Cloud Optical & Microphysical Properties (M. D. King, S. Platnick, M. Gray, E. Moody, et al. – NASA GSFC, UMBC)

- Optical thickness, particle size (effective radius), and water path
- 1 km spatial resolution, daytime only, liquid water & ice clouds
- Solar reflectance technique, VIS through MWIR
 - -Water nonabsorbing bands: 0.65, 0.86, 1.24 µm
 - Water absorbing bands: 1.6, 2.1, 3.7 μm
- Land, ocean, and snow/sea ice surfaces
 - Land surface: 0.65 μm
 - Ocean surface: 0.86 µm
 - Snow/ice surfaces: 1.24 μ m
- MODIS 1st satellite sensor with all useful SWIR, MWIR bands

Retrieval of τ_c and r_e

- The reflection function of a nonabsorbing band (e.g., 0.86 µm) is primarily a function of optical thickness
- The reflection function of a near-infrared absorbing band (e.g., $2.14 \mu m$) is primarily a function of effective radius
 - clouds with small drops (or ice crystals) reflect more than those with large particles
- For optically thick clouds, there is a near orthogonality in the retrieval of τ_c and r_e using a visible and nearinfrared band

Liquid Water Clouds - ocean surface

Retrieval of τ_c and r_e

- The reflection function of a nonabsorbing band (e.g., 0.86 µm) is primarily a function of optical thickness
- The reflection function of a near-infrared absorbing band (e.g., 2.14 µm) is primarily a function of effective radius
 - clouds with small drops (or ice crystals) reflect more than those with large particles
- For optically thick clouds, there is a near orthogonality in the retrieval of τ_c and r_e using a visible and nearinfrared band

Ice Clouds - ocean surface

Cloud Optical & Microphysical Properties Retrieval Example

Liquid Water Clouds - ocean surface

Liquid Water Clouds - ice surface

Cloud Optical & Microphysical Properties

• Critical input

- Cloud mask
 - » to retrieve or not to retrieve?
- Cloud thermodynamic phase
 - » use liquid water or ice libraries?
- Surface albedo
 - » for land, ancillary information regarding snow/ice extent (NISE data set)
- Atmospheric correction
 - » requires cloud top pressure, ancillary information regarding atmospheric moisture & temperature (e.g., NCEP, DAO, other MODIS products)
- 3.7 μm emission (band contains both solar and emissive signal)
 - » need cloud top temperature, ancillary for surface temperature (e.g., from NCEP, DAO, ...)

Ecosystem Map (A. H. Strahler, C. B. Schaaf, et al. – Boston University)

MOD12 (IGBP ecosystem classification) + USGS water + tundra

Surface Albedo

Surface albedo = ecosystem + MOD43 (Strahler, Schaaf et al.) aggregation

Albedo Movies

Loops through bands 0.65, 0.86, 1.24, 1.64, 2.1, and 3.7 μ m Loops through seasonal equinox and solstice, progressing from Julian days 91, 173, 293, 356

Ecosystem Color Scheme

Pink = Crops Green = Trees Yellows = Barren/Deserts Blues = Savannas

Atmospheric Correction

- Cloud library calculations give cloud-top quantities (no atmosphere)
 - atmosphere included during retrieval
- Rayleigh scattering
 - iterative approach applied to 0.65 µm band only (used over land)
 - important for thin clouds and for any clouds with large solar/view angle combinations
- Atmospheric absorption
 - Well-mixed gases a function of p_c , water vapor absorption a function of profile; both a weak function of temperature
 - Assume above-cloud column water vapor amount the primary parameter, vapor profile of minor consequence
 - Library calculations made at a variety of p_c , above-cloud column water amounts (scaled from various water vapor and temperature profiles), geometries
 - » using MODTRAN 4.0 with scripts for 2-way transmittance calculations
 - requires cloud top pressure, and ancillary information regarding atmospheric moisture (currently using NCEP)

Two-way Atmospheric Path Transmittance $(1/\mu + 1/\mu_0)$

 $p_c = 900 \text{ hPa}$ $w = 2.0 \text{ g-cm}^{-2} \text{ above-}$ cloud precipitable water $\mu_0 = 0.8$

Cloud Optical Thickness in the Arctic: Provisional Production Code (edition 3)

Cloud Optical Thickness in the Arctic: Provisional Production Code (new correction)

Cloud Effective Radius in the Arctic: Provisional Production Code (edition 3)

Cloud Effective Radius in the Arctic: Provisional Production Code (new correction)

Level-2 Global Cloud Images

True Color Image Cloud Mask Land Classification Cloud Optical Thickness Cloud Effective Radius Cloud Top Temperature Bispectral Phase

October 1, 2001

SAFARI 2000 Core Sites

UK C-130 in situ droplet radius, liquid water content 11 Sept. 2000, 0941-0953 UTC (S. Osborne, Met Office)

<u>Previous</u> + SAFARI 2000 Namibian Sc studies

Namibian Sc often have significantly smaller droplet sizes than other regimes? Or lack the larger droplet sizes of other regimes? A difference in CCN concentrations? If so, why?

Comparison of Visible Optical Thickness (G. G. Mace, S. Bensen, K. Sassen – University of Utah)

MOD06 Optical Thickness

Gridded Level-3 Joint Atmosphere Products (M. D. King, S. Platnick, P. A. Hubanks, et al. – NASA GSFC, UMBC)

- Daily, 8-day, and monthly products (474.8, 883.2, 883.2 MB)
- $1^{\circ} \times 1^{\circ}$ equal angle grid
- Mean, standard deviation, marginal probability density function, joint probability density functions

Cloud Optical Thickness

Cloud Effective Particle Radius

MODIS L3 aggregation from 6°x 6° grid off <u>Namibian</u> coast liquid water clouds

L3 product bin sizes (liquid water clouds)

Cloud Top Pressure

(W. P. Menzel, R. Frey, K. Strabala, L. Gumley, et al. – NOAA NESDIS, U. Wisconsin/CIMSS)

> Level-3 Monthly April 2001

Precipitable Water over Land & Sunglint (B. C. Gao, et al. – Naval Research Laboratory)

Level-3 Monthly April 2001

MODIS Aerosol Optical Thickness & Effective Radius

Aerosol Optical Thickness (fine mode) (Y. J. Kaufman, D. Tanré, L. A. Remer, D. A. Chu. – NASA GSFC, CNES/USTL)

Level-3 Monthly September 2000

Aerosol Optical Thickness (coarse mode) (Y. J. Kaufman, D. Tanré, L. A. Remer, D. A. Chu. – NASA GSFC, CNES/USTL)

Level-3 Monthly September 2000

