Satellite Ocean Color/Biogeochemistry Climate Data Records

Chuck McClain Ocean Biology Processing Group

NASA MODIS Science Team Meeting

March 22-24, 2005

Seasonal Biosphere Ocean Chlorophyll-a & Terrestrial NDVI

Data from SeaWiFS

Data Requirements for Climate Research: Climate Data Records

Long-term continuous time series

- Must span interannual and short-term natural variability (e.g., ENSO)
- Necessarily requires data from multiple missions (e.g., CZCS to NPOESS)
- Must include most recent data, e.g., NPP/VIIRS
 - Continuous ccean color time series starts in 1996 with ADEOS-I/OCTS
- Must minimize data gaps to avoid aliasing of natural climate oscillations (e.g., ENSO)

• Highest possible quality (satellite & in situ)

- Must not include significant sensor artifacts and trends
 - Decadal scale variability and climate trends are small and can be easily confused with sensor drift
 - Ocean color products are particularly sensitive to sensor characterization/calibration errors (e.g., 1% error in calibration produces about a 10% error in water-leaving radiance)
- Must be validated with ample highly accurate field data
- Requires **reprocessings** (e.g., SeaWiFS has been reprocessed 5 times in 7.5 years)

Consistency between satellite data sets

- Must be cross-calibrated and processed using similar algorithms, i.e, no abrupt transitions between data sets
- Requires periodic reprocessings to improve products & maintain consistency

GLOBAL OCEAN BIOGEOCHEMISTRY MISSIONS

rage 1 01 1 / / / / / / / / / / / / / / / /	<u> ////////////////////////////////////</u>								/	<u> </u>	10/05
Instrument (Mission; Country)	96 97	98 99	00 0	1 02	03 04	05	06	07 08	09	10 1	1 12
GLOBAL MISSIONS											
OCTS (ADEOS-I; Japan)											
POLDER (ADEOS-I/II; France)**					F						
SeaWiFS (Orbview-2; U.S.)						N. 20	ASA ()04. Sa	lata buy atellite	v ende still fu	d in De	ec. ing.
MODIS (Terra; U.S.)*						┢					
MERIS (ENVISAT; ESA)											
GLI (ADEOS-II; Japan)											
MODIS (Aqua; U.S.)				Â							
VIIRS (NPP: U.S.)**											
VIIRS (NPOESS series; U.S.)											
Note: CZCS (1978-1986) did not routinely collect global data.	*MODIS not prese	S/Terra c ently in p	ocean co producti	olor da ion	ta	**	NPP 1	aunch	will pr	obably	' slip
Primary CDR Data Set	Fu	ture CD	R Data	Set				ata Set	s Not I CDR A	Being Analysi	is
		/////	/////	/////	///////////////////////////////////////	////	Milestone	s Professiona	Trial Versio	on (http://www	v.kidasa.com).

Historical Ocean Color Accuracy Goals

Sensor radiometric calibration

- * ±5% absolute
- * ±1% band-to-band relative
- Water-leaving radiances

* ±5% absolute

Chlorophyll-a

Current Ocean Biogeochemistry CDRs. Community presently revising product suite & CDR requirements.

* $\pm 35\%$ over range of 0.05-50.0 mg/m³

These accuracy specifications are being reconsidered based on experience with SeaWiFS & MODIS.

Infrastructure Requirements for CDR Development

- Protocols for laboratory & in situ observations
- Advanced instrumentation development & ongoing instrument performance evaluations
- Calibration and data analyses round robins
- In situ data archive and standardized QC procedures
- Algorithm development (atmospheric & bio-optical)
- On-orbit calibration capabilities
 - On-board methods (e.g., lunar data)
 - Vicarious methods (e.g., MOBY)
- Multi-mission reprocessing capability

Ocean Biology Processing System

Calibration Validation Paradigm

Satellite Calibration Elements:

- Laboratory before launch, sensor is calibrated in lab
- **On-orbit** daily solar and monthly lunar observations are used to track changes in sensor response
- Vicarious comparison of data retrievals to in-water, ship, and airborne sensors is used to adjust instrument gains

Ocean Optics Protocols for Satellite Ocean Color Sensor Validation

Original Protocols:

• Mueller & Austin 1992, Ocean Optics Protocols for SeaWiFS Validation, NASA TM 104566, Vol. 5, 43 pp.

Revisions and Other Protocols:

- Mueller & Austin 1995, Revision 1, Volume 25 in the SeaWiFS Technical Report Series.
- Fargion & Mueller 2000, Revision 2, NASA TM 2000-209966.
- Fargion et al., 2001, AOT Protocols, NASA TM 2001-209982.
- Mueller et al., 2002, Revision 3, NASA TM 2002-21004 (Vol.1-2).
- Mueller et al., 2003, Revision 4, NASA TM 2003-211621 (Vol. 1-6).

MOBY used to adjust prelaunch calibration gains for visible bands using satellite-buoy comparisons.

MOBY: Vicarious Calibration

SeaWiFS Bio-optical data Archive & Storage System (SeaBASS)

Data from over 1360 cruises

Apparent Optical Property (AOP); Chlorophyll-a (CHL); Aerosol Optical Thickness (AOT)

SeaWiFS & SIMBIOS Calibration Round Robins

(RR experiments in 1992, 1993, 1996, 1998, 1999, 2001, & 2002)

Goals

- Verify that all labs are on the same radiometric scale
- Document calibration protocols
- Encourage the use of standardized calibration protocols
- Identify where the protocols need to be improved

Radiance Calibrations (spheres & plaques)

SeaWiFS Transfer Radiometer (SXR-1 & -2)

Field Measurement Technology Development

> Various in-water & above water radiometers

SeaWiFS Quality Monitor (SQM) (NIST/NASA-developed portable field source for stability monitoring)

SeaWiFS, MODIS, & VIIRS

• SeaWiFS

- Rotating telescope
- 412, 443, 490, 510, 555, 670, 765, 865 nm bands
- 12 bit digitization truncated to 10 bits on spacecraft
- 4 focal planes, 4 detectors/band, 4 gain settings, bilinear gain configuration
- Polarization scrambler: sensitivity at 0.25% level
- Solar diffuser (daily observations)
- Monthly lunar views at 7° phase angle via pitch maneuvers

• NPP/VIIRS

- SeaWiFS-like rotating telescope
- MODIS-like focal plane arrays
- No polarization scrambler
- Solar diffuser with stability monitor
- 7 OC bands (412, 445, 488, 555, 672, 746, 865 nm)

• MODIS (Ocean Color)

- Rotating mirror
- 413, 443, 488, 531, 551, 667, 678,
 748, 870 nm bands
- 12 bit digitization
- 2 Vis-NIR focal planes, 10x40 detector arrays
- No polarization scrambler: sensitivity at ~3% level
- Spectral Radiometric Calibration Assembly (SRCA)
- Solar diffuser (observations every orbit), Solar Diffuser Stability Monitor (SDSM)
- Monthly lunar views at 55° phase angle via space view port

SeaWiFS Calibration Strategy

SeaWiFS Lunar Calibration Stability Tracking

Lunar calibration: Monthly views of the moon at ~ 7° phase angle. Gradual monotonic degradation primarily in NIR bands.

MOBY-based Vicarious Band 1 Gain Factors

• Overpasses used in operational gain determination

i Overpasses that failed gain analysis Q/C criteria

SeaWiFS Data Quality: Global Consistency & In Situ Verification

Field Validation: Chl-a

Field Validation: Lwn's

* Lwn: Normalized Water-leaving Radiance

MODIS/Aqua Data Quality: Global Consistency & In Situ Verification

Field Validation: Chl-a

Field Validation: Lwn's

* Lwn: Normalized Water-leaving Radiance

MODIS(Aqua)/SeaWiFS Lwn Ratios (Hawaii): Vicarious Calibration Region

Most MOBY data used for vicarious calibration is near beginning & end of time series due to sun glint
Differences during 2003 are presently unexplained

MODIS/Aqua-SeaWiFS Global Lwn's

Deep-Water Lwn Comparisons Solid Line: SeaWiFS Dashed Line: MODIS/Aqua Global averages very consistent.
Average differences within ±5%.

Deep-Water Lwn Ratios

MODIS-Aqua/SeaWiFS Meridional Clear-Water Lwn Comparisons (Global Daily Mean)

MODIS-Aqua & SeaWiFS Global Mean Chlorophyll Time Series

Clear-water: chl-a < 0.15 mg/m³

Dashed line: MODIS

Solid line: SeaWiFS

MODISA(AT33) & SeaWiFS(ST15) 4-Day Chloraphylla, Coastal Water Subset

Deep-water: depth > 1000 m

Coastal: depth < 1000 m • Primarily chlorophyll-a algorithm difference at high concentrations

SeaWiFS & MODIS 4-Day Deep-Water Chlorophyll Images 4 day composites, Summer 2002

0.01-1 mg/m^3

SeaWiFS

MODIS (current operational processing)

Global Ocean Color/Biogeochemistry Trends: Recent Case Studies

- 1997-1998 El Niño-La Niña Transition in Ocean & Land Productivity: Behrenfeld et al., *Science*, 2001
 - Global marine productivity increased by 6 petagrams C/yr between Sept. 1997-August 2000
 - Global terrestrial productivity showed no significant change, only regional changes
- CZCS-SeaWiFS Decadal Primary Productivity Change: Gregg et al., *Geophys. Res. Lett.*, 2003
 - Marine productivity declined > 6% over past 2 decades
- Global Chlorophyll-a Trends During 1998-2003: Gregg et al., *Geophys. Res. Lett.*, 2005
 - Ocean gyre chlorophyll concentrations decreasing with increasing SST
 - Most oligiotropic areas also expanding: McClain et al., *Deep-Sea Res.*, 2004

Global Patterns of Net Primary Production (NPP) & NPP Anomaly: 1998-2000

Boreal Winter

Boreal Summer

Behrenfeld, M., et al., Temporal changes in the photosynthetic biosphere, *Science*, 291, 2594-2597, 2001.

Global NPP Trends: 1997-2000

Oceans

Boreal Winter

Behrenfeld, M., et al., Science, 2001.

Boreal Summer

Decadal Scale Changes in Marine Productivity

- 6% global decrease (2.8 Pg C/yr) in marine productivity based on CZCS (1978 -1986) & SeaWiFS (1997 -2003) climatologies.
- 70% of change at high latitudes.
- Productivity tended to increase at low latitudes.

Gregg, W.W., et al., Ocean primary production & climate: Global decadal changes, *Geophys. Res. Lett.*, 15, doi: 10.1029/2003GL016889, 2003.

Locations of Most Significant Chlorophyll-a Change Based on SeaWiFS Time Series: 1998-2003

Gregg, W. W., et al., GRL, 2005.

Patterns of Chlorophyll-a Change: 1998-2003

Gregg, W.W., et al., GRL, 2005

Gregg, W.W., et al., GRL, 2005

Maintaining the Ocean Color CDRs: Data Set Reprocessings

- Historical Data Sets (REASoN-CAN, Watson Gregg, PI)
 - OCTS: Reprocessing scheduled for Spring 2005
 - CZCS: Reprocessing scheduled for CY 2005
- SeaWiFS: Reprocessing completed in March 2005 (4 km data @ 3700X)
- MODIS/Aqua: Reprocessing completed in March 2005 (1 km data @ 150X)

BACK-UP SLIDES

Ocean Color & Carbon Cycle/Ecosystems/Biogeochemistry: NASA Science Objectives

- Why do we care about ocean biogeochemistry?
 - The ocean is a primary sink for anthropogenic CO_2 .
 - The ocean is the largest active reservoir of carbon.
 - Marine photosynthesis supports the entire marine foodweb (fisheries).
- Major Ocean Biogeochemistry Science Questions
 - Ocean biology interannual variability (e.g., El Niño/La Niña)
 - Impacts of climate change/warming on marine ecosystems
 - Marine CO₂ sequestration and role of "biological pump"
 - Impacts of population growth on coastal ecosystems
- Data Requirements
 - Long time series of global observations (from multiple sensors)
 - Consistent and accurate on-orbit sensor calibrations
 - Improved accuracy in data products (e.g., chlorophyll-a, primary productivity), particularly in coastal regions
 - Adequate field/laboratory calibration & validation program

Ocean Color Data Processing, Cal/Val, & Algorithm Development Functions

Algorithm Development & Field Data Collection • Algorithms • Atmospheric correction • Quality masks & flags • Bio-optical • Sea surface temperature • Data merger (time/space) • Bio-optical & atmos. field data collection • Science leadership/coord • New product specification • Definition/Development • Resource/Performance Evaluation • Selection	 Sensor Calibration & Product Validation I/F with mission operations Cal. strategies, schedules, and operations plans Round robins Visible Thermal IR Vicarious calibration Data: MOBY, AERONET, ship Data Analysis Protocol development for measurement and analysis SST, OC, Atm. Corr. Instrument technology evaluation I/F with sensor/satellite mission calibration and characterization activities/groups (e.g., NCST) Q/C & archive in-situ data (product validation & algo. dev.) Product validation Discipline Processing Group 	 Data Processing I/F with IPO & NOAA I/F with NPP/CDMS Maintenance and infrastructure improvements within GSFC Climate data processing Continuity data sets & data merger (historical/existing) VIIRS Simulated data develop. End-to-end testing Data storage RDRs, Level-1, EDRs Ocean & ancillary data Algorithm testing & implementation (inc. new products) Quality control/assurance Continuity data sets VIIRS 	 Distribution & Outreach Real-time ground station support Data archive & distribution Community processing S/W (SeaDAS) Data Synthesis Science campaign support Autonomous support User services Interface and data processing capability RT data distribution Publication support Science writer/editor Education outreach
•	 Product validation Discipline Processing Group Science Team 		

Functions supported under NRAs Discipline processing functions

Functions assumed by a NASA flight project, HQ, or another agency (NOAA)

Ocean Color 865 nm Band: No Vicarious Calibration

- 865 nm measurements are used provide aerosol amounts in the atmospheric correction algorithm
 - SeaWiFS, MODIS, OCTS, VIIRS
- Comparisons for SeaWiFS suggest that band 8 calibration may be 5-10% too high
 - Southern Ocean band 8 gain study (~5-6%)
 - Comparisons with University of Arizona ground measurements (within 10%)
 - Comparisons with aerosol optical thickness data (AERONET & cruise data)
 - Scatter in results is large
 - SeaWiFS appears high

Time Series of Global Ocean Chl-a & Chl-a Anomaly, 1998-2000

Time Series of Global NDVI & NDVI Anomaly, 1998-2000

Behrenfeld, M., et al., Temporal changes in the photosynthetic biosphere, *Science*, 291, 2594-2597, 2001.