BIOPHYS A PHYSICALLY-BASED CONTINUOUS FIELDS ALGORITHM and Climate and Carbon Models

FORREST G. HALL, FRED HUEMMRICH

Joint Center for Earth Systems Technology (JCET) NASA's Goddard Space Flight Center Greenbelt, MD 20771 **Derek Peddle** Lethbridge University Alberta, Canada **David Landis** SSAI Lanham, MD

BIOPHYS

An Analysis Framework linking 30+ Years of Canopy Radiative Transfer Model Research Directly to Biophysical Parameter Retrieval

o O LookUp

Table

Initial Retrieval Test Landsat, vis, nir (± 0.01) 16 sites,3 solar angles (3 dates) 1983 Superior National Forest

Sit e	Avg	SD DBH	Stems per	Basal	Avg BMI	SD BMI	Avg LAI	SD LAI	Tree Ht	Description
	DBH	(cm)	m2	Fract	(kg/ m2)	(kg/ m2)			(ft)	
	(cm)									
12	4.54	2.11	0.16413	0.00032	0.678	0.127	0.484	0.181	20	sparse, low black spruce
19	4.05	1.98	0.25564	0.00041	1.032	0.200	0.692	0.242	25	low bl ack spruce
18	4.24	2.06	0.26062	0.00046	1.093	0.192	0.739	0.254	25	low bl ack spruce
51	5.92	3.04	0.37799	0.00131	3.620	0.501	1.685	0.454	25	low d ensity black spruce
56	8.09	4.29	0.25569	0.00168	5.280	0.345	1.834	0.329		medium density black spruce
102	5.92	2.34	0.91716	0.00292	7.246	0.736	3.670	1.228	50	high density black spruce
42	8.60	5.80	0.25863	0.00218	7.314	0.455	2.279	0.283	60	medium density black spruce
45	7.28	3.65	0.53387	0.00278	8.446	1.253	3.085	0.761	40	medium density black spruce
43	8.44	4.79	0.36305	0.00268	8.696	0.716	2.791	0.476	60	medium density black spruce
68	7.40	2.83	0.66002	0.00325	8.719	0.515	3.475	1.042	45	high density black spruce
48	9.83	3.19	0.33953	0.00285	9.149	1.665	2.700	0.795	50	medium density black spruce
52	9.92	3.91	0.35588	0.00318	10.036	0.574	3.034	0.588	60	low d ensity black spruce
15	12.21	3.83	0.22381	0.00288	10.680	0.675	2.692	0.383	60	dense, mature black spruce
41	13.49	5.73	0.18303	0.00308	11.135	0.517	2.842	0.313	60	high density black spruce
2	14.52	4.43	0.17507	0.00317	12.378	0.830	2.884	0.340	50	dense, mature black spruce
14	13.22	4.13	0.24669	0.00372	13.643	0.587	3.266	0.427	60	dense, mature black spruce

Retrieval Test

Landsat, vis, nir, 3SZA's Crown Green LAI

Three SZA retrievals drastically reduced the number of records returned.For only one SZA, generally the maximum SZA returned more records.

•With two SZA either the low pair or the high pair returned the most records.

Average Retrieved Crown Green LAI

•Average Retrieved Crown Green LAI varied little using 2 or more SZAs.

Average Retrieved Crown Cover Fraction

Average Retrieved Crown Cover Fraction Sensitive to SZA

Retrieval Precision vs Number of Records Retrieved-Crown Green LAI

Retrieval Precision vs Number of Records Retrieved-Crown Cover

Distribution of LAI Retrievals 16 sites,3 solar angles (3 dates) 1983 Superior National Forest

Sit e	Av g DBH	SD DBH (cm)	Stems per m2	Basal Fract	Avg BMI (kg/m2)	SD BMI (kg/ m2)	Avg LAI	SD LAI	TreeHt (ft)	Description
	(cm)									
12	4.54	2.11	0.16413	0.00032	0.678	0.127	0.484	0.181	20	sparse, low black spruce
19	4.05	1.98	0.25564	0.00041	1.032	0.200	0.692	0.242	25	low bl ack spruce
18	4.24	2.06	0.26062	0.00046	1.093	0.192	0.739	0.254	25	low bl ack spruce
51	5.92	3.04	0.37799	0.00131	3.620	0.501	1.685	0.454	25	low d ensity black spruce
56	8.09	4.29	0.25569	0.00168	5.280	0.345	1.834	0.329		medium density black spruce
102	5.92	2.34	0.91716	0.00292	7.246	0.736	3.670	1.228	50	high density black spruce
42	8.60	5.80	0.25863	0.00218	7.314	0.455	2.279	0.283	60	medium density black spruce
45	7.28	3.65	0.53387	0.00278	8.446	1.253	3.085	0.761	40	medium density black spruce
43	8.44	4.79	0.36305	0.00268	8.696	0.716	2.791	0.476	60	medium density black spruce
68	7.40	2.83	0.66002	0.00325	8.719	0.515	3.475	1.042	45	high density black spruce
48	9.83	3.19	0.33953	0.00285	9.149	1.665	2.700	0.795	50	medium density black spruce
52	9.92	3.91	0.35588	0.00318	10.036	0.574	3.034	0.588	60	low d ensity black spruce
15	12.21	3.83	0.22381	0.00288	10.680	0.675	2.692	0.383	60	dense, mature black spruce
41	13.49	5.73	0.18303	0.00308	11.135	0.517	2.842	0.313	60	high density black spruce
2	14.52	4.43	0.17507	0.00317	12.378	0.830	2.884	0.340	50	dense, mature black spruce
14	13.22	4.13	0.24669	0.00372	13.643	0.587	3.266	0.427	60	dense, mature black spruce

Retrieval Results Distribution of Site LAI Retrievals

Retrieval Results Distribution of Canopy Component Retrievals - Crown LAI and CC

Retrieval Results All SNF Spruce Sites

Accuracies roughly equivalent to empirical approach Error structure automatically retrieved

Problems

Algorithm Locality: Spectral change with illumination view geometry, background, season etc.affects robustness. "Chicken & Egg Syndrome": Radiance correction for view and illumination angle to infer biophysical parameters depends on the parameters. Parameter Inconsistency: Different algorithms for different parameters. Error structures: Error, uncertainty characterization approximate, empirical. Model utility: Inability to directly assimilate satellite radiances in

CWE models.

BIOPHYS

Solutions

Algorithm Locality: Physicallybased retrievals incorporate reflectance responses to exogenous variables. "Chicken & Egg Syndrome": BIOPHYS uses spectral dependence on view and illumination angle to improve retrieval accuracies.

Parameter Inconsistency: BIOPHYS Parameter retrievals from a single algorithm using common input data.

Error structures: Error, uncertainty an integral part of the retrieval. Model utility: BIOPHYS structure can assimilate data directly from within CWE models.

BIOPHYS FRAMEWORK & OSSEs

- OBSERVING SYSTEM SIMULATION EXPERIMENT (OSSE)
 - OSSEs compute sensor/platform reqts in terms of biophysical parameter reqts.
- BIOPHYS FRAMEWORK provides a physicallybased framework for computing
 - Retrieval precision as a function of sensor S/N
 - Retrieval bias as a function of sensor cal bias
 - Retrieval error as a function of band selection
 - Retrieval error as a function of CRT models

Finally

- BIOPHYS Framework Can Bridge the Chasm
- What's Next
 - Wrap up exploratory work
 - Investigate convergence of mean to actual
 - Select RT Model (GOMS, GORT ...). Build the LUTs
 - Complete MODIS BIOPHYS Algorithm
 - Evaluate MODIS Products and Iterate
- PRODUCE PROVISIONAL DATA SETS WITH BIOPHYS
 OVER SELECTED STUDY REGIONS.
- PLACE PROVISIONAL DATA SETS ONLINE; INITIATE USER EVALUATION.

The Chas	Sm
CANOPY RT MODELER	Climate, Carbon Modeler
Circa 1972- Modeling	BIOPHYS
Circa 1980 - Inversion	2000 MODI S LAI , FPAR
Circa 1996 Physical Based Classification/I For Landsat	У- MFM