Some Thoughts on Transitioning to NPP Paul Menzel (with input from Jeff Myers)

Issues

Continuing MODIS through NPP/NPOESS and beyond

Preparing for VIIRS participation in VIIRS OAT P3I

Assuring viable Cal/Val Planning evolution of MAS VIIRS Airborne Simulator

NPOESS Products

(NPOESS IORD Environmental Data Records by Instrument)

★	Atmospheric Vertical Moisture Profile						
★	Atmospheric Vertical Temperature Profile						
*	Imagery						
★	Sea Surface Temperature						
*	Sea Surface Winds						
★	Soil Moisture						
	Aerosol Optical Thickness						
	Aerosol Particle Size						
	Albedo (Surface)						
	Auroral Boundary						
	Auroral Imagery						
	Cloud Base Height						
	Cloud Cover/Layers						
	Cloud Effective Particle Size						
	Cloud Ice Water Path						
	Cloud Liquid Water						
	Cloud Optical Depth/Transmittance						
	Cloud Top Height						
	Cloud Top Pressure						
	Cloud Top Temperature						
	Currents (Ocean)						

Downward Longwave Radiance (Sfc)					
Electric Fields					
Electron Density Profile					
Energetic lons					
Fresh Water Ice					
Geomagnetic Field					
Ice Surface Temperature					
In-situ Plasma Fluctuations					
In-situ Plasma Temperature					
Insolation					
Ionospheric Scintillation					
Medium Energy Charged Particles					
Land Surface Temperature					
Littoral Sediment Transport					
Mass Loading / Turbidity					
Net Heat Flux					
Net Short Wave Radiance (TOA)					
Neutral Density Profile					
Neutral Winds					
Ocean Color/Chlorophyll					
Ocean Wave Characteristics					

Ozone - Total Column/Profile Precipitable Water Precipitation Type/Rate Pressure (Surface/Profile) Sea Ice Age and Ice Edge Motion Sea Surface Height/Topography Snow Cover/Depth Solar Irradiance Supra-Thermal - Auroral Particles Surface Type Fires **Surface Wind Stress** Suspended Matter **Total Auroral Energy Deposition** Total Longwave Radiance (TOA) **Total Water Content** Vegetation Index (NDVI)

VIIRS CMIS CrIS/ATMS

SES GPSOS

ERBS

TSIS ALT

★ Environmental Data Records (EDRs) with Key Performance Parameters

OMPS

NPOESS Products

(NPOESS IORD Environmental Data Records by Discipline)

★	Atmospheric Vertical Moisture Profile						
★	Atmospheric Vertical Temp Profile						
★	Image <mark>ry and an and an </mark>						
★	Sea Surface Temp <mark>erature</mark>						
★	Sea Surface Wind <mark>s</mark>						
\star	Soil Moisture						
	Aerosol Optical Thickness						
	Aerosol Particle Size						
	Albedo (Surface)						
	Auroral Boundary						
	Auroral Imagery						
	Cloud Base Height						
	Cloud Cover/Layer <mark>s</mark>						
	Cloud Effective Particle Size						
	Cloud Ice Water Path						
	Cloud Liquid Water						
	Cloud Optical Depth/Transmittance						
	Cloud Top Height						
	Cloud Top Pressu <mark>re</mark>						
	Cloud Top Temperature						
	Currents (Ocean)						

Downward Longwave Radiance (Sfc)				
Electric Fields				
Electron Density Profile				
Fresh Water Ice				
Geomagnetic Field				
Ice Surface Temperature				
Energetic Ions				
In-situ Plasma Fluctuations				
In-situ Plasma Temperature				
Insolation				
Medium Energy Charged Particles				
Ionospheric Scintillation				
Land Surface Temperature				
Littoral Sediment Transport				
Net Heat Flux				
Net Short Wave Radiance (TOA)				
Neutral Density Profile				
Neutral Winds				
Normalized Difference Vegetation Index				
Ocean Color/Chlorophyll				
Ocean Wave Characteristics				

Ozone - Total Column/Profile **Precipitable Water** Precipitation Type/Rate Pressure (Surface/Profile) Sea Ice Age and Edge Motion Sea Surface Height/Topography Snow Cover/Depth Solar Irradiance Supra-Thermal - Auroral Particles Surface Wind Stress **Suspended Matter Total Auroral Energy Deposition** Total Longwave Radiance (TOA) **Total Water Content** Turbidity Vegetation Index/Surface Type

Atmospheric Oceanic

Terrestrial Space

Climate

★ Environmental Data Records (EDRs) with Key Performance Parameters

VIIRS, MODIS, FY-1C, AVHRR

Planning the VIIRS Airborne Simulator

VIIRS Airborne Simulator (VAS) Concept

Rationale:

- Collect high-resolution, calibrated data to validate the on-orbit performance and calibration of the VIIRS instrument
- Build a feature-rich VIIRS-like data set for the development and test of CDR and EDR product algorithms, prior to NPP/NPOES launch

Approach:

- Capitalize on the NASA MODIS and ASTER Airborne Simulator Programs (MAS and MASTER) and U.W. S-HIS experience
- Leverage ongoing development programs for accelerated deployment
- Apply MAS "lessons-learned" and operational experience for risk reduction.

MAS Lessons

- Spectral stability is critical for atmospheric bands
- Flat-plate blackbody design not capable of <1 degree accuracy
- Cross-track polarization needs to be addressed
- Onboard calibrator for Vis/SWIR bands highly desirable
- Scattered light inside scan cavity needs to be reduced
- Internal IR background radiation has to be better suppressed
- Replace gratings with bandpass filters for LWIR bands
- Eliminate linear-variable filters (LVFs) from design
- Additional SWIR and LWIR water vapor bands are useful

Design Features

- Single large dewar for LWIR bands and cold secondary optics to reduce background noise
- Filter-based spectral differentiation in M/LWIR bands
- Added 6.7um (and possible 1.88um) band
- Improved blackbody design, based on S-HIS experience
- Visible/SWIR calibrator
- De-polarization methods to be investigated
- Fully supported by Ames Calibration Lab (NIST-traceable)
- Utilize ground-processing and archive software from MAS (including Level-1B/HDF data production system)

VAS Spectral Bands

	VIIRS #	<u>Centerλ(nm)</u>	<u>Δλ(nm)</u>	<u>SNR/NEΔT*</u>
1.	M1	412	20	880
2.	M2	445	18	840
3.	M3	488	20	800
4.	M4	555	20	750
5.	M5	672	20	900
6.	M6	746	15	580
7.	M7	865	39	500
8.	M8	1.240µm	20	75
9.	M9	1.378	15	150
10	. M10	1.610	60	275
11	. MAS15	1.880	50	
12	. M11	2.250	50	110
13	. M12	3.700	180	0.05 NE∆T
14	. M13	4.050	155	0.07
15	. MOD27	6.715	360	0.25
16	. M14	8.550	300	0.05
17	. M15	10.763	1000	0.05
18	. M16	12.013	950	0.05
19	. MOD33	13.3		0.25

20. * Based on the equivalent VIIRS orbital pixel size

Phase 1: Implement VIIRS Bands on the NASA MAS System

Design and build a VIIRS-like Spectrometer, compatible with the exisiting MAS Opto-Mechanical Module (OMM) and data system and begin collecting data.

Phase 2: Build a dedicated VIIRS Airborne Simulator Instrument (based on an improved MAS design)

Design and build:

- -- Dedicated Opto-Mechanical Module (with new-design blackbodies)
- -- New data system (MAS follow-on design)

Phase 3: Advanced technology system

- -- Design and build next-generation airborne line-scanner
- -- Re-use high-value elements (e.g. filters, detector arrays)
- -- Long-term solution for VIIRS airborne simulation
- -- UAV-Compatible

Estimated Development Timeline

- Phase 1 VAS Spectrometer 16 Months
- Phase 2 Data System, OMM
 & Calibrators
 18 Months
- Phase 3 Advanced System TBD
- All phases could be conducted in parallel. (Seed-money for preliminary design work could accelerate schedules.)