Background

The spectral optimization algorithm (SOA) was originally developed for
processing SeaWiFS and MODIS data in Case 1 waters (Chomko et al. 2003).

Atmospheric particles are characterized according to their diameter,
concentration (for discrete size intervals) and Junge size distribution parameter
v. The optical properties of the acrosol are then computed from Mie theory
using the given size distributions and the complex index of refraction m = m,. -
m.
The Garver and Siegel (1997) bio-optical model retrieves three parameters: (1)
the absorption coefficient of colored detrital matter at 443-nm (a4,,(443)); (2)
the chlorophyll a concentration C, and (3) the backscattering coefficient of
particulate matter at 443-nm (b},,(443)).

SOA couples both atmospheric aerosol and bio-optical models to simultaneously
retrieve both atmospheric (m;, m,) and ocean color parameters (C, d¢gm» Dyyp)-

The model has been recently configured to operate in Case 2 waters. First we
assume Case 1 waters and operate the algorithm. The retrieved values of C,
dogm(443) and by,,(443) are then used to provide an estimate of r,, in the NIR,
and the retrieved values of v, optical depth t,, m. and m; are used to estimate
diffuse transmittances ¢, and ¢, in the NIR. #¢f r (NIR) is then subtracted from
the total reflectance in the NIR (less Rayleigh scattering r.(l) ) and the process
repeated until r,(865) is stable.

Case 1 status

The optimization attempts to find water and atmospheric parameters that provide
the best fit between modeled reflectance 1, ()+z., 1, (]) and measured reflectance
r()-r.(l) in a least squares sense fi5,(I). We then define the sum across all
channels as fi,. The non-linear optimization procedure utilized by SOA was
configured to provide an accuracy that is dependent on the machine precision of
the code. Generally speaking, this produced a better than one percent agreement
between r(])-r.(l) and r,(D+z¢,r. (1) . Generally speaking, SOA performs well
in absorbing atmospheres and situations where a_4,,(443) < 0.05 m-! (Case 1
waters). Results here have been validated with both the Gordon and Wang
(1994) model and LIDAR measurements (Chomko et al. 2003).

Case 2 status

The algorithm will often fail at the one percent precision level in Case 2 waters.
We define failure here as the situation where any of the given parameters C,
Aoqm(443), byy, my or m; are driven to an upper or lower boundary in the
algorithm. Generally speaking, this precision is beyond the accuracy of both the
constraining models AND the satellite measurements. For example, if the
atmosphere 1s devoid of absorbing aerosol the satellite sensor receives a reduced
signal at the NIR wavelengths. This exacerbates any error in the estimation of
rA(l) at the blue wavelengths. If the water column is also relatively 'dark’ due to
high a4y, then an fig, of less than 5% at visible wavelengths (SeaWiFS channels
1 to 6) 1s unrealistic and likely to result in erroneous results in order to achieve
this precision.

Current model improvement

Ot the 'free’ parameters used here, SOA 1s most sensitive to by, and least
sensitive to m,, m; and dqp, n respective order. For fig, < 5%, SOA will reduce
by, BEFORE destabilizing m; or a.yy,. Stability 1s defined as the 'mertia’ of a
free parameter as the optimization proceeds or 'iterates'. Preliminary scene
analysis suggests that stable values of m; and a4, are reached during the
optimization iterations and BEFORE a high precision f, 1s reached. The
subsequent reduction in 'candidate’ by, 1s viewed as an artifact of the unrealistic
fjsq and often leads to C failure for the situations discussed earlier.

We address this situation through development of a scheme designed to 'stop' the
optimization earlier. At each pixel, we select stability of 'insensitive' free
parameters as the criteria for this purpose. Recent tests reveal that this approach
1S more robust for a particular scene as opposed to setting the same lower
threshold for iy, across the all pixels. In this poster, we illustrate the results of
using criteria g''(m;) to stop the optimization, a second order derivative where
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g(m;)) = dr/dmi =§ [ (dflsq(ly/dr(l) / (dr/dm)],
dr/ dm; = dra (I)/dm; + r* [de(D)/dm; * ¢ (1) + ¢ (1) * de,(1)/dm;]
and ra(l) is the 'candidate' acrosol reflectance for a particular wavelength.

Figures 1a to ¢ are C (mg m-3) images processed using SeaWiFS data for day
93-2000 off Santa Monica Bay and surrounding waters. Figure 1a uses the
Gordon and Wang (1994) atmospheric correction (STD) and OC4 visible band
ratios for the ocean (O'Reilly et al. 1998). Figure 1b utilizes SOA and stability
in g"(m;) as the 'stop’ criteria for the optimization at each pixel (1% <t <5%).
Results here indicate some success as indicated by the similar spatial variability
across the image. Areas of 'noise' still remain and is the focus of current
analysis. Figure lc¢ shows SOA in high machine precision mode (fj5; < 0.5%)
and indicates pixel failure for most of the displayed coastline. Figures 2a and b
are the same as Figures 1b and ¢ but for day 303-1997. SOA results here
suggest that stopping the optimization earlier 1s having some success. Figure 2a
contains no failed pixels and greater structural detail in C than Figure 2b.
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Figure 1a. STD(OC4) retrieved C (mg m3) for
SeaWi1FS day 93-2000. Santa Monica Bay and
surrounding waters.

Figure 2a. SOA retrieved C (mg m-3) for SeaWiFS day
303-1997. Santa Monica Bay and surrounding waters.
g'"(m;) optimization 'stop' criteria at each pixel.
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Figure 3. Failed pixel example. SOA iteration number versus
C and g"(m;). Optimization stopped at red marker.
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Figure 1b. SOA retrieved C (mg m-3) for SeaWiFS day
93-2000. Santa Monica Bay and surrounding waters.
g'"(m;) optimization 'stop' criteria at each pixel.

Figure 1¢c. Same as Figure 1b.
fsq at each pixel determined by the machine
precision.

Figure 2b. Same as Figure 2a.
fsq at each pixel determined by the machine
precision.
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Figure 4. Same as Figure 3 but for a different pixel.

Figures 3 and 4 depict the optimization (search) status of C and g"(m;) as a
function of iteration number for two different pixels. In both examples C fails if
the iterations continue until flsq and the machine precision converge (the final
iteration in the figures). Note that stability in g"(m;) 1s correlated with changes in
C and defined plateaus can be seen in both C graphs.

Current code starts with a small g"(m;) filter and looks for the first group of
consecutive iterations that lie in the selected g"(m;) filter zone. If none are found
then the g"(m;) filter 1s increased and the search repeated. This procedure is
independent from pixel to pixel and ensures that the most stable g"(m;) zone at
cach pixel 1s always found. The red markers in Figures 3 and 4 indicate where
SOA 1s 'stopped’ given the present algorithm. Figure 3 shows that the algorithm
could be altered to selected the second g"(m;) zone and produce a similar value
of C. However in the g"(m;) transition (iterations 8 to 10) candidates m; and
a.q4m(443) would change to different plateaus (one increasing, the other
decreasing). This illustrates one of the challenges one is faced with when using
optimization techniques for high quality analysis of this nature.

Note that this procedure nearly always results in low f;¢, (< 5%) for all pixels at
the 'stopped’ iteration . The only exception is for pixels characterized by a very
'clear’ atmosphere (no aerosol absorption) and very high a_4,,. Under these
conditions the satellite signal becomes very low and final i 1s of the order of
20%. This results in an incomplete decoupling of r 4 and r,, producing too low
and high a4, and m; respectively. Although not implemented in the images
presented here, we alleviate this problem by reducing the weighting of f;,(412)
in SOA. This allows the fit between r(412)-r(412) and r,(412)+¢.t,r,(412) to
vary by over 50% and composite fiy, (for all visible bands) to again conform to a
5% tolerance. 1ie. flsq(l) at bands 2 to 6 are of the order of 1 to 3%.

Concluding Remarks

The SOA scheme has the potential to work in atmospheres characterized by
absorbing aerosols, an improvement to the standard algorithms currently in use.
Current focus 1s on refinement of the analysis presented here with results
expected shortly.
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