How 3D Science Can Help to Correctly Interpret MODIS Data for Better Understanding of Aerosol-Cloud Interactions

Alexander Marshak (GSFC) Robert Cahalan (GSFC) Támas Várnai (UMBC) Guoyong Wen (UMBC) Brian Vant-Hull (UMD)

Instead of Intro

clouds are complex and "satellite analysis may be affected by potential cloud artifacts" (Kaufman and Koren, 2006);

for aerosol retrievals:

 cloud contamination
 adjacency effect

may significantly overestimate AOT

for cloud retrievals:

I clear sky contamination (with dark surface)

cloud 3D structure (e.g., shadowing)

may significantly overestimate droplet size

To study cloud-aerosol interaction we need to be sure that retrieved correlations between AOT and r reflect real physics rather than₂

A striking example

ASTER image

Brazil, Jan. 25, 2003 centered at 0°, 53.78°W Aerosol

Cor. coef. = 0.77 Alexander Marshak

The division of the data set into *backscatter* and *sidescatter* geometries.

Cumulus clouds (MODIS, Aug.-Oct. 2002)

Aerosol-cloud photon interaction

Thick clouds

Contributors to 3D cloud effects

- Rayleigh scattering
- Aerosol amount
- Surface reflectance

What is the relationship between these three factors?

and, of course,

- Distance from cloudy pixels
- Cloud optical thickness

Nov 1, 2006

Enhancement of reflectance vs. AOT

Nov 1, 2006

Effect of distance to a cloudy pixel

Nov 1, 2006

3D radiative effect in Cu clouds. Viewing angle dependence

MODIS data used

- The whole year: Sept. 2004 Aug. 2005
- Collection 4
- Liquid phase; high confidence; $\tau \ge 2$
- SZA between 55° and 80°

•Based on local temp. gradient ΔT , all cloudy pixels are divided into 3 equally populated categories with thresholds:

- most homogeneous: 0.3-0.5 C/km (50-80 m)
- most inhomogeneous: 1.1-1.5 C/km (180-250 m)

Cloud optical thickness

Cloud optical thickness: col. 4 vs col. 5

The most homogeneous (0.3-0.5 C/km) and the most inhomogeneous (1.1-1.5 C/km) cloudy pixels

Nov 1, 2006

Cloud effective radius: col. 4 vs col. 5

Collection 4 "Collection 5" 15 15 Effective radius (µm) Effective radius (µm) the most inhomog. 1/314 14 the most homog. 1/313 °mean 13 mean 12 12 the most homog. 1/3 the most inhomog. 1/311 11 -60 -40 20 40 80 -80 -60 -20 -80 -20 0 60 -40

Viewing zenith angle (°) > 90° Rel. azimuth < 90°

The homog. clouds show no changes (mean $\pm 1.5 \mu$ m) while there are some improvements for the inhomog. clouds

Rel. azimuth $> 90^{\circ}$

mean

mean

80

60

Rel. azimuth $< 90^{\circ}$

40

20

0

Viewing zenith angle (°)

Rel. azimuth $> 90^{\circ}$

Conclusions

 For study aerosol-cloud interaction in Cu environment, 3D cloud effects cannot be ignored;

3D cloud enhancement only weakly depends on AOT;
molecular scattering is the key source for the enhancement;

- Retrieved AOT can be corrected for the 3D rad. effects;
- Both cloud τ and r_e show strong dependence on VZA;

• For study aerosol-cloud interaction, a difference of 2-3 μ m in r_e doesn't necessarily mean the effect of aerosols on clouds but rathers can be a remote sensing problem. 23

How 3D Science Can Help to Correctly Interpret MODIS Data for Better Understanding of Aerosol-Cloud Interactions

Alexander Marshak (GSFC) Robert Cahalan (GSFC) Támas Várnai (UMBC) Guoyong Wen (UMBC) Brian Vant-Hull (UMD)

Example of corrected AOT

Thin clouds				
λ	True	MODIS	$\Delta au(\%)$	
0.47 μm	0.18	0.30	40%	
0.66 μm	0.08	0.12	33%	

Thick clouds

λ	True	MODIS	$\Delta au(\%)$
0.47 μm	0.21	0.40	48%
0.66 µm	0.08	0.22	64%

Cloud effective radius: land and ocean

Droplet sizes retrieved over ocean are less sensitive to VZA (for all clouds)