Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS

N. Christina Hsu and

S.-C. Tsay, M. D. King, M.-J. Jeong

NASA Goddard Space Flight Center Greenbelt, Maryland USA NASA's Vision: To improve life here, To extend life to the To find life beyond.

- Aerosols may play an important role in mod
- solar and terrestrial radiation.

•

• Understanding that role is critical to understanding the energy balance that shapes our weather/climate.

Solar radiation is the sole large-scale source of diabatic heating that drives the weather & climate system on planet Earth.

Terrestrial radiation keeps the planet in balance to make Earth habitable for all forms of life.

Ozone

3-D Clouds

Understanding the role of aerosols means

Understanding how the properties of those aerosols ...

- refractive index
- species
- mixture
- hygroscopicity
- size distribution
- shape

...for each type of aerosol - temporal (t) that occurs in the atmosphere - Dust Particles - Biomass Burning Smoke - Air Pollutants - Sea Salts

- ...afffect various aspects of solar and terrestrial radiation...
 - spectral (λ)
 - spatial (x, y, z)
 - angular (q, f)

Aerosol Remote Sensing &

The early days of AVHRR, since 1983: Geogdzhayev, Mishchenko, et al., J. Atmos. Sci.,

The current days of MODIS, since 2000: Remer, Kaufman, Tanré, et al.,

Visible & NIR Bands: superimposed on the GOME spectral

reflectance taken over the Sahara MODIS

Viewing Geometry Differences

View Angle vs. Relative Azimuth Angle

Aqua

Flowchart for Deep Blue Algorithm

Phase Function for Dust Model

The aerosol characteristics used to generate the simulated radiances in these two figures are shown below

Aerosol	<u>τ₄₁₂</u>	<u>τ₄₉₀</u>	Refractive Index	Refractive Index	ω ₀	ω ₀
Model	τ ₄₇₀	τ ₄₇₀	412 nm	490 nm	412 nm	490 nm
Dust	1.00	1.00	1.55 – 0.020i	1.55 – 0.008i	0.91	0.96
Smoke	1.30	0.92	1.55 – 0.022i	1.55 – 0.026i	0.90	0.89

In areas of mixed aerosol types, we linearly mix radiances from the dust aerosol model, R^{dust} , with those from the smoke aerosol model, $R^{smoke} = aR^{dust} + (1-a)R^{smoke}$

Gaussian distribution with a peak at 3 km and a width of 1 km was assumed

Deep Blue Algorithm for SeaWiFS/MODIS

• Utilize solar reflectance at $\lambda = 412, 490, \text{ and } 670 \text{ nm to}$ retrieve aerosol optical thickness (τ_a) and single scattering albedo (ω_0) .

- Less sensitive to aerosol height, compared to UV methods.
- Works well on retrieving aerosol properties over various types of surfaces, including very bright desert.

Aerosol Optical Thickness Retrieved from Deep Blue Algorithm: Dust plumes in Africa

 τ_{a}

2.0

1.5

Validation: Comparisons with AERONET Aerosol Optical Thickness

Deep Blue Algorithm

SeaWiFS retrieved aerosol optical thickness and Angstrom exponent showing a dust front pushing the air mass with small particle air pollution over both water and land on this day.

Aerosol Observation Strategy

6 April 2001

MODIS *Red-Green-Blue* with Rayleigh scattering removed

Current MODIS retrievals: Aerosol Optical Thickness

New MODIS Deep Blue: Aerosol Optical Thickness

Tracking Movements and Evolutions of Aerosol Plumes

Intercomparisons of April 2001 Monthly Mean AOT Over East Asia

• Large Daily Variability in AOT

• Frequent Presences of Clouds

Summary

- Deep Blue algorithm provides aerosol optical thickness, Angstrom exponent and single scattering albedo for both land and water.
- Compared well with AERONET aerosol products:

 Separate dust well from other anthropogenic sources
 Aerosol optical thickness agree with AERONET values
 within 10-20% over water and 20-30% over deserts
 - Deep Blue algorithm successfully applied to SeaWiFS and MODIS: evolution (spatial & temporal) of aerosols can be studied for the first time over deserts using one consistent algorithm.

Current Issues in Aerosol Product Synergy:

- **Presences of Clouds**: requires careful selection in geolocation to conduct intercomparisons;
- Variability of Aerosol Loading: requires spatial coverage;

• Accurate and Consistent Calibration across each individual sensors.