Algorithm Refinement and Validation of Cloud and Radiation Products Derived from MODIS and CERES Using Ground-Based and Aircraft Data

Jay Mace, University of Utah

- Development of relational database on the web for cloud property retrieval validation
- Use of MODIS Cloudmask in the cloudsat geometrical profile operational product
- Development of an algorithm suite for cirrus property retrieval with A-Train data

Cloud property retrieval algorithm enhancement activity:

Evaluation of Cirrus Cloud Properties Derived from MODIS Data Using Cloud Properties Derived from Ground-Based Observations Collected at the ARM SGP Site

> GERALD G. MACE AND YUYING ZHANG University of Utah, Salt Lake City, Utah

STEVEN PLATNICK AND MICHAEL D. KING NASA Goddard Space Flight Center, Greenbelt, Maryland

PATRICK MINNIS NASA Langley Research Center, Langley, Virginia

PING YANG

Texas A&M University, College Station, Texas

(Manuscript received 25 November 2003, in final form 22 July 2004)

Goal: Extend/expand this study:

- 1) From a dozen overpasses of ARM ground sites to thousands
- 2) From thin cirrus to all cloud types and situations
- 3) Make the validation/intercomparison process easy foster science investigations

Approach: Construct a relational database that brings together MODIS cloud products and ground based cloud products with web acess

Prototype:

http://www.met.utah.edu/cgi-bin/mace/cgalli/mysql/eos_avg_query.pl

Current Prototype Status:

Prototype

Interface:

Includes Terra MOD06 IWP, effective radius, and optical depth retrievals of Cirrus events from 2001 and 2002 – 300 events

ZV cirrus algorithm results from ARM MMCR data.

Select Date Range:	Conditio	ons (o	ptional):			
2000 💌 01 💌 1 💌 to: 2005 💌 03 💌 22 💌	DS 1	~	ice water path 💌	>	~	5
	DS 2	~	ice water path 💌	>	~	5
Property:		~	×	<	~	
ice water path		~	~	<	~	
		~	~	<	~	
Datastreams to compare:		~	~	<	~	
<u>elear this form</u> <u>pack</u>	Where standard deviation: > ♥ 0 for: DS 2 Where count: > ♥ 10 for: DS 1 Plot Options: Number of histogram bins: 10 Distance +- from site center: .1 Use log10 scale for scatter plots Show SQL query.					

Submit

A Case of Good Agreement - 10/18/2001

A case of not-so-good agreement – 10/15/2000

DS1	971630797	Sun Oct 15 17:26:37 2000	0.870128	29.9757	6.14484791911167	6.07025557119294	134	46	
DS2	971630797	Sun Oct 15 17:26:37 2000	20	195	84.2322580645161	39.1871966179275	135	310	EOS

CloudSat Geometrical Profile Product

Goal: To combine the spatial information provided by the MODIS CloudMask with the vertical profile information provided by the active sensors

Issues: 1) CloudSat does not detect certain clouds that contribute to radiance field2) MODIS radiance field suggests a highly variable local cloud field

Approach: Use the MOD35 Cloud Mask bit tests to identify (where possible) cloud type – goal is to identify spatial coherence consistent with cloudsat profile observations.

An Example: April 3, 2001 – SGP ARM Site

Purple: NO Green: yes RED: no test

Bit 16 1.38µm Bit 17 3.9-12µm

Bit 15 6.7μm CO2 and 1.38 test suggest cirrus. High cloud is detected over the entire box by 1.38 but it appears to be variably thick as indicated by the visible reflectance and CO2 test. Certain tests such as the 6.7 micron test curiously do not find cloud in this case

2B GeoProf Output

Data Granule	CloudSat	TBD					
	CPR Me	TBD					
	Swath Data	Time			Table: nray 10 bytes		
		Geolocation			2 × nray 4-byte float		
		SEM	Radar Reflectivity		125 × nray 2-byte integer		
			Quality assurance Q _A		125 × nray 1 byte integer		
			CPR Cloud Mask		125 × nray 1 byte integer		
		SEM- MODIS	MODIS scene characterizations (Table 3)	1 byte			
			CPR echo top characterizations (Table 4)	1 byte			
			MODIS scene variability (Table 5)				
			MODIS 250m cloud fraction	1 byte			

Table 1. a suite of algorithms developed based on different observations and assumption of the particle size distribution

	Observa	ations	
Radar	Lidar	Radiometer	assumption
Z	T (βext)	ε (βabs)	
X	X		
X		X	$n(I) = n \exp(-\lambda I)$
	X	X	$n(L) = ne \exp(-neL)$
x	x	X	$n(L) = n_m (\frac{L}{L_m})^{\alpha} e^{\alpha} \exp(-\frac{\alpha L}{L_m})$

Comparison between an algorithm using MODIS 13 Micron and MPL Tau and ground-based ZR

Summary:

Our use of MODIS data and products is very diverse and continuing to expand:

- Development of relational database on the web for cloud property retrieval validation and basic exploration of the data sets
- Use of MODIS Cloudmask in the cloudsat geometrical profile operational product
- Development of an algorithm suite for cirrus property retrieval with A-Train data