MODIS Land Science Summary

Steven W. Running, University of Montana And MODLAND Team

> MODIS Science Team Meeting Baltimore, MD January 4, 2006

MODIS BRDF/Albedo Products

- Combined Terra and Aqua MODIS surface reflectances are used to retrieve highest quality products
- Product provider measures of surface albedo and anisotropy
 - Intrinsic surface albedos
 - BRDF models
 - Nadir BRDF-Adjusted Reflectances (NBAR)
- V005 reprocessed products provided at three resolutions
 - 500m (for mesoscale applications)
 - 1km (for regional applications)
 - 0.05deg (for global applications)
- 500m products provide better spatial detail and will allow global land cover at 500m spatial resolution

MODIS BRDF/Albedo Products

White Sky Albedo (500m, 2004-177)

White Sky Albedo (1000m, 2004-177)

CMG (0.05deg.) White Sky Albedo (2004-177)

Version 5 White Sky Albedo products in New England area with 3 different resolutions (500m, 1km, and 0.05 degrees)

CMG products

False color composite of White Sky Albedo

CMG products can be used in global, regional and local applications

Global maximum snow albedo data are derived using multiple MODIS land data (<u>PI: Xubin Zeng;</u> Barlage et al. 2005, GRL) They differ from those in NCEP/Noah land model These differences affect 2-m air temp in 24hour WRF forecasting

ODIS Fire & Albedo Product Application Example

Jin, Y.¹ and Roy, D.P.²

Fire-induced albedo change and its radiative forcing at the surface in northern Australia *Geophys. Res. Lett.*, 2005, 32, L13401, doi:10.1029/2005GL022822

> ¹ Department of Earth System Science, University of California, Irvine, CA

² Geographic Information Science Center of Excellence, South Dakota State University, Brookings, SD Global, annual-mean radiative forcings (Wm⁻²) due to a number of agents for the period pre-industrial (1750) to present, Intergovernmental Panel on Climate Change 2001

Burned area 2003 dry season (March – November)

derived from Aqua + Terra MODIS data

March April May June July August September October November

Australia north of 26.5°S

Shortwave "instantaneous" Δ albedo due to fire

Sienna	Blue	Green	Yellow	Red
>0.0	0.0 to -0.02	-0.02 to -0.04	-0.04 to -0.06	<-0.06
Increase	Decrease –			

"Instantaneous" radiative forcing (Wm⁻²)

Sienna	Blue	Green	Yellow	Red
<0.0	0.0 to 5.0	5.0 to 10.0	10.0 to 15.0	>15
Cooling	Warming —			

Napping Wildfire Effects For

Rehabilitation and Inventory Applications

From Rob Sohlberg, Univ of Maryland

Vegetative Cover Conversion – Change Due to Burning (VCC-CDB)

The Vegetative Cover Conversion product (VCC) is designed to be a global alarm product for rapid land cover change. VCC intends to locate change caused by deforestation, fire, and floods. VCC-Change Due to Burning (VCC-CDB) is generated at 250m resolution using data from the MODIS instrument and the Normalized Burn Ratio (NBR) calculated from 16-day composites.

Vegetative Cover Conversion – Change Due to Burning (VCC-CDB) Validation

Figure 1a - USFS BAER Mineral Primm fire polygons.

Figure 2a - MODIS VCC-CDB fire intensity (yellow = low while red = high), with USFS BAER Mineral Primm fire polygons.

Figure 3a - Aggregated MODIS VCC-CDB polygon. Area in red represents VCC-CDB within the BAER polygon while the area in dark green is outside the BAER Mineral Primm fire polygon.

Maximum Extent of Persistent Flooding Caused by Hurricane Katrina

Mark Carroll, Charlene DiMiceli, Robert Sohlberg, John Townshend Department of Geography, University of Maryland

Amazon Rainforests Green-up with Sunlight in Dry Season

Validation @ plot level (flux tower sites)

•Both flux tower data and EVI show 'greening' in forests and 'browning' in pasture during the dry season,

•EVI scales the same in both forest and pasture biome types and suggests that basin-wide carbon fluxes can be constrained by integrating remote sensing and local flux measurements.

Large Seasonal Swings in Leaf Area of Amazon Rainforests

0.0 0.3 0.8 1.6 2.8 4.2 5.0 7.0

Annual Average Leaf Area Index

Myneni et al. (unpublished)

Spatially Averaged Behavior: LAI Amplitude

Leaf area data of the Amazon rainforests exhibit *notable seasonality*, with an amplitude (peak to trough difference) that is about 25% of the average annual LAI of 4.7, over the entire course of the data record.

Spatially Explicit Behavior: Pattern

The derived spatial pattern of seasonal LAI amplitude reveals a heretofore unknown picture of phenology over a broad contiguous swath of land, anchored to the Amazon river, from its mouth in the east to its western-most reaches in Peru, in the heart of the basin.

MOD12Q2: Global Vegetation Phenology

From Mark Friedl, Boston Univ.

First global products for vegetation phenology based on MODIS EVI data released for 2001-2004

> Identifies key transition dates in growing season

Footprint of Urban Climates on Phenology

- Results:
 - Phenological signature extends well beyond urban periphery
 - Exponential decay
 - Footprint
 - 2.4 x urban area
 - Longer growing season

Temperature-Driven Phenology in Northern Hemisphere

 Thermal "Time Chilling" Model for Forest Greenup:

 $T_{DD}=a + be^{gC_d}$

- T_{DD} is degree days and C_d is the # of days below threshold.
- Explains ~ 83-95% of variance in T_{DD}
- Implication:
 - High latitude warming may have small effect on forests
 - Lower latitudes may have delayed delayed greenup!

Precipitation-Driven Phenology in Africa

- Compare Onset of rainy season (TRMM) onset of greenup (MODIS)
 - Linear model explains 93-95% of variance in timing of greenup onset

Jolly, Nemani, Running. Global Change Biology 2005

US West Montane zone vegetation dynamics change in response to a global warming-like temperature increase induced by a severe drought: "*Plants green up and ecosystem becomes vulnerable to invasive species*"

> **Kamel Didan, Alfredo Huete** TBRS Lab., SWES Dept. The University of Arizona

AGU Fall Meeting, 2005 San Francisco, CA

Cumulative VI anomaly

Cumulative VI anomaly (the Rockies)

Summer 2003 fPAR 'anomaly' acc. to MOD15+

FPAR 'anomaly' Jul./Aug./Sept. 2003-mean(2000-2002) Unit: fraction

Reichstein 2005

Summer 2003 GPP 'anomaly' acc. to MOD17+

TEST OF NEW MOD 16 DAILY EVAPOTRANSPIRATION

Developing an Integrated MODIS-SeaWinds Phenology Measure

Map (a) of the statistical correspondence (r^2) between growing season 8-day composite MODIS LAI (MOD15A2) and SeaWinds Ku band backscatter for January 2000 through August 2002 for North America. The MODIS land cover product is also shown (b). Temporal variability in the SeaWinds Ku-band backscatter signal corresponds closely with seasonal variations in MODIS derived LAI for grassland and broadleaf deciduous forest biomes of North America. Statistical correspondence is lower where LAI seasonal variability is small (e.g., evergreen forests) and where biomass is low (arid and semiarid shrublands). The combined information from MODIS and SeaWinds may provide an improved measure of vegetation phenology that is less constrained by atmospheric aerosol contamination (e.g., clouds, smoke) and solar illumination effects.

Source: Frolking, S., T. Milliman, K.C. McDonald, J. Kimball, M. Zhao, and M. Fahnestock, 2006. J. Geophys. Res. (In press)

Spring Thaw Impacts to Boreal-Arctic NPP

Spring Thaw Trend (SSM/I, 1988-2001)

Map (at left) of the SSM/I derived trend in the timing of spring thaw for the pan-Arctic basin and Alaska, excluding non-vegetated areas (in grey). The SSM/I thaw signal coincides with the seasonal relaxation of low temperature constraints to photosynthesis and the onset of the growing season at high latitudes. The timing of thaw corresponds closely with regional anomalies in annual NPP derived from the MOD17A2 production efficiency model and the AVHRR Pathfinder record over Alaska and Northwest Canada (above). Negative anomalies relative to the long-term (1988-2001) satellite record denote both earlier thaws and greater productivity while positive values denote the opposite response. Mean annual variability in springtime thaw is on the order of ± 7 days, with corresponding impacts to annual productivity of approximately 1% per day. Satellite based observations of an advancing spring thaw trend may be a physical mechanism driving positive vegetation productivity trends and an advancing CO₂ cycle for northern latitudes.

Terrestrial Carbon Monitor

GROUND DATA

JUNE 2004 MONTHLY NPP ANOMALY

Over 80% of the populated land areas NPP per capita declined

Terrestrial Observation and Prediction System

Nemani et al 2005