Remote sensing of volcanic emissions using MODIS

I. Matthew Watson, MTU and University of Bristol, UK

Talk structure

- Why quantify volcanic emissions?
- MODIS channels of interest
- Pre-MODIS algorithms
- Recent developments using MODIS
 - $-7.34\ \mu m\ channel$
 - e.g. Hekla eruption (2000)
 - Forward modeling
 - Water vapor correction
- Future work
 - Species interaction (spectral)
- Conclusions

Why quantify volcanic emissions:

- Indicators of volcanic activity
- Hazardous to population, wildlife, environment and infrastructure
- Long-lived and climatologically active
- Aircraft hazard mitigation

Why quantify volcanic emissions:

- Indicators of volcanic activity
- Hazardous to population, wildlife, environment and infrastructure
- Long-lived and climatologically active
- Aircraft hazard mitigation

MODIS bands of interest

MODIS bands of interest

MODIS channel applications

Previous (pre-EOS) work

Species	Original Sensor [and channels]	Reference	Year	MODIS channels	ASTER channels	AIRS channel sets
Ash	AVHRR [4,5]	Prata	1989 a,b	31, 32	13, 14	12 -14
Ash	AVHRR [4,5] GOES [4,5]	Wen and Rose	1994	31, 32	13, 14	12 -14
Ice	AVHRR [4,5] GOES [4,5]	Rose et al.,	1995	31, 32	13, 14	12 -14
SO ₂	TIMS [1-6]	Realmuto (et al.)	(1994), 1997, 2000	29 - 32	10-14	N/A
SO ₄ ²⁻	HIRS/2 [5-10]	Yu and Rose	2000	30 - 34	N/A	10-15
SO ₂	TOVS ¹ [8,11,12]	Prata et al.,	2003	27, 28, 31	N/A	5

Previous (pre-EOS) work

Species	Original Sensor [and channels]	Reference	Year	MODIS channels	ASTER channels	AIRS channel sets
Ash	AVHRR [4,5]	Prata	1989 a,b	31, 32	13, 14	12 -14
Ash	AVHRR [4,5] GOES [4,5]	Wen and Rose	1994	31, 32	13, 14	12 -14
Ice	AVHRR [4,5] GOES [4,5]	Rose et al.,	1995	31, 32	13, 14	12 -14
SO ₂	TIMS [1-6]	Realmuto (et al.)	(1994), 1997, 2000	29 - 32	10-14	N/A
SO ₄ ²⁻	HIRS/2 [5-10]	Yu and Rose	2000	30 - 34	N/A	10-15
SO ₂	TOVS ¹ [8,11,12]	Prata et al.,	2003	27, 28, 31	N/A	5

Applications of different retrievals for SO₂

Retrieval	Application	Advantages	Disadvantages
TOMS 0.3-0.36 μm	Large scale eruptions	Spectrally independent/long archive	Spatial resolution
AIRS 7.34 μm	Large scale eruptions	High spectral resolution	Spatial resolution
MODIS/ TOVS 7.34 μm	Mid scale eruptions	Climatologically active SO ₂	High altitude required
MODIS/ ASTER 8.6 µm	Mid-scale – passive degassing	Monitoring possible	Ash and sulfate interference

Applications of different retrievals for SO₂

Retrieval	Application	Advantages	Disadvantages
TOMS 0.3-0.36 μm	Large scale eruptions	Spectrally independent/long	Spatial resolution
		archive	
AIRS	Large scale	High spectral	Spatial resolution
7.34 µm	eruptions	resolution	
MODIS/	Mid scale	Climatologically	High altitude
TOVS	eruptions	active SO_2	required
7.34 μm			
MODIS/	Mid-scale –	Monitoring	Ash and sulfate
ASTER	passive	possible	interference
8.6 µm	degassing		

Hekla volcano, Iceland, erupted Feb 26, 2000

$7.34 \,\mu m \, SO_2$ retrieval - Prata et al, 2004

SOLVE (NASA DC-8) *in situ* SO₂ measurements and MODIS retrievals show good agreement

Integrated across plume: SOLVE=248 ppmV MODIS=241 ppmV

Water vapor interference

The slopes of these lines are in opposition. The 'split window' algorithm BTD (11-12 μ m) is used operationally by VAACs to detect ash *and* by climatologists to map water vapor. Hence water vapor masks the ash signal.

Atmospheric effects of water

Forward model justification

- User specifies 'external' parameters: ground emissivity, ground temperature, atmospheric profile (water vapor, pressure and temperature as a function of height).
- User specifies 'plume' parameters: plume (top and base) altitude, effective radius, variance, refractive index and number density of particles
- The forward model uses MODTRAN to calculate 'external' effects and Mie scattering code to calculate 'plume' effects
- Can be used to
 - investigate atmospheric effects on IR retrievals
 - generate a LUT for multi-species spectra
 - genrate transmission spectra to be used to correct SO_2 maps for ash/sulftae

Forward model rationale

Forward model results – example spectra

Forward model results – example spectra

Mt. Spurr in tropical atmosphere

Brightness temperature change Δ BTD

Change in cloud area caused by water vapor interference

Multi-species algorithm development

- Volcanic emissions group (3 professors, 5 PhD students and 2 MS students at two universities) working on various parts of the problem.
- Empircal and theoretical approaches used
 - Looking at examples of ash-SO₂ separation (e.g. Anatahan 2003)
 - Forward modeling of multispecies clouds
 - Correction of SO₂ for ash and sulfate
 - Multi-sensor comparisons (TOMS, AIRS, TOVS, ASTER)
- Several eruptions targeted, work in progress

Conclusions

- The development of the 7.3 μ m algorithm has been a significant advance in quantifying volcanic SO₂ (limited species interaction, works at night).
- Hekla-DC8 interaction provides unprecedented groundtruthing opportunity.
- Forward modeling can be used to quantitatively determine the effects of different water vapor concentrations on the 'split-window' signal.
- Water vapor more strongly affects clouds that are optically thinner as relative proportions of signal from the underlying ground (and water vapor) increase.
- A multi-species algorithm is the holy grail of volcanic emission remote sensing. Only through MODIS's ability to detect and quantify more than one species has the problem been (a) illuminated and (b) potentially solvable.