Synergistic Use of Datasets from Multiple Instruments for Earth Science Research

Ivan A. Csiszar, University of Maryland : Hazards
<u>Simon J. Hook, Jet Propulsion Lab. : Hydrology - Presenter</u>
Vince J. Realmuto, Jet Propulsion Lab : Hazards
Thomas Schmugge, New Mexico State University: Ecology

Outline

- Hazards
 - Mapping volcanic plumes (V. Realmuto)
 - Active Fire monitoring (I. Csiszar)
- Ecology
 - Calculating broadband emissivities for climate models (T. Schmugge)
- Hydrology
 - Measuring nutrient distribution in large lakes (S. Hook)
- Critical factors limiting use of multi-instrument data
- Wrap-up and ways to increase multi-instrument studies

OBJECTIVES OF PLUME MAPPING

Track Changes in SO₂ Emission Rate

Detect Passive Emissions Before an Eruption Occurs

Eruptions May be Preceded by Changes in Emission Rate

Few Volcanoes are Monitored with Necessary Frequency to Establish Baseline Emission Rates

Satellite Remote Sensing -> Facilitate Monitoring

Study the Fate of SO₂ in Atmosphere

Conversion to Sulfate Aerosols

Local/Regional Hazard to Respiratory Health

Regional/Global Climate Forcing

Nucleation Sites for Polar Stratospheric Clouds -> Catalysts for Ozone Depletion

Mapping Passive SO₂ Emissions from Space

Pu'u O'o Plume Map Derived from ASTER 90m TIR Data

High Spatial Resolution (90 m) => High Sensitivity to Presence of SO₂

Mitigating Factors

Small Plume: typically 1 km in thickness and width

Low Altitude (typically 1.5 km asl): Low Temperature Contrast

Warm, Humid Tropical Atmosphere: Decreased Temperature Contrast, Increased Atmospheric Absorption and Emission

AIRS Data Acquired over Mount Etna Eruption Plume: 28 October 2002

Constituents of Volcanic Plumes Amenable to Satellite Remote Sensing: SO₂, Silicate Ash, Sulfate Aerosol

Rare in "Normal" Atmosphere - Relatively Low Concentrations Can Be Detected in the Thermal IR (TIR)

Forward Modeling Results

MODTRAN, CHARTS, LBLTran run at 1 cm⁻¹ resolution

SO₂ concentrations between 0.25 – 0.50 mg/m³

Silicate Ash Loading >> Sulfate Aerosol Loading

2002-2003 Eruption Of Mount Etna

27 Oct 2002 - 29 Jan 2003

Terra/Aqua Record:

At least one daytime MODIS overpass per day

At least one daytime AIRS overpass every 2 days

Two MISR overpasses (one day apart) every 16 days

90 ASTER acquisitions between June and December 2002

AIRS True Color Composite 28 October 2002 SO₂ COLUMN ABUNDANCE (g/m²) Plume Top Altitude: 6 km Plume Base Altitude: 5 km AIRS Misfit to Data is ~ 2X That of MODIS 10 0 Need to Upgrade Version of MODTRAN Used in MAP_SO2 MISFIT TO OBSERVED RADIANCE 7.5 10

SUMMARY REMARKS...

Retrievals Appear to be Consistent

Three Days of Activity; Three Instruments

MAP_SO2 Does Not Introduce Systematic Bias

AIRS-Based Retrievals in General Agreement with MODIS- Based Retrievals

Future Efforts

Focus on Days with Terra and Aqua Overpasses (eg. 27 Oct 2002)

Begin ASTER Processing (30 December 2002)

Incorporation of MISR-Based Plume Geometry

MODTRAN Upgrade

Incorporation of AIRS-Based Atmospheric Profiles

Using ASTER data to validate the MODIS active fire product

Ivan Csiszar icsiszar@hermes.geog.umd.edu

Key Benefits

- ASTER can be used for detecting active fires that are much smaller than the lower MODIS detection limit
- ASTER and MODIS on same platform (perfect temporal coincidence)
- Disadvantages: ASTER has limited angular range, saturates (partly addressed with multiple gain settings) and limited availability

Coincident MODIS and ASTER active fire observations

ASTER, 8-3-1 RGB (30m) + 1km MODIS grid: MODIS detections in color **MODIS v4 detection:**

Yellow gridcells: "fire", high confidence

Blue gridcells: "fire" nominal confidence

Gridcell with vertical shading: "cloud"

Black gridcells: "clear land"

July 23 2002 03:18 UTC 62.57N 125.72E (Siberia)

Csiszar et al., submitted

ASTER image and MODIS grid of Brazilian ACRE file

Note: fires visible through clouds in lower left corner. No standard ASTER fire products

Aug 29 2003 14:56 UTC 9.71S 67.15W (Brazil)

ASTER fire mask and MODIS grid

ASTER fire detection algorithm developed by Louis Giglio

Aug 29 2003 14:56 UTC 9.71S 67.15W (Brazil)

Comparison with coincident highresolution satellite observations

Contour Plot of Detection Probabilities

Probabilities of detection as a function of ASTER fire pixels within MODIS pixel

Pixel-based accuracy assessment curve with 95% exact confidence intervals: omission error rate

NPOESS/VIIRS/LANDSAT active fire validation!

Calculating Broadband Emissivities for Climate Models Tom Schmugge New Mexico State University

Approach: Extend from small to large target, from ASTER to MODIS

ASTER TIR Response

ASTER VNIR White Sands May 21, 2001

63 X 63 km

ASTER TIR White Sands May 21, 2001

Ground Measurement ____ Site

Red > 10.7 um Grn > 9.1 um Blu > 8.6 um

ASTER: Gypsum/White Sands

Study area: Sahara Desert in North Africa

200 scenes of ASTER data acquired from 2000 to 2002
 Size of area 400 x 1500 km

MODIS Nadir Adjusted Reflectivity Monthly Composite - 0.05

Emissivity of ASTER channels

Broad band Emissivity Derived From Regression of 5 ASTER Bands

MODIS Products

Reflectivity

Emissivity 8.6 µm

Window Emissivity $\epsilon_{8-12} = 0.987 - 0.08316_7$

Comparison: MODIS Estimated vs ASTER Observed

Conclusions

- ASTER and TES work very well
 - Quantitative agreement (1 2%) with lab and field measures at White Sands
 - ASTER Results are repetitive
 - Emissivity mapping on a regional scale
 - Extend to Global scale with MODIS

Mapping Nutrient Transport in Lakes

Simon J. Hook Simon.j.hook@jpl.nasa.gov

Measuring Nutrient Transport In Lakes

0

58 62 66 70 74 78 82 86 90 94 98

Simon J. Hook Simon.j.hook@jpl.nasa.gov

Temperature Trace from TR4 for January of 2000

TR4 Jan 6 2000 - Feb 10 2000

ASTER 6/03/2001

MODIS 6/03/2001

MODIS 7/21/2001, 19:00 GMT

ASTER 7/22/2001, 06:05 GMT

MODIS 7/22/2001, 06:05 GMT

Current Tracking with Landsat ETM+ and ASTER Data using Maximum Correlation Method

Critical Factors Limiting Use of Multi-Instrument Data

- Interoperability/Protocols/Standards
- Information Assurance and Security
- Hardware/Software
- Infrastructure/Bandwidth
- Human and Institutional Capacity

From: Strategic Plan for the U.S. Integrated Earth Observation System

Critical Factors – Real World

- Geospatial data but cannot be accessed geospatially
 - Need to subset down to pixel level when order!
- Every pixel needs a latitude and longitude
 - No subset lattices or corner points use double precision.
- Data stored in multiple projections
 - Need default, common projection
- Data ordering should not require a human in the loop
 - Implement SIMPLE subscription service
- Software lacks scripting
 - More toolkits with scripting support e.g. Python and PIL
- Open access
 - Allow users to FTP for free small subsets e.g. USGS NED approach

Wrap-Up

- Need Leadership from the top input with input from the bottom.
- Need clearly articulated vision for where we want to go and why.
- Need a system which can be used by the individual without requiring large institutional infrastructure
- Need clear milestones with tangible results
 - Roadmaps, Data Fusion working group?

With Special Thanks to:

Ivan A. Csiszar, University of MarylandAshley Davies, Jet Propulsion LabVince J. Realmuto, Jet Propulsion LabRob Sohlberg, University of MarylandThomas Schmugge, New Mexico State University