The Operational MODIS Aerosol Products

L.A. Remer, Y.J. Kaufman, D. Tanré

And the MODIS aerosol team: D.A. Chu, C. Ichoku, R. Kleidman, I. Koren, R. Levy, R-R. Li, J.V. Martins, S. Mattoo

We've been extremely productive!

Rong-Rong Li

The global aerosol MOD08_D3 Daily Level 3 1 degree data October 26, 2003

_{0.00000}http//:modis-atmos.gsfc.nasa.gov Paul Hubanks

Deriving aerosol properties over land and ocean

Examples:

MODIS wide spectral range: Distinguish dust from smoke / pollution aerosol

 Distinguish aerosol from land reflectance

MODIS: Saharan dust, Jan. 2002

Fires in Australia, Dec 2001

But, before we can begin to derive aerosol...

We need to find the right pixels.

Welcome to: The Data Discarding Business

Cloud Masking

Snow Masking

Li et al. (2005)

 $(\rho^{0.86} - \rho^{1.24})/(\rho^{0.86} + \rho^{1.24}) > 0.01$ And $T_{11} < 285$ K then SNOW

Sediment Masking

MODIS data (Mississippi Delta, Mar. 05, 2001)

Li et al. (2003)

	ocean		land	
	now	soon	now	soon
Spatial variability Cloud mask	X			Х
Internal spectral Snow mask				Х
Sediment mask	X			

Now = Collection 004 Soon = Collection 005

MODIS Over Land Algorithm 20 x 20 pixels at 500 m resolution (10 km at nadir)

400 total - 56 water 344 - 24 snow 320 - 55 cloud 265 -116 "bright" 149 "good"

Discard brightest 50% and darkest 20% of the 149 good pixels.

44 pixels

Remer et al. (2004)

How to derive aerosol products from satellite (in 3 easy steps...)

- 1. Create a Look-Up Table with expected aerosol properties
- 2. Estimate surface reflectance (to separate signal from the atmosphere from signal from the ground).
- 3. Match the satellite-observed reflectances to the output of the Look-Up Table

Step 1: Create a LUT with expected aerosol properties... LAND

3 non-dust models plus dust Set by geography and season

Models are dynamic $f(\tau)$

All aerosol models and seasonal/geographical distributions are currently being re-evaluated.

Step 2: Estimate surface reflectance LAND

 $\frac{\text{Planned}}{\text{Assume } \rho_{0.47}^{\text{s}} \sim 0.35 \rho_{2.1}^{\text{s}}}$ $\text{Assume } \rho_{0.66}^{\text{s}} \sim 0.60 \rho_{2.1}^{\text{s}}$

Current

Assume $\rho_{2.1}^{s} = \rho_{2.1}^{m}$ Assume $\rho_{0.47}^{s} = 0.25\rho_{2.1}^{s}$ Assume $\rho_{0.66}^{s} = 0.50\rho_{2.1}^{s}$

Step 3: Match the satellite-observed reflectances to the output of the Look-Up Table LAND

Current:

Individual channel retrievals: 0.47 µm and 0.66 µm

Fine model ratio = η = $f(\rho_o^{0.66}/\rho_o^{0.47})$

Remer et al. (2004)

Planned:

True inversion: 3 pieces of information = $\rho_{\rm m}^{0.47} \rho_{\rm m}^{0.66} \rho_{\rm m}^{2.1}$ will yield three quantities = $\tau^{0.47}, \eta, \rho_{s}^{2.1}$ and for a given aerosol model the spectral dependence will automatically yield $\tau^{0.55}$ and $\tau^{0.66}$ No longer assume $\rho_{\rm s}^{2.1} = \rho_{\rm m}^{2.1}$

Choice of 4 fine modes and 5 coarse modes In order to minimize $(\rho_{meas} - \rho_{LUT})$ over 6 wavelengths

Remer et al. (2004)

Validation

<u>Over Ocean</u>: Validating Size Parameters Non-sphericity of dust causes MODIS to under estimate size (over estimate fine fraction.)

Yoram Kaufman

Monthly mean fine fraction 2001

The switch from Side B to Side A electronics in June 2001, creates a small calibration shift that affects aerosol size parameters but not optical thickness.

The effect is magnified when when τ is low.

Applications

Direct and indirect radiative effects and forcing, Aerosol effects on clouds, Air quality, Quantitative estimate of dust transport over ocean, Estimates of biomass burning emissions at fire sources

Koren, Kaufman, Rosenfeld, Remer, Rudich

Collection 005 and Beyond....

Collection 005

- 1. Spectral snow mask
- 2. Land Cloud Mask
- 3. Remove Flux products
- 4. Corrected mistakes in the land retrieval over bright surfaces

Future plans

- 1. Dust nonsphericity
- 2. True inversion for land retrievals
- 3. Include polarization over land
- Evaluating and updating aerosol models and surface assumptions.
- 5. Better masking

Acknowledgements

MODIS Aerosol Team: D.A. Chu, C. Ichoku, R. Kleidman, I. Koren, R. Levy, R-R. Li, J.V. Martins, S. Mattoo, Z. Ahmad

AERONET: B. Holben, O. Dubovik, T. Eck, D. Giles, I. Slutsker, A. Smirnov

AERONET PIs: (SIMBIOS) C. McLain, G. Fergion, C. Pietras

MODIS Atmospheres: M. King, P. Menzel, B-C. Gao, S. Ackerman, R. Frey, M. Gray, L. Gumley, P. Hubanks, R. Hucek, E. Moody, W. Ridgway, K. Strabala

MODIS Land/ Univ. of Maryland: E. Vermote

NOAA/NESDIS/ORA: A. Ignatov, X. Zhao