

Status of EOS Terra and Aqua MODIS (Sensors, Calibration, and Level 1B / LUTs)

Jack Xiong Code 614.4, Sciences and Exploration Directorate, NASA/GSFC

MODIS Characterization Support Team (MCST)

Bill Barnes University of Maryland at Baltimore County (UMBC)

MCST Workshop at MST Meeting (March 22, 2005)

Outline

- Introduction
 - Instrument Background
 - Overview of Calibration and Characterization
- Status of Instruments
- Level 1 and LUT Updates
- Instrument On-orbit Performance
- Challenging Issues (Concerns)
- Summary

Introduction

Acknowledgements:

- All members of MCST (contractors: SSAI, SAIC, STGI)
- Science Team representatives
 - MODIS Science Team (Vince Salomonson, Team Leader)
 - Land (Eric Vermote and Zhengming Wan)
 - Ocean (Bob Barnes ... and Bob Evans)
 - Atmosphere (Chris Moeller)
 - Cal/Val (Stuart Biggar and Kurt Thome)
- SBRS
 - Roger Drake and Jim Young
- Other NASA members
 - Eugene Waluschka, Bruce Guenther, and Robert Wolfe

Introduction

MCST (Jack Xiong and Bill Barnes)

http://www.mcst.ssai.biz/mcstweb/index.html

- Instrument Operation Team (Bryan Breen and Tony Salerno)
- Calibration Team (Vincent Chiang, Junqiang Sun, and Xiaobo Xie)
 - Thermal Emissive Bands (TEB) routine and special calibration and characterization (BB), algorithms, science support, testing, etc.
 - Reflective Solar Bands (RSB): routine and special calibration and characterization (SD/SDSM), algorithms, calibration and characterization using SRCA and Moon, science support, testing, etc.
 - LUTs preparation and testing (challenges for RSB)
- L1B Team (James Kuyper and Liqin Tan)
- Budget reduction impact on tasks, responses, and science support
 - 35% staff reduction (FY03-05)

Instrument Background

FM1

Terra (EOS-AM): Launched on 12/18/99 First light on 02/24/00

Aqua (EOS-PM): Launched on 05/04/02 First light 06/24/02

- 2-sided Paddle Wheel Scan Mirror
 - (10km by 2330 km swath per 1.478 sec)
 - Day data rate: 10.6 Mbps, night data rate: 3.3 Mbps (100% duty cycle, 50% day and 50% night)
- 3 Nadir Spatial Resolutions
 - 250m (1-2), 500m (3-7), and 1km (8-36)
- 4 Focal Plane Assemblies (FPAs)
 - VIS, NIR, SMIR, and LWIR
- 36 Spectral Bands (490 detectors)
 - Reflective solar bands (1-19, and 26), thermal emissive bands (20-25, 27-36)
- On-Board Calibrators (OBCs):
 - Solar diffuser (SD)
 - SD stability monitor (SDSM)
 - Blackbody (BB)
 - Spectro-radiometric calibration assembly (SRCA)
 - Space view (SV)
- Science Applications
 - Land, oceans, and atmosphere
 - Nearly 40 science products generated and distributed

BB (quarterly)

Terra)

Calibration and Characterization

MODIS TEB Calibration Using Blackbody

Radiance (TOA), L_{EV}

$$L_{EV} = \frac{1}{RVS_{EV}} \left(a_0 + b_1 \cdot dn_{EV} + a_2 \cdot dn_{EV}^2 - \left(RVS_{SV} - RVS_{EV} \right) \cdot L_{SM} \right)$$

RVS: Response Versus Scan-angle
E: Emissivity
L: Spectral band averaged radiance
dn: Digital count with background corrected

Calibration coefficient, b1, from BB

$$b_{I} = \left(RVS_{BB} \cdot \varepsilon_{BB} \cdot L_{BB} + \left(RVS_{SV} - RVS_{BB}\right) \cdot L_{SM} + RVS_{BB} \cdot \left(1 - \varepsilon_{BB}\right) \cdot \varepsilon_{cav} \cdot L_{cav} - a_{0} - a_{2} \cdot dn_{BB}^{2}\right) / dn_{BB}$$

Status of Instruments

Terra MODIS (over 5 years)

- Stable and Normal Operation
 - No configuration changes since September 2002 (currently A/B conf.)
 - SD door fixed at open with SD screen down since July 2003
 - No concerns for the other doors' movements and SRCA lamps life constrain
 - Recent anomalies (since last MST workshop in July 2004)
 - Spacecraft Science Formatting Equipment (SFE) shutdown on December 24, 2004
 - Small data drops (a few scans each time) when S/C over and near SAA region

Aqua MODIS (over 2.5 years)

- Stable and Normal Operation
 - Same configuration used for the entire mission (currently B conf.)
 - 2342 (712 on-orbit) of 3022 SD door movements
 - Careful planning of SD CAL if want another set of Yaws and 6+ years of mission
 - Recent anomalies
 - None

Terra MODIS Operational Configurations

Date	Events	Description
Dec 18, 1999	Launch	Launched successfully
Feb 13, 2000	Science Mode	MODIS started science mode on A-side
Feb 24, 2000	Nadir Door Open	Terra MODIS First Light
June 2000	CFPA Lost Control	Ice began to cover radiative cooler surface
Aug 5, 2000	Formatter Anomaly	MODIS entered standby mode then safe mode
Aug 8, 2000	Outgas	Turned on outgas heater for two days (Back to science mode on Aug 19)
Oct 30, 2000	B-side Electronics	Transitioned to science mode on B-side
Jun 15, 2001	PS2 Anomaly	Powered supply 2 (B-side) off passing SAA
Jul 2, 2001	A-side Electronics	Returned to science mode on A-side with PS1
Mar 19, 2002	S/C Safe Hold	Anomaly during inclination maneuver (Back to science mode on Mar 23)
Sep 17, 2002	Formatter B	On A-side but cross-strapped to Formatter B
May 6, 2003	SD Door Failure	Set the SD open with screen down on July 2
May 18, 2003	UART Reset	UART_RESET count increased from 119 to 122
Sep 24, 2003	SSR Anomaly	Science recording shuts down and is re-enabled
Nov 30, 2003	Formatter Anomaly	SFE anomaly Sync errors over SAA
Dec 16, 2003	ACE-B Anomaly	Anomaly to Safe Mode due to Attitude Control Electronics over SAA (Back to science mode on Dec 22; Nadir door opened on Dec 24)
Jan 15, 2004	SFE Recycled	SFE Side-A was recycled
Feb 18, 2004	SFE Anomaly	SFE autonomously shuts down while passing through the SAA (Back to science mode on Feb 19)
Sep 4, 2004	SSR Sync Error	Data was lost due to loss of Sync during SSR playback over SAA
Oct 18, 2004	UART Reset	UART_RESET count increased from 122 to 125
Dec 24, 2004	SFE Anomaly	Science Record was disabled due to SFE anomaly over SAA (Back to science mode on the same day)

Aqua MODIS Operational Configurations

Same Configuration Used for the Entire Mission

Date	Events	Description
May 4, 2002	Launch	Launched successfully
June 7, 2002	Science Mode	MODIS started science mode on B-side (SMIR Itwk/Vdet = 102/184)
June 24, 2002	Nadir Door Open	Aqua MODIS First Light
June 27, 2002	S/C Safe Hold	Aqua spacecraft Single Event Upset (SEU) SMIR Itwk/Vdet was left at 102/136 (Returned to 102/184 on July 8) MODIS returned to science mode on July 2
July 29, 2002	S/C Safe Hold	S/C ground pointing management anomaly MODIS science mode resumed on Aug 6
Aug 9-14, 2002	SD Door Open	SDSM calibration command dropped
Sep 12, 2002	S/C Safe Hold	Error in lower fidelity ephemeris S/C recovered to Fine Pointing Mode same day

MCST IOT document: MODIS Instrument Operations

MCST WEB: Operation configuration changes and instrument reset events impact on science data

Instrument and FPA Temperatures (Terra)

1000 Epoch 2000 1500

268

267

266 E

265 E

500

Instrument and FPA Temperatures (Aqua)

Carth Observing System

MODIS Aqua Telemetry TA_AO_VIS_FPAE (VIS Focal Plane Temperature)

L1B / LUT Updates

Collection 5 (Terra and Aqua MODIS)

- Code
 - Add a new LUT for SWIR correction with detector dependency
 - Enable B21 calibration with mirror side dependency (LUT)
 - Fix code version recording
 - Improve code portability and comply with ESDIS guideline
 - Correct dimension mapping offset setting for 250m band data
 - Add HDFEOS_FractionalOffset
- LUTs
 - Add new LUTs due to algorithm and code changes
 - Update calibration coefficients (consistently processed) and QA table (detector quality flags)
 - Update dn_sat values (bands with or without pre-saturation)
 - Use predicted calibration coefficients for RSB forward production
 - DSM RVS for TEB (Terra only)

L1B / LUT Updates

SWIR OOB correction detector dependency Band 21 calibration with mirror side dependency **HDFEOS Offset** 0.0 **TERRA L1B Version** V4.3.0 LUT changes **VŽ2** V20 V21 Month S F Α 0 Ν F Μ Α Μ J D J J Year 2005 2006 . . .

V5.0.6_Terra: production began on 03/07/05 (2005066)

Page 15

L1B / LUT Updates

V5.0.7_Aqua: production begin on TBD

Instrument On-orbit Performance

- Thermal Emissive Bands (16 bands and 160 detectors)
 - Terra MODIS
 - Stable short-term and long-term response trending (excluding sensor configuration change and instrument reset events)
 - 24 (10 in B36 from pre-launch, 2 since last STM) noise detectors and 0 inoperable detectors
 - Aqua MODIS
 - Better response trending than Terra MODIS
 - 4 (3 in B21 from pre-launch, 1 since last STM) noise detectors and 0 inoperable detectors
- Reflective Solar Bands (20 bands and 330 detectors)
 - Terra MODIS
 - Noticeable optics degradation (wavelength dependent, mirror side dependent); small gain changes after configuration changes or instrument reset events; SDSM works well with normalization approach
 - 21 (20 from pre-launch, band 7) noise detectors and 0 inoperable detectors; no changes since last STM
 - Aqua MODIS (more stable)
 - Noticeable optics degradation (wavelength dependent); SDSM works well with normalization approach
 - 3 noise detectors and 15 (13 in B 6 from pre-launch) inoperable detectors; no changes since last STM
 - Applications of Lunar Response Trending (Relative Calibration)

Instrument On-orbit Performance

- Spectral (RSB only)
 - Terra MODIS
 - Center wavelength shifts (relative to pre-launch) are less than 0.5nm for most RSB (except 0.6nm for B8); On-orbit drifts are less than 0.2nm for all bands
 - Aqua MODIS
 - Center wavelength shifts (relative to pre-launch) are less than 0.5nm for most RSB (except 1nm for B2); On-orbit drifts are less than 0.2nm for all bands
- Spatial (RSB and TEB)
 - Terra MODIS
 - BBR in specification in along scan direction
 - BBR in specification in along track direction, except 2 bands slightly out specification
 - Aqua MODIS
 - BBR in specification for bands within VIS/NIR and bands within SMIR/LWIR
 - 300m along scan shifts and 350m along track shifts for SMIR and LWIR FPAs (relative to NIR FPA); one of Aqua MODIS problems identified prelaunch
 - Post launch BBR are relatively stable

MODIS RSB Response Trending

MODIS RSB Response Trending

MODIS RSB Response Trending

Mirror side difference in Aqua MODIS is extremely small

Page 21

MODIS SD Degradation Trending

Terra Normalized SDSM degradation .00 Degradation Factor 0.95 0.90 0.85 0.80 0.75 07 - 1 08 - 8 D1 -D2 -- 2 D.3 0.70 1500 500 1000 Epoch 2000

Similar SD degradation in Terra and Aqua MODIS

Page 22

MODIS Lunar Response Trending

MODIS TEB Response Trending

Terra MODIS LWIR(Bands 27-36) Normalized b1

MODIS TEB Response Trending

Days from 2002

Terra MODIS Noisy Detector History

Detectors in Product Order

	Band	2	1	2	7		2	8		29		30		33		3	4		36
Day/Year	Spec NEdT[K]	0.2	20	0.1	25		0.2	25		0.05		0.25		0.25		0.	25		0.35
	Detector #	4	5	1	6	1	3	8	10	4	2	5	8	1	5	6	7	8	1-10
Pre-launch	-	0.20	0.18	0.10	0.10	0.05	0.05	0.04	0.04	0.02	0.08	0.09	0.09	0.14	0.20	0.20	0.21	0.20	0.45
055/2000	Nadir door open	0.17	0.17	0.09	0.09	0.05	0.06	0.06	0.05	0.02	0.10	0.11	0.11	0.28	0.23	0.26	0.27	0.29	0.43
232/2000	Back from FPA recycle	0.16	0.15	0.10	0.24	0.05	0.05	0.05	0.05	0.02	0.11	0.31	0.11	0.27	0.24	0.33	0.37	0.38	0.42
030/2001	-	0.15	0.16	0.10	0.27	0.05	0.06	0.05	0.05	0.02	0.12	0.29	0.30	0.25	0.24	0.33	0.37	0.37	0.43
087/2002	Back from safe mode	0.18	0.25	0.11	0.24	0.06	0.32	0.05	0.04	0.02	0.10	0.26	0.64	0.25	0.24	0.29	0.32	0.33	0.43
022/2003	-	0.14	0.16	0.10	0.23	0.05	0.30	0.27	0.04	0.02	0.10	0.25	0.65	0.27	0.25	0.33	0.37	0.37	0.43
086/2003	After DSM ¹	0.16	0.15	0.11	0.23	0.05	0.29	0.08	0.05	0.03	0.10	0.47	0.65	0.26	0.24	0.33	0.36	0.36	0.44
118/2004	-	0.16	0.15	0.26	0.26	0.05	0.16	0.36	0.16	0.02	0.10	0.33	0.41	0.27	0.21	0.29	0.32	0.32	0.43
158/2004	-	0.18	0.17	0.28	0.25	0.05	0.16	0.37	0.21	0.03	0.10	0.31	0.40	0.27	0.22	0.28	0.31	0.31	0.43
162/2004	-	0.16	0.16	0.26	0.27	0.05	0.16	0.37	0.20	0.02	0.14	0.32	0.42	0.27	0.22	0.30	0.34	0.34	0.43
175/2004	-	0.15	0.15	0.28	0.26	0.12	0.17	0.35	0.17	0.03	0.17	0.30	0.41	0.27	0.21	0.28	0.32	0.32	0.43
034/2005	-	0.14	0.15	0.28	0.22	0.10	0.16	0.45	0.16	0.04	0.17	0.31	0.39	0.26	0.21	0.28	0.31	0.31	0.43
¹ Spacecraft	Deep Space Man	euver	0.15	0.20	0.22	0.10	0.10	0.40	0.10	0.04	0.17	0.01	0.00	0.20	0.21	0.20	0.01	0.01	0.40

TEB

new

In Spec

Near the Spec

Out of Spec

					0)etecto	ors in l	Produ	ct Ord	er								
	Band					ļ	5						6			7		
Day/Year	SNR Spec					7	'4						275			110		l
	Detector	2	4	6	11	13	16	17	18	19	20	3	7	8	1-10	11-13,15-20	14	
055/2000	Nadir Dorr Open	0	0	60	80	0	30	0	0	80	0	0	0	100	100	110	0	
160/2000	CFPA Lost Control	95	95	60	80	80	30	80	80	80	80	0	0	100	100	110	0	
232/2000	Back from FPA recyle	75	95	50	0	80	50	80	0	70	0	0	0	100	100	110	0	
304/2000	B Side	85	20	85	80	80	60	80	80	80	80	350	350	275	90	100	100	
183/2001	A Side	95	10	90	90	90	90	90	90	90	90	380	380	380	100	110	110	
259/2002	A Side B Formatter	100	10	100	100	100	100	100	100	100	100	380	380	380	100	110	110	
			In Sp	ec		Near	Spec		Out S	pec								

RSB

0.23

Band 20 21 27 Day/Year Spec NEdT [K] 0.05 0.20 0.25 З Detector # 10 9 others з 0.10 Pre-launch 0.05 0.16 0.28 175/2002 0.03 0.23 0.23 near 0.2 Nadir door open 0.09 Back from safe 183/2002 0.03 0.20 0.25 near 0.2 mode 0.09 Back from safe 218/2002 0.03 0.19 0.26 near 0.2 TEB 0.09 mode Back from safe 255/2002 0.03 0.23 0.20 near 0.2 0.09 mode 102/2003 0.03 0.43 0.19 near 0.2 0.09 _ 201/2003 0.03 0.18 0.18 near 0.2 0.09

Aqua MODIS Noisy Detector History

Detectors in Product Order

0.03

¹Spacecraft Deep Space Maneuver

In Spec

010/2005

new

Near the Spec

0.17

Out of Spec

near 0.2

0.19

		Detector	20	2	4	5	6	7	9	10	12-16	17	18-20	
	175/2002	Nadir Dorr Open	0	0	0	0	0	470	470	0	0	100	0	
	189/2002	Back from Safe Mode	0	0	470	470	0	470	470	0	0	470	0	
	255/2002	Back from Safe Mode	0	0	0	0	0	470	470	0	0	470	0	
	266/2002	Back from Safe Mode	0	0	0	0	0	150	400	0	0	470	0	
	110/2003		0	0	0	0	0	260	470	0	0	320	0	
	160/2003		0	0	0	0	0	290	400	0	0	470	0	
	265/2003		0	0	150	0	0	290	400	0	0	275	0	
RSB	360/2003		0	0	200	0	0	290	275	0	0	270	0	
					In Spec	-		Near Spec			Out Spec			
													Page	27

MODIS Spectral Performance

Terra MODIS Center Wavelength Shifts and Bandwidth Changes

MODIS Spectral Performance

Aqua MODIS Center Wavelength Shifts and Bandwidth Changes

MODIS Spatial Performance

MODIS Spatial Performance

Challenging Issues

- ✓ No valid pre-launch measurements for Terra MODIS TEB RVS
 - At-launch RVS derived from witness sample reflectance and parameters from Aqua MODIS RVS measurements
 - C-NAD relative RVS to improve imagery; DSM RVS to improve radiometry
 - Studying MSCN impact (especially for bands 33-36; working with C. Moeller)
- $\checkmark\,$ SDSM sun view signal ripples caused by a design error
 - Modeling and simulation; alternative approach
 - $\checkmark\,$ Analysis shows that the normalization approach is adequate
- ✓ Terra MODIS PC optical leak
 - Lunar observations
 - $\checkmark\,$ Analysis shows correction is adequate and stable
- ✓ SWIR crosstalk (thermal leak and electronic crosstalk)
 - Improvement with a linear correction algorithm; uncertainty and striping
 - ✓ New code/LUT changes add correction flexibility (detector dependency)
 - Continuing efforts (working with C. Moeller and E. Vermote)
 - ✓ B13H and B14H calibration
 - Ratioing approach through B13 L and B14L

Challenging Issues

- SD calibration uncertainty
 - ✓ RSB BRF pre-launch characterization uncertainty
 - Non-spatial uniformity can cause annual oscillation in response trending
 - ✓ MCST on-orbit observations show < 0.3% non-uniformity (SBRS PL estimate of 0.7%)</p>
 - ✓ No SD vignetting function characterized pre-launch
 - Yaw maneuvers (on-orbit)
 - Overall agreement between observations and results from optical ray tracking simulation (MCST and Waluschka); difference within design and measurement uncertainty
 - ✓ Meetings held with ocean groups on VF (det. dep. vs single VF); agreement on using a single VF for all bands (0.5% uncertainty assigned for the VF)
 - ✓ RSB response changes (mirror side, AOI, detector, temporal)
 - Challenges for ocean color bands
 - Noisy detectors
 - Uncertainty and striping
 - ✓ Earthshine impact (SBRS uncertainty budget: 0.3%; Wolfe: < 0.3%)</p>
 - ✓ MCST estimate < 0.5% impact (with averaged and fitted m1)
 - Support for the modeling efforts (Wolfe); study of spectral dependency
 - Calibration difference (bias) among detectors
 - Continue studying using the Moon, SD, and EV data

Challenging Issues

- ✓ RSB RVS (ocean)
 - Continuing efforts (SRCA lamps' degradation and stability concern; SD and Moon angles to cover the entire range; more demanding and challenges for Terra MODIS)
- MWIR crosstalk (electronic crosstalk) and B21 calibration
 - ✓ New code/LUT changes add mirror side dependency for B21
- Mirror side correlated noise (MSCN)
 - Impact on the TEB and RVS correction (see TEB RVS)
- Polarization correction (ocean)
 - Efforts made for completing modeling and simulation (Miami, MCST, and Waluschka); lessons for future sensors (have all the optics information before or during testing)
- Calibration consistency between Terra and Aqua MODIS
 - ✓ TEB (inter-comparison with other sensors, such as AVHRR)
 - RSB (inter-comparison with other sensors and the Moon)
- Uncertainty Analysis
 - Completed internal review (then and now, numbers and approaches)
 a number of action items assigned
 - Review items and other technical issues with MsWG members
 - Update TEB and RSB calibration uncertainty

Summary

- Instruments performed well according to design specifications
 - Terra (5+ years) and Aqua (2.5+ years); Aqua better than Terra in a number of areas (except B6 and BBR problems)
- Constant efforts made to maintain and improve instrument calibration and characterization
 - MCST continues working closely with science groups (representatives), instrument vendor (SBRS), and other expertise for all key issues
 - Attention on instrument aging issues, such as the impact due to noise detectors
 - Online documents: L1B user guide, product data dictionary, ATBD (under review)
 - L1B code and LUTs change history, workshop materials, and publications
 - http://www.mcst.ssai.biz/mcstweb/index.html
- Lessons learned for future sensors

Useful Documents

- Guenther B, Xiong X, Salomonson VV, Barnes WL and Young J, "On-orbit Performance of the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) and the Attendant Level 1-B Data Product," *Remote Sensing of the Environment*, 83, 16-30, 2002
- Xiong X., K. Chiang, J. Esposito, B. Guenther and W.L. Barnes, MODIS On-orbit Calibration and Characterization, *Metrologia* 40, 89-92, 2003
- Barnes W.L., X. Xiong and V.V. Salomonson, Status of Terra MODIS and Aqua MODIS, *J. of Advances in Space Research*, 32/11, 2099-2106, 2003
- Xiong X., W.L. Barnes, B. Guenther and R.E. Murphy, Lessons Learned from MODIS Calibration and Characterization, J. of Advances in Space Research, 32/11, 2017-2122, 2003
- Xiong X, Sun J, Esposito J, Guenther, and Barnes WL, "MODIS Reflective Solar Bands Calibration Algorithm and Onorbit Performance," *Proceedings of SPIE – Optical Remote Sensing of the Atmosphere and Clouds III*, 4891, 95-104, 2003
- Xiong X, Chiang, Guenther, and Barnes WL, "MODIS Thermal Emissive Bands Calibration Algorithm and On-orbit Performance," *Proceedings of SPIE – Optical Remote Sensing of the Atmosphere and Clouds III*, 4891, 392-401, 2003
- Wu A., C. Cao and X. Xiong, "Inter-comparison of the 11mm and 12 mm Bands of Terra and Aqua MODIS Using AVHRR/NOAA-16/17", *Proceedings of SPIE Earth Observing Systems VIII*, 5151, 384-394, 2003
- Isaacman A., G. Toller, B. Guenther, W.L. Barnes and X. Xiong, "MODIS Level 1B calibration and data products", *Proceedings of SPIE – Earth Observing Systems VIII*, 5151, 552-562, 2003
- Chiang, K., X. Xiong, A. Wu, and W. Barnes, "MODIS Thermal Emissive Bands Calibration Uncertainty Analysis," *Proceedings of SPIE – Earth Observing Systems IX*, 5542, 437-447, 2004
- Esposito, J., X. Xiong, A. Wu, J. Sun, and W. Barnes, "MODIS Reflective Solar Bands Uncertainty Analysis," *Proceedings of SPIE – Earth Observing Systems IX*, 5542, 448-458, 2004

Backup Charts

MODIS Key Specifications

Primary Use	Band	Bandwidth ¹	Spectral Radiance ²	Required SNR ³	Primary Use	Band	Bandwidth ¹	Spectral Radiance ²	Required NE∆T(K) ⁴
Land/Cloud/Aerosols	1	620 - 670	21.8	128	Surface/Cloud	20	3.660 - 3.840	0.45 (300K)	0.05
Boundaries	2	841 - 876	24.7	201	Temperature	21	3.929 - 3.989	2.38 (335K)	0.2
Land/Cloud/Aerosols	3	459 - 479	35.3	243	1	22	3.929 - 3.989	0.67 (300K)	0.07
Properties	4	545 - 565	29	228		23	4.020 - 4.080	0.79 (300K)	0.07
	5	1230 - 1250	5.4	74	Atmospheric	24	4.433 - 4.498	0.17 (250K)	0.25
	6	1628 - 1652	7.3	275	Temperature	25	4.482 - 4.549	0.59 (275K)	0.25
	7	2105 - 2155	1	110	Cirrus Clouds Water	26	1.360 - 1.390	6	150 ³
Ocean Color/	8	405 - 420	44.9	880	-Vapor	27	6.535 - 6.895	1.16 (240K)	0.25
Phytoplankton/ Biogeochemistry	9	438 - 448	41.9	838		28	7.175 - 7.475	2.18 (250K)	0.25
g	10	483 - 493	32.1	802	Cloud Properties	29	8.400 - 8.700	9.58 (300K)	0.05
	11	526 - 536	27.9	754	Ozone	30	9.580 - 9.880	3.69 (250K)	0.25
	12	546 - 556	21	750	Surface/Cloud	31	10.780 - 11.280	9.55 (300K)	0.05
	13	662 - 672	9.5	910	Temperature	32	11.770 - 12.270	8.94 (300K)	0.05
	14	673 - 683	8.7	1087	Cloud Top Altitude	33	13.185 - 13.485	4.52 (260K)	0.25
	15	743 - 753	10.2	586		34	13.485 - 13.785	3.76 (250K)	0.25
	16	862 - 877	6.2	516		35	13.785 - 14.085	3.11 (240K)	0.25
Atmospheric Water	17	890 - 920	10	167	-	36	14.085 - 14.385	2.08 (220K)	0.35
Vapor	18	931 - 941	3.6	57	¹ Bands 1 to 19 are in r	ım; Ban	ds 20 to 36 are in p	um	
	19	915 - 965	15	250	² Spectral Radiance va	lues are	$(W/m^2-\mu m-sr)$		
	3 SNR =	Signal-to-noise 1	atio	•	4 NE Δ T = Noise-equiva	lent tem	perature difference	e	

MODIS Focal Plane Assemblies (FPA)

Instrument FPA Main Frame Temperature

Cold FPAs: (80. 83, 85k)

S: scan direction; T: track direction B13 and B14 have 2 columns of detectors for TDI high and low gain output

MODIS TEB Calibration Using Blackbody

PC Xtalk (Terra)

B33,35,36 (Aqua) at high T_BB

MODIS RSB Calibration Using SD/SDSM

EV Radiance:

$$L_{EV} = \frac{E_{Sun} \cdot \rho_{EV} \cdot \cos(\theta_{EV})}{\pi \cdot d_{Earth_Sun(EV)}^2}$$

Solar Irradiance E_{SUN}: 0.4-0.8 μm Thuillier et al., 1998; 0.8-1.1 μm Neckel and Labs, 1984; Above 1.1 μm Smith and Gottlieb, 1974

Others:

Thermal leak applied for SWIR bands (B5-7, B26) Leak coefficients determined from EV night time data B26 de-striping algorithm added (from C. Moeller of Wisconsin)

MODIS TEB NEdT

MODIS RSB SNR

SDSM for SD Degradation

Normalize to SDSM D9 is adequate

Terra MODIS SDSM D9 show no obvious degradation from over five years' on-orbit trending (observations)

Terra PC Optical Leak Correction is Stable

(Images shown are over Oman/Arabian-Sea)

Solar Diffuser BRF Validation (on-orbit)

- On-orbit BRF validation performed (yaw maneuvers)
- Bands 1-4 and 17-19 used to validate the BRF (bands 8-16 saturate without SD screen, SWIR bands have xtalk)
- Pre-launch BRF curves used to fit the observations
- Measurements (Terra MODIS) agree with pre-launch values to within ±0.25%* (consistency checked among different detectors within a band; * B2 min/max difference is -0.22%/0.41%
- Pre-launch BRF is used in the m1 calculation

<u>Terra MODIS B3 BRF</u> <u>fitting (solid line); on-orbit data (symbols)</u>

Band	Min_Diff	Max_Diff
1	-0.1309	0.2413
2	-0.2172	0.4130
3	-0.1624	0.1933
4	-0.1332	0.1747
17	-0.2045	0.2705
18	-0.1385	0.2491
19	-0.1590	0.2552

Impact of Earthshine from nadir aperture door is extremely small <0.1%

Earthshine Impact on SD Calibration

Earthshine impact from SD aperture door is observed. The variation of m1 due to Earthshine is reduced substantially in the MODIS L1B LUTs by using averaged m1 (green triangle).

Earthshine Impact on SD Calibration

Earthshine impact from SD aperture door is observed. The variation of m1 due to Earthshine is reduced substantially in the MODIS L1B LUTs by using averaged m1 (green triangle).

Earthshine Impact on SD Calibration

Summary of Earthshine Impact from SD Aperture Door (all bands)

Band	<-1.%	(-1%,-0.5%)	(-0.5%,-0.3%)	(-0.3%,-0.1%)	(-0.1%,0%)	(0%,0.1%)	(0.1%,0.3%)	(0.3%,0.5%)	(0.5%,1%)	>1.0%
1	0.00	0.00	0.00	1.45	48.09	49.16	1.30	0.00	0.00	0.00
2	0.00	0.06	0.40	4.00	44.40	46.63	4.50	0.00	0.00	0.00
3	0.00	0.00	0.00	4.29	45.60	46.23	3.87	0.00	0.00	0.00
4	0.00	0.00	0.00	1.94	47.77	49.37	0.93	0.00	0.00	0.00
5	0.00	0.21	1.05	1.05	31.85	32.02	17.56	0.82	0.00	0.00
6	0.00	0.23	0.67	0.67	37.67	39.38	12.24	0.08	0.00	0.00
7	0.00	0.17	0.69	0.69	34.62	38.30	13.71	0.06	0.00	0.00
8	0.00	0.00	0.17	7.26	42.09	43.44	7.05	0.00	0.00	0.00
9	0.00	0.00	0.00	3.32	47.92	44.55	4.21	0.00	0.00	0.00
10	0.00	0.00	0.00	1.09	49.45	48.23	1.22	0.00	0.00	0.00
11	0.00	0.00	0.00	0.65	49.94	48.72	0.69	0.00	0.00	0.00
12	0.00	0.00	0.00	0.55	50.72	48.06	0.67	0.00	0.00	0.00
13	0.00	0.00	0.00	1.09	47.18	51.39	0.34	0.00	0.00	0.00
13h	0.00	0.00	0.00	1.09	47.14	51.43	0.34	0.00	0.00	0.00
14	0.00	0.00	0.04	1.24	46.72	51.77	0.23	0.00	0.00	0.00
14h	0.00	0.00	0.04	1.24	46.72	51.77	0.23	0.00	0.00	0.00
15	0.00	0.00	0.15	1.96	44.01	53.43	0.46	0.00	0.00	0.00
16	0.00	0.06	0.38	2.71	40.70	55.28	0.86	0.00	0.00	0.00
17	0.00	0.00	0.06	1.47	46.07	51.68	0.72	0.00	0.00	0.00
18	0.00	0.00	0.00	1.68	45.71	52.02	0.59	0.00	0.00	0.00
19	0.00	0.00	0.04	2.36	46.32	49.98	1.30	0.00	0.00	0.00
26	0.00	0.06	0.25	12.33	34.85	40.96	11.40	0.15	0.00	0.00

Calibration Bias Among Detectors

Ratios (averaged) of **lunar irradiance** measured by individual detector to the bandaveraged value for Aqua MODIS (left) and Terra MODIS (right) bands 1-4, 8-12, and 17-19.

Comparison study using **MISR** for Terra MODIS (TOA radiance) also show small and similar detector to detector difference.

Inter-comparison Study and Progresses

Terra MODIS and AVHRR (17) in the 11µm band on Nov 25, 2002 Left: LAC data; Right: GAC data

Page 52

Inter-comparison Study and Progresses

MODIS Band 31 and 32 Uncertainty: 0.35K; NEdT = 0.05K at 300K

Uncertainty Analysis (RSB)

Current MODIS RSB Reflectance Calibration Uncertainty (1)

	SBRS/JY	MCST/JX-1
1 NIST reference:	0.50%	0.50%
2 Characterization of SBRS scattering goniometer:	0.70%	0.70%
3 Transfer of NIST BRF scale to MODIS SD reference:	0.50%	0.50%
4 MODIS SD characterization:	0.50%	0.50%
5 SD spatial non-uniformities:	0.70%	0.70%
6 Interpolation angular / spectrally:	0.10%	0.10%
7 Pre-launch to on-orbit SD BRDF change:	0.50%	0.50%
8 SD screen:	0.20%	0.50%
9 SDSM solar 2% attenuation and SDS impact:	0.50%	0.50%
10 Solar illumination of the SD surrounds (stray light)	0.30%	0.30%
11 Earthshine through the SD door	0.30%	0.50%
12 Earthshine through nadir aperture door	0.10%	0.10%
RSS	1.57%	1.69%
RSS (non-ocean without SDS)	1.56%	1.61%

Continuing efforts made to update based on sensor's on-orbit performance over time

Uncertainty Analysis (RSB)

Current MODIS RSB Reflectance Calibration Uncertainty (2)

В	BRF	dn_SD	T_inst	K_inst	SWIR	Δ	RVS	RVS(*)	dn_EV	RSS
1	1.69%	0.05%	0.01%	0.05%	0.00%	0.37%	0.18%	0.50%	0.54%	1.89%
2	1.69%	0.06%	0.03%	0.12%	0.00%	0.25%	0.01%	0.50%	0.19%	1.80%
3	1.69%	0.04%	0.01%	0.13%	0.00%	0.47%	0.05%	0.50%	0.31%	1.86%
4	1.69%	0.04%	0.01%	0.02%	0.00%	0.42%	0.04%	0.50%	0.30%	1.84%
5	1.69%	0.09%	0.01%	0.02%	1.00%	0.20%	0.03%	0.50%	0.62%	2.13%
6	1.69%	0.04%	0.00%	0.04%	1.00%	0.20%	0.03%	0.50%	0.21%	2.05%
7	1.69%	0.07%	0.01%	0.01%	1.00%	0.20%	0.03%	0.50%	0.68%	2.15%
8	1.69%	0.20%	0.03%	0.01%	0.00%	0.50%	0.05%	0.50%	0.09%	1.85%
9	1.69%	0.11%	0.01%	0.09%	0.00%	0.48%	0.04%	0.50%	0.07%	1.83%
10	1.69%	0.08%	0.01%	0.03%	0.00%	0.46%	0.07%	0.50%	0.07%	1.83%
11	1.69%	0.07%	0.01%	0.04%	0.00%	0.43%	0.06%	0.50%	0.06%	1.82%
12	1.69%	0.06%	0.01%	0.01%	0.00%	0.42%	0.06%	0.50%	0.07%	1.82%
13	1.69%	0.04%	0.01%	0.01%	0.00%	0.35%	0.30%	0.50%	0.07%	1.82%
14	1.69%	0.04%	0.01%	0.01%	0.00%	0.35%	0.28%	0.50%	0.07%	1.82%
15	1.69%	0.05%	0.02%	0.02%	0.00%	0.31%	0.01%	0.50%	0.07%	1.79%
16	1.69%	0.06%	0.01%	0.07%	0.00%	0.24%	0.01%	0.50%	0.07%	1.78%
17	1.69%	0.02%	0.01%	0.01%	0.00%	0.22%	0.03%	0.50%	0.26%	1.80%
18	1.69%	0.04%	0.02%	0.05%	0.00%	0.20%	0.03%	0.50%	1.31%	2.21%
19	1.69%	0.03%	0.00%	0.01%	0.00%	0.20%	0.01%	0.50%	0.20%	1.78%
26	1.69%	0.04%	0.01%	0.08%	1.00%	0.20%	0.03%	0.50%	0.44%	2.08%

SWIR crosstalk impact error of 1% was used here. Exact numbers should be evaluated with comprehensive science test (a correction algorithm applied in the L1B and in m1 calculation).