	А	
PCB34	906	34	А	
PCB35	907	35	А	Data on
PCB36	908	36	А	Channel 1 only
PCB36	909/1	36	В	
PCB35	909/2	35	В	
PCB34	910/1	34	В	-
PCB33	910/2	33	В	-
PCB32	910/3	32	В	-
PCB31	910/4	31	В	-
VIS	949	11,12	A	Data not found.
NIR1	950	2	Α	
NIR2	951	1	А	
NIR3	952	14,15	А	
SMIR1	953	6.7	А	
SMIR2	954	20.22	А	-
LWIR	955	27-30	А	-
VIS	956	3.12	A	-
NIR1	957	2	A	
NIR2	958	1	A	-
NIR3	959	14	A	-
SMIR1	960	67	A	Channel 5 Ploted
SMIR2	961	20.22	A	
LWIR	962	27,30	A	-
VIS	963	8	B	-
NIR1	964	2	B	-
NIR2	965	1	B	-
NIR3	966	14.15	B	-
SMIR1	967	67	B	-
SMIR1	968	23-26	B	-
SMIR2 SMIR1	969	567	B	-
SMIR1	970	24	B	-
I WIR	971	27	B	-
VIS	972	3.12	B	-
NIR1	973	2	B	-
NIR1	974	1	B	-
NIR3	975	14-16	B	
SMIR1	976	67	R	
SMIR?	977	24	R	
LWIR	978	27	R	
NID 2	990	21		
NID 1	001	<u> </u>		-
NID 2	991	13 10 27 29		-
NIK3	992	13-19,57,38	A D	-
NIK2	993	2	D	-
NIKI NID2	994	12 10 27 29	D	-
INIK3	995	1319,37,38	В	

System Level (Ramp) Testing B17, primary, channel 5

Histogram of PFM ADC RAMP DATA, UAID = 992, Band 17

System Level (Ramp) Testing

B17, redundant, channel 5

Histogram of PFM ADC RAMP DATA, UAID = 995, Band 17

System Level (Ramp) Testing

B33, primary, channel 1

Histogram of PFM ADC RAMP DATA, UAID = 905, Band 33

System Level (Ramp) Testing

B33, redundant, channel 1

Histogram of PFM ADC RAMP DATA, UAID = 910, Band 33

Spacecraft TV Testing

- OBC BB warm-up / cool-down data (TEB)
- Limited dynamic range
- PC Bands ADC performance evaluated

Protoflight S/C T/V Orbi	ital MODIS Configuratio	n List		
CONFIG	PRI/RED	PWR SPLY	ANALOG	DIGITAL
			PCLW, PVVIS, PVNIR, PVSM, PVLW	TG, CE, SA, FR, FI
1	PRI	PS1	А	Α
2	PRI	PS1	A	В
3	PRI	PS1	В	А
4	RED	PS2	В	В
5	RED	PS2	A	Α
6	RED	PS2	A	В

Spacecraft TV Testing (SBRS Analysis)

(Processed configurations)

UAID	Config	Orbit	Temp	Test	UAID Comment	Scans	Sector	Samples
1000305	1		-4.64	ECAL	PC ECAL, CPT-A	800	3	50
1000383	4	5B	-18.46	SRCA	ORBIT 5B CONFIG 4 SRCA	1070	3	50
1000401	5	14B	-12.11	SRCA	ORBIT 14B, CONFIG 5 SRCA	1000	3	50
1000298	6	17B	5.21	SRCA	SRCA COLLECT, ORBIT B, CYCLE 17, CONFIG 6, TRANSITIONING TO HOT CYCLE 4, DAY MODE	1070	3	50
1000405	CPB		-14.99	ECAL	CPT COLD W/CPB PC ECAL	800	3	50
1000325	TT		-8.48	NOISE	TRANS TOL, DISABLED MOPITT PUMP	50	5	1354

(Configurations to be processed)

UAID	Orbital Config	Date - Time
1000225	2	2/13/97 20:34
1000226	2	2/13/97 22:15
1000227	2	2/13/97 23:26
1000228	2	2/14/97 00:14
1000163	3	2/12/97 13:12
1000164	3	2/12/97 13:23
1000165	3	2/12/97 14:09

UAID 1000305, Configuration 1

Detector 1

 $\begin{array}{ll} \min(aDNL01 \)=-0.85 & \max(aDNL01 \)=0.97 \\ stdev \ (aDNL01 \)=0.29 \end{array}$

 $\begin{array}{ll} \min(aDNL02 \) = -0.4 & \max(aDNL02 \) = 0.43 \\ stdev \ (aDNL02 \) = 0.25 \end{array}$

Detector 3

min(aDNL03) = -0.71 max(aDNL03) = 0.76stdev (aDNL03) = 0.24

min(aDNL04) = -0.62 max(aDNL04) = 0.8stdev (aDNL04) = 0.4

UAID 1000305, Configuration 1

min(aDNL05) = -0.79 max(aDNL05) = 0.81stdev (aDNL05) = 0.37

Detector 6

Histogram

min(aDNL06) = -0.73 max(aDNL06) = 0.7stdev (aDNL06) = 0.41

Detector 7

min(aDNL07) = -0.45 max(aDNL07) = 0.53 stdev (aDNL07) = 0.25

Differential Non-Linearity

min(aDNL08) = -1 max(aDNL08) = 1.87stdev (aDNL08) = 0.62

Differential Non-Linearity

UAID 1000305, Configuration 1

UAID 1000383, Configuration 4

Detector 1

 $\begin{array}{ll} \min(aDNL01 \)=-0.3 & \max(aDNL01 \)=0.35 \\ stdev \ (aDNL01 \)=0.09 \end{array}$

Detector 2

 $\min(aDNL02) = -0.17 \max(aDNL02) = 0.27$ sidev (aDNL02) = 0.07

Detector 3

Detector 4

min(aDNL03) = -0.35 max(aDNL03) = 0.33sidev (aDNL03) = 0.13

127 I.

UAID 1000383, Configuration 4

Differential Non-Linearity

 $\begin{array}{ll} \min(aDNL06 \) = -0.53 & \max(aDNL06 \) = 0.54 \\ sidev \ (aDNL06 \) = 0.27 \end{array}$

Detector 7

Detector 8

 $\min(aDNL07) = -0.44 \max(aDNL07) = 0.54$ stdev (aDNL07) = 0.29

Differential Non-Linearity

ADC-21

min(aDNL08) = -0.55 max(aDNL08) = 0.58stdev (aDNL08) = 0.21

UAID 1000383, Configuration 4

Detector 9

- MCST EV data histogram for RSB and TEB
 - More than 10 granules L1A EV sector data used in examples
 - Some periodic patterns observed
 - PC bands (B31-36) show same channel dependent structure
- SBRS differential non-linearity (DNL) analysis (preliminary)
 - MOD01SS.A2000102.0125.001.001.hdf (from Miami)
 - SST Bands 20, 22, 23, 31, and 32 analyzed

L1A Files Processed for the Examples

MOD01.A2000075.1505.001.2000077092232.hdf MOD01.A2000075.1510.001.2000077092818.hdf MOD01.A2000075.1515.001.2000077091209.hdf MOD01.A2000075.1520.001.2000077091512.hdf MOD01.A2000075.1525.001.2000077092615.hdf MOD01.A2000075.1535.001.2000077092615.hdf MOD01.A2000075.1540.001.2000077093023.hdf MOD01.A2000075.1545.001.2000077091120.hdf MOD01.A2000075.1555.001.2000077091245.hdf MOD01.A2000075.1555.001.2000077091345.hdf MOD01.A2000075.1555.001.2000077091345.hdf

ALL RSB & TEB (bands & channels) Analyzed

On-orbit ADC Performance

ADC Histogram of Events vs DN For Band 16

On-orbit ADC Performance

ADC Histogram of Events vs DN For Band 32

On-orbit ADC Performance

ADC Histogram of Events vs DN For Band 34

Band 20, PFM On-orbit Data

Detector 1

 $\min(aDNL01) = -0.41 \mod(aDNL01) = 0.43$ sklev (aDNL01) = 0.09 $adNa.e1_{j} = 0.5$ -0.5 -0.

Differential Non-Linearity

 $min(aDNL02^{\circ}) = -0.54 max(aDNL02^{\circ}) = 0.51$ stelev (aDNL02^{\circ}) = 0.1

Land Grad North Rancy

Differential Non-Linearity

min(aDNL04) = -0.64 max(aDNL04) = 0.5sciev (aDNL04) = 0.1

Detector 2

Detector 3

Detector 4

Band 20, PFM On-orbit Data

Detector 5

Detector 6

300

2400.

mag0g 150

man(aDNL06) = -0.39 man(aDNL06) = 0.48sidev (aDNL06) = 0.09

Differential Non-Linearity

Differential Non-Linearity

min(aDNL08) = -0.55 max(aDNL08) = 0.44stday (aDNL08) = 0.09

Detector 7

500

6610

DNDS, Histogram 700

80.0

Detector 8

Differential Non-Linearity

min(aDNL10) = -0.73 max(aDNL10) = 0.68stdev (aDNL10) = 0.11

ADC-31

Preliminary Conclusions (2)

CAUTION - THESE RESULTS CAME FRIDAY, 2 JUNE, AND MUST BE VERIFIED. ESPECIALLY PC RESULTS SURPRISE US

- ADC On-orbit
 - A-side (PC Bands, 31 36) 3 or 4 of 10 channel pairs for SST (Bands 31 & 32) meet Differential Non-Linearity (DNL) requirement
 - A-side (PV Bands, 20 25) 3 of 10 channel sets for SST-4µm (Bands 20, 22 & 23) meet DNL requirement
- ADC Spacecraft Thermal Vacuum (S/C T/V) testing
 - Useful data for Band 36 only
 - A-side 1 of 10 channels meets DNL requirement
 - B-side 6 of 10 channels meets DNL requirement
 Expect significant improvements operating on B-side
 Need investigate NIR behavior now too