Comparison of MODIS and SeaWiFS Chlorophyll Products: Collection 4 Results

Janet W. Campbell and Timothy S. Moore University of New Hampshire

MODIS Science Team Meeting Greenbelt, Maryland July 23, 2002

Comparison of MODIS and SeaWiFS Chlorophyll Products: Collection 4 Results

- MODIS Oceans: Collection 4 began June 2, 2002
- SeaWiFS: Reprocessing V.4 as of July 9, 2002

MODIS Chlorophylls:

• Chlor_MODIS (MOD19: Dennis Clark)

• Chlor_a_2 (MOD21:Janet Campbell)

• Chlor_a_3 (MOD21: Ken Carder)

SeaWiFS Chlorophyll:

• OC4.v4 John E. O'Reilly (NASA TM 2000-206892, Vol. 11)

Why so many MODIS chlorophylls? What's the difference?

Originally there were 2 algorithms:

• "Case 1" waters: Chlor_MODIS (Clark)

This is an empirical algorithm based on a statistical regression between chlorophyll and radiance ratios.

• "Case 2" waters: Chlor_a_3 (Carder)

This is a semi-analytic (model-based) inversion algorithm. This approach is required in optically complex "case 2" (coastal) waters.

Chlor_MODIS December 2000 (Collection 3)

This algorithm was based on regression involving HPLC chlorophyll(s). n=93, $r^2=0.915$, std error of estimate = 0.047.

Chlor_MODIS (Dennis Clark): December 2000

Chlor modis

Collection 3: Based on 443 to 551 band ratio... analogous to CZCS algorithm.

chlor MODIS

Collection 4: Based on ratio 443 + 488 to 551.

Chlor_a_3 December 2000 (Collection 3)

This "semi-analytic" algorithm accounts for pigment packaging effects in nutrient-replete and nutrient-deplete conditions.

Chlor_a_3 (Ken Carder): December 2000

Chlor_a3

Collection 3: Used Reynolds SST to determine nutrient deplete/replete status

Collection 4: Uses MODIS SST (daytime 11-12 µm) to determine nutrient deplete/replete status.

More recently a 3rd algorithm was added:

• "SeaWiFS-analog"

Chlor_a_2 (Campbell)

This is an empirical algorithm using the 443:551 and 488:551 band ratios whichever is greater.

SeaWiFS algorithm

OC4.v4 (O'Reilly)

This is an empirical algorithm using the 443:555, 490:555 and 510:555 band ratios whichever is greater.

Chlor_a_2 December 2000 (Collection 3)

This "SeaWiFS analog" algorithm is based on the same data set used to parameterize the SeaWiFS algorithm.

Chlor_a_2 ("SeaWiFS analog"): December 2000

Collection 3: Used OC3M algorithm developed by Jay O'Reilly et al.

Collection 4: Uses the same OC3M algorithm applied to reprocessed radiances.

The Chlor_a_2 algorithm was proposed by the developers of the OC4.v4 SeaWiFS algorithm. It was called OC3M (3 band, M for MODIS)

SeaWiFS December 2000 (Reprocessing 3)

SeaWiFS: December 2000

Reprocessing 3

Reprocessing 4

Collection 4 December 2000

 $\Delta \log chl$

Dec. 2000 - Monthly MODIS v4 ; SeaWiFS v4 Quality 0

Comparisons of Global 36-km MODIS Chlorophyll with SeaWiFS

Global 36 km	Chlor_MODIS		Chlor_a2		Chlor_a3	
Product for	RMS	Bias	RMS	Bias	RMS	Bias
Dec. 2000	0.16	0.03	0.12	0.00	0.25	0.14
Dec. 2-9, 2000	0.18	0.03	0.15	0.00	0.26	0.13
Jun. 2-9, 2002	0.24	0.08	0.19	0.03	0.20	0.05
Jun. 2, 2002	0.25	0.08	0.22	0.03	0.24	0.06
Dec. 4, 2000	0.21	0.02	0.17	-0.02	0.27	0.11
Apr. 8, 2001	0.24	0.08	0.19	0.04	0.24	0.07

Note: Units are decades of log. Bias is average difference of MODIS minus SeaWiFS; RMS is root-mean-square difference.

CONCLUSIONS (as of December 2001)

- MODIS and SeaWiFS chlorophylls agree reasonably well. RMS ~ 0.2 log units
- RMS ~ 0.3 log units when comparing MODIS or SeaWiFS with in-situ chlorophyll measurements.
- The differences can be explained in terms of pigment packaging (Chlor_a_3 vs. SeaWiFS), or surface layer drift (e.g. Liu et al. 2001).
- The Chlor_a_2 product is ready to be validated after the next reprocessing. By definition, if it is compatible with SeaWiFS, then it is valid.

CONCLUSIONS (Today)

- ✓ MODIS and SeaWiFS chlorophylls agree reasonably well. RMS ~ 0.2 log units
- RMS ~ 0.3 log units when comparing MODIS or SeaWiFS with in-situ chlorophyll measurements.
- The differences can be explained in terms of pigment packaging (Chlor_a_3 vs. SeaWiFS), or surface layer drift (e.g. Liu et al. 2001).
- ✓ The Collection 4 Chlor_a_2 product is now validated, since it is consistent with SeaWiFS.

Can the high-resolution MODIS bands be used to develop a chlorophyll algorithm with improved resolution in coastal waters?

Chlor_a_2 algorithm uses:

•3 bands at 1 km: **443**, **488**, **551** nm

High resolution bands are:

•2 bands at 250 m: **645**, 860 nm

•5 bands at 500 m: **469**, **555**, 1240, 1640, 2130 nm

The Chlor_a_2 algorithm uses the ratio of 443 to 551 or 488 to 551 whichever is greater

In a Level-2 granule from the Northern Gulf of Mexico, we regressed:

and

where the radiance ratio was based on 500-m bands (MOD09 Surface Reflectance Product) degraded to 1 km and co-registered with the ocean color data.

Chlor_a2 and Chlor_a3.

Chlorophylls derived with MOD09 data.

1-km Chlor_a2

500-m "Chlor_a2"

1-km Chlor_a3

500-m "Chlor_a3"

